
Comparing Instance Generation Methods
for Automated Reasoning�

Swen Jacobs and Uwe Waldmann

Max-Planck-Institut für Informatik,
Saarbrücken, Germany

Abstract. The clause linking technique of Lee and Plaisted proves the
unsatisfiability of a set of first-order clauses by generating a sufficiently
large set of instances of these clauses that can be shown to be proposi-
tionally unsatisfiable. In recent years, this approach has been refined in
several directions, leading to both tableau-based methods, such as the
Disconnection Tableau Calculus, and saturation-based methods, such as
Primal Partial Instantiation and Resolution-based Instance Generation.
We investigate the relationship between these calculi and answer the
question to what extent refutation or consistency proofs in one calculus
can be simulated in another one.

1 Introduction

In recent years, there has been a renewed interest in instantiation-based theorem
proving for first-order logic. Much of the recent work in this field is based on the
research of Plaisted and Lee [LP92]. They showed that the interleaving of pro-
duction of instances with recombination of clauses, as done in resolution, leads to
duplication of work in subsequent inference steps. As a means of avoiding this du-
plication, they proposed the clause linking approach. In clause linking, links be-
tween complementary unifiable literals are used to generate instances of the given
clauses, based on the unifier of the linked literals. Unlike in the resolution calcu-
lus, the generated instances are not recombined, but added to the set of instances
as they are. As a consequence, in order to check satisfiability of the generated set
of clauses, an additional SAT solving procedure is needed, which is usually in the
spirit of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DLL62].

Today, there are several methods which are based to some extent on clause
linking and/or DPLL. They may be distinguished by the means they use to
detect unsatisfiability. There are calculi which arrange instances in a tree or a
tableau, integrating an implicit satisfiability check. This approach is used by the
disconnection tableau calculus [Bil96, LS01, Ste02], as well as by Baumgartner’s
FDPLL [Bau00] and the model evolution calculus [BT03]. Other procedures

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

B. Beckert (Ed): TABLEAUX 2005, LNAI 3702, pp. 153–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 S. Jacobs and U. Waldmann

separate instance generation and satisfiability test. These usually use a mono-
tonically growing set of clause instances and call an external SAT solver on this
set. Representatives of this approach are Plaisted’s (ordered semantic) hyper
linking [LP92, Pla94], the partial instantiation methods [HRCR02] of Hooker
et al., as well as resolution-based instance generation [GK03] by Ganzinger and
Korovin. As they use interchangeable SAT solvers, the main difference between
these methods lies in the guidance of instance generation.

The fact that tableau-based and saturation-based instance generation meth-
ods are somehow related can be considered as folklore knowledge; it has been
mentioned repeatedly in the literature (e.g., [BT03, HRCR02]). The precise rela-
tionship is, however, rather unclear. In this work, we will compare four instance
generation methods that stay relatively close to the original clause linking ap-
proach, and can be seen as direct refinements of it:

The Disconnection Calculus (DCC) integrates the instance generation of the
clause linking approach into a clausal tableau. The linking rule of DCC only
allows inferences based on links which are on the current branch, strongly re-
stricting the generation of clauses in the tableau. In this tableau structure, un-
satisfiability of the given set of clauses can be decided by branch closure. Given
a fair inference strategy, the calculus is refutationally complete.

Resolution-based Instance Generation (Inst-Gen) consists of a single resolu-
tion-like inference rule, representing the clause linking approach of generating
instances. After a given set has been saturated under this inference rule, satisfi-
ability of the original clause set is equivalent to propositional satisfiability and
can be checked by any propositional decision procedure.

SInst-Gen is a refinement of Inst-Gen by semantic selection, based on a
propositional model for the given set of clauses. Inconsistencies, which arise
when extending this model to a model for the first-order clauses, are used to
guide the inferences of the extension.

The Primal Partial Instatiation method (PPI) is treated as a special case of
SInst-Gen.

After introducing the calculi, we will consider simulation of derivations from
one method in the other, and we will show to what extent refutation or consis-
tency proofs in one calculus can be simulated in the other one.

2 Introducing the Calculi

This section gives a short introduction to the methods we will compare. For a
comprehensive description, we refer to Letz and Stenz [LS01, Ste02] for DCC,
Ganzinger and Korovin [GK03] for SInst-Gen, and Hooker et al. [HRCR02] for
PPI.

2.1 Logical Prerequisites

We use the usual symbols, notation and terminology of first-order logic with
standard definitions. We consider all formulas to be in clausal normal form. This

Comparing Instance Generation Methods for Automated Reasoning 155

allows us to consider a formula as a set of clauses, thought to be connected
by conjunction. In all of our methods, every clause of a formula is implicitly
∀-quantified, while the methods themselves always work on quantifier-free for-
mulas. Furthermore, all clauses are implicitly considered to be variable-disjoint.

If F is some formula and σ a substitution, then Fσ is an instance or instan-
tiation of F . It is a ground instance, if it is variable-free. Otherwise it is a partial
instantiation. It is a proper instance1, if at least one variable is replaced by a
non-variable term. A variable renaming on a formula F is an injective substi-
tution mapping variables to variables. Two formulas (clauses, literals) K and L
are variants of each other, if there is a variable renaming σ such that Lσ = K.
If F ′ is an instantiation of a formula F , then F is a generalization of F ′. Given
a set of formulas S, we say that F ∈ S is a most specific generalization of F ′

with respect to S if F generalizes F ′ and there is no other formula G ∈ S such
that G generalizes F ′, F generalizes G, and F is not a variant of G.

For any literal L, L denotes its complement. By ⊥ we denote both a distin-
guished constant and the substitution mapping all variables to this constant. We
say that two literals L, L′ are ⊥-complementary if L⊥ = L′⊥. A set of clauses
S is called propositionally unsatisfiable if and only if S⊥ is unsatisfiable.

2.2 The Disconnection Tableau Calculus

The Disconnection Tableau Calculus calculus has been developed by Billon
[Bil96] and Letz and Stenz [LS01, Ste02]. In order to define development of
a disconnection tableau, we need the notions of links, paths and tableaux:

A literal occurrence is a pair 〈C, L〉, where C is a clause and L ∈ C a literal.
If 〈C, L〉 and 〈D, K〉 are two literal occurrences such that there is a most general
unifier (mgu) σ of L and K, then the set l =

{
〈C, L〉, 〈D, K〉

}
is called a link (be-

tween C and D). Cσ and Dσ are linking instances of C and D with respect to l.
A path P through a set of clauses (or occurrences of clauses) S is a set of

literal occurrences such that P contains exactly one literal occurrence 〈C, L〉 for
every C ∈ S. A path P is ⊥-complementary if it contains literal occurrences
〈C, L〉 and 〈D, K〉 such that L⊥ = K⊥, otherwise it is open.

A disconnection tableau (tableau, for short) is a (possibly infinite) downward
tree with literal labels at all nodes except the root. Given a set of clauses S,
a tableau for S is a tableau in which, for every tableau node N , the set of
literals C = L1, ..., Lm at the immediate successor nodes N1, ..., Nm of N is an
instance of a clause in S. Every Ni is associated with the clause C and the literal
occurrence 〈C, Li〉.

Construction of a tableau starts from an initial path PS through the set S
of input clauses. The initial path may be chosen arbitrarily, but remains fixed
through the construction of the tableau.

A branch of a tableau T is any maximal sequence B = N1, N2, ... of nodes in
T such that N1 is an immediate successor of the root node and any Ni+1 is an im-
mediate successor of Ni. With every branch B we associate a path PB containing
1 This definition is due to Ganzinger and Korovin [GK03] and may deviate from

definitions in other areas.

156 S. Jacobs and U. Waldmann

the literal occurrences associated with the nodes in B. The union PS ∪PB of the
initial path and the path of a branch B is called a tableau path of B. Note that,
in contrast to the initial path and the path of a branch, the tableau path may
contain two literal occurrences for (two different occurrences of) the same clause.

To develop a tableau from the initial path and the empty tableau consisting
of only the root node, we define the linking rule: Given an initial path PS and a
tableau branch B with literal occurrences 〈C, L〉 and 〈D, K〉 in PS ∪ PB, such
that l =

{
〈C, L〉, 〈D, K〉

}
is a link with mgu σ, the branch B is expanded with

a linking instance with respect to l of one of the two clauses, say with Cσ, and
then, below the node labeled with Lσ, the branch is expanded with the other
linking instance with respect to l, Dσ.

As all clauses are variable-disjoint, variant-freeness is required in order to
restrict proof development to inferences which introduce “new” instances: A
disconnection tableau T is variant-free, if no node N with clause C in T has
an ancestor node N ′ with clause D in T such that C and D are variants of
each other. In practice, variant-freeness is assured by two restrictions: First, a
link that has already been used on the current branch may not be used again.
Secondly, when a linking step is performed, variants of clauses which are al-
ready on the branch are not added to the tableau. This can result in linking
steps where only one of the linking instances is added. By definition, variant-
freeness does not extend to the initial path, i.e., variants of input clauses can
be added to the tableau, and may be needed for completeness. This may lead
to tableau paths with two literal occurrences for the same clause, in which case
the occurrence from the initial path is redundant, as we have shown in Ja-
cobs [Jac04].

Next, we define when tableau construction will terminate: A tableau branch
B is closed, if PB is ⊥-complementary; if not, it is called open. A tableau is
closed if it has no open branches. Similarly to the notion of variant-freeness, clo-
sure does not extend to the initial path, i.e., literals on the initial path may
not be used to close a tableau branch. An exception can be made for unit
clauses on the initial path, as adding those to the tableau would result in only
one branch which would directly be closed. A branch B in a (possibly infinite)
tableau T is called saturated, if B is open and there is no link on B which pro-
duces at least one linking instance which is not a variant of any clause on B.
A tableau is saturated if either all its branches are closed or it has a saturated
branch. A saturated branch represents a model for the set of input clauses of
the tableau.

With these definitions, we have a sound and functional calculus. Starting
from the initial path, the linking rule develops our tableau, restricted by variant-
freeness. The disconnection calculus terminates if we can close all branches of the
tableau, thus proving unsatisfiability of the input clauses, or if at least one branch
can be saturated in finite time, thereby proving that the set of input clauses is
satisfiable. If the choice of linking steps is fair, i.e., if all infinite branches are
saturated, termination is guaranteed for every unsatisfiable input set.2

2 For examples of open, closed and saturated tableaux, see Fig. 1, 2 and 3, respectively.

Comparing Instance Generation Methods for Automated Reasoning 157

2.3 Resolution-Based Instance Generation

The Inst-Gen calculus is due to Ganzinger and Korovin [GK03]. It uses the
following inference rule:

C ∨ L D ∨ K

(C ∨ L)σ (D ∨ K)σ
,

where σ is the mgu of K and L and a proper instantiator of either K or L.
For a set of clauses saturated under Inst-Gen, the satisfiability test can be re-

duced to the propositional case. As saturation may take infinitely long, however,
satisfiability testing cannot be postponed until saturation is reached.

There is a formal notion of redundancy for Inst-Gen, which is, however, out
of the scope of this work. The only clauses we will consider as redundant are
variants of clauses which are already present. An inference is redundant if it
only produces such variants.

SInst-Gen is an extension of Inst-Gen, which uses semantic selection in order
to restrict the search space: Let S be a set of clauses such that S⊥ is satisfiable.
Let I⊥ be a model of S⊥. We define the satisfiers of a clause to be the set
sat⊥(C) = {L ∈ C | I⊥ |= L⊥}. Now consider selection functions on clauses
(modulo renaming), which select for every clause in S one of its satisfiers.

Instance generation, based on a selection function sel, is defined as follows:

C ∨ L D ∨ K

(C ∨ L)σ (D ∨ K)σ
,

where σ is the mgu of K and L and both K and L are selected by sel.3

A selection function can be considered to represent a model for the grounded
set of clauses S⊥. When trying to extend it to a model of S, complementary
unifiable literals represent inconsistencies in the extension. Every inference of
SInst-Gen resolves such an inconsistency.

In order to allow hyper-inferences, more than one satisfier can be selected. If
for every selected literal in a clause, a complementary unifiable selected literal in
another clause is found, then a hyper-inference produces all instances that the
individual inferences between these literals would produce.

In order to ensure that unsatisfiable input sets are saturated within finite
time, the choice of inferences must be fair. An informal idea of fairness is that
any inference which is available infinitely often must either be taken or become
redundant by application of other inferences at some time.

Propositional satisfiability of the generated set of clauses S′ is tested after
every inference step by searching for a model of S′⊥. If this does not exist,
unsatisfiability of the input set S has been proved. If it does, another inference
follows, until either no model can be found or no inferences are possible. In the
latter case, the model of S′⊥ can be extended to a model of S without conflicts,
3 The second condition of the Inst-Gen rule is implied by the use of semantic selection.

158 S. Jacobs and U. Waldmann

i.e., satisfiability of S has been shown. If the inferences are chosen in a fair
manner, SInst-Gen is refutationally complete.

The primal partial instantiation (PPI) method [HRCR02]4 is equivalent to
the basic case of SInst-Gen without redundancy elimination and hyper-
inferences, except for the saturation strategy: PPI uses a counter which speci-
fies the maximal term-depth of unified literals in an inference step. The counter
is not reset to 0 after selection of literals is changed, and this may lead to a
behaviour that is not fair with respect to the definition by Ganzinger and Ko-
rovin [Jac04]. As PPI is complete nonetheless, this may be an indication that
the fairness condition of SInst-Gen is stricter than actually necessary.

3 Comparing Refutation Proofs

To compare different reasoning methods, several patterns of comparison can be
used. Assuming that the objects of investigation are abstract calculi, rather than
concrete implementations, one can analyze for which inputs proofs are found,
how long the proofs are, or which formulas are derived during the proof. Which
of these choices are appropriate for a comparison of DCC and SInst-Gen?

Both calculi are refutationally complete, and so they find (refutation) proofs
for exactly the same input sets. (They may differ, however, in their ability to
prove the consistency of satisfiable input sets. We will discuss this case later.)

DCC checks propositional satisfiability internally, whereas SInst-Gen uses an
external program to solve this (NP-complete) subproblem. Since the number of
inference steps of the external SAT solver is unknown, a meaningful comparison
of the length of proofs is impossible.

The only remaining choice is to compare the internal structure of the proofs,
or more precisely, the sets of clauses that are generated during the proof.

Definition 1. A proof of method A simulates a given proof of method B if
the instances generated by the simulating A-proof are a subset of the instances
generated in the original B-proof.

Thus, if method A can simulate all proofs of method B, B can be seen as
a special case (or refinement) of A. With respect to this definition, Inst-Gen is
the most general of the instance generation methods we have introduced, as it
can simulate DCC, PPI and SInst-Gen proofs. That is, all of these calculi are
refinements of Inst-Gen. A method that can simulate any refutation proof of
another method is more general, but usually not better in the sense that it finds
more proofs with limited resources (time, space). On the contrary, a strictly
more general method will usually have a larger search space.

The definition of simulation is also motivated by the following two lemmas:

Lemma 2. Let S be an unsatisfiable set of clauses, let T be a closed disconnec-
tion tableau for S. Then the set S′ of all instances on the tableau is proposition-
ally unsatisfiable.
4 The calculus originally presented by Hooker et al. is unsound, but can be corrected

(see Jacobs [Jac04]).

Comparing Instance Generation Methods for Automated Reasoning 159

Proof. Suppose S′ was not propositionally unsatisfiable. Then there must be
an open path through S′⊥. Using the literal occurrences in this path, we can
identify a branch in T which selects the same literals. This branch cannot be
closed, contradicting the assumption that T is closed.

The lemma implies that an SInst-Gen proof will terminate as soon as all
instances from a closed disconnection tableau have been generated. Thus, we
know that, if generation of these instances is possible, the requirements for our
notion of simulation will be fulfilled by SInst-Gen. The next lemma does the
same for the other direction of simulation:

Lemma 3. Let S be an unsatisfiable set of clauses. If an SInst-Gen proof ter-
minates after generating the set of instances S′ ⊇ S, then there exists a closed
tableau containing only instances from S′.

Proof. We may simply add instances from S′ to each branch of the tableau until
it is closed. As there are no open paths through S′, this means that every branch
containing all clauses from S′ must be closed.

Note, however, that neither Lemma 2 nor Lemma 3 guarantee that the re-
quired clauses can actually be generated using the construction rules of the sim-
ulating calculus. Moreover, in the disconnection calculus, even if the instances
can be generated somewhere in the tableau, this does not necessarily mean that
they can be generated where they are needed.

Thus, we need to compare instance generation and the guidance of proofs in
both methods in order to see if simulation is possible. Instance generation itself,
represented by the inference rules, is identical in both methods: the main premise
is a pair of selected literals L1, L2 in clauses C1, C2 such that L1σ = L2σ for
some mgu σ. If those are present, the instances C1σ and C2σ are generated. In
both methods, one literal per clause is selected and variants of existing clauses
will not be added again. Open branches correspond essentially to selection func-
tions; if a branch is closed in DCC, then in SInst-Gen a selection function for
the set of clauses is not allowed to select the same literals. The other direction,
however, does not hold, because of the special role of the initial path in DCC:
It is chosen and fixed at the beginning of the proof, and literals on it must not
be used to close branches. There is no equivalent notion in SInst-Gen. However,
adding variants of clauses from the initial path to the tableau effectively allows
a different selection on and closure by input clauses, albeit only if there is a
link which allows generation of the variant. The fact that literals on the initial
path do not close branches may also lead to the generation of non-proper in-
stances of input clauses. This cannot happen in SInst-Gen, as it requires two
⊥-complementary literals to be selected. The main difference between the two
approaches, however, is that instances generated in DCC will only be available
on the current branch, while in SInst-Gen all instances are available at all times,
i.e., regardless of the current selection.

160 S. Jacobs and U. Waldmann

3.1 From SInst-Gen to DCC

Theorem 4. There exist refuting SInst-Gen proofs that cannot be simulated by
any DCC proof.5

Proof. The following is an SInst-Gen proof for an unsatisfiable set of clauses.
We claim that it cannot be simulated by any disconnection tableau, i.e., DCC
cannot finish the proof with the same set of instances as SInst-Gen, or a subset
thereof. The reason for this is that the needed instances cannot be generated on
all branches without generating additional instances.

The proof which we consider starts with the set of input clauses

¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z), ¬P (x, y) ∨ P (fx, c),

P (a, b), P (b, c), ¬P (fa, c),

where a selection function is given by the underlined literals. SInst-Gen goes on
to produce the following instances in the given order:

¬P (a, b) ∨ ¬P (b, z) ∨ P (a, z), ¬P (a, b) ∨ ¬P (b, c) ∨ P (a, c),

¬P (a, c) ∨ P (fa, c)

One can easily see that addition of the last clause makes the set proposition-
ally unsatisfiable. SInst-Gen terminates, indicating unsatisfiability. The DCC
derivation in Figure 1 tries to reproduce all steps of this SInst-Gen proof.

Within the frame we have the input clauses. The initial path of the tableau
selects the same literals as the initial selection function of the SInst-Gen proof
does. Links between literals are marked by dashed lines with a circle numbering
the link. On the tableau, the circle above the generated clause shows the number
of the link which was used. One can confirm that links number 1, 5 and 6
are equivalent to the inference steps in SInst-Gen, as they produce the same
instances. Branches which are closed are marked by a ∗. We see that there is one
open branch. Our definition of simulation would allow us to close this branch by
generating again any of the instances from the given proof. The available links
on this branch are those with numbers 2 to 4 from the initial path, as well as
two additional links to P (a, z) which are not displayed in the figure. However,
none of those links generate one of the needed instances. Therefore, simulation
has failed with this strategy.

It might still be possible that there is a tableau simulating the given SInst-
Gen proof which generates instances in a different order or uses a different initial
path. We have shown that even in this case simulation of the given derivation is
not possible. The proof is rather lengthy and can be found in Jacobs [Jac04].

As the SInst-Gen proof given above obeys the term-depth restriction of
Hooker’s PPI method, it shows also that there are PPI proofs that cannot be
simulated by any DCC proof:
5 It is not known whether this result still holds if one considers some of the extensions

of DCC from Stenz [Ste02].

Comparing Instance Generation Methods for Automated Reasoning 161

input clauses

¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)

¬P (x, y) ∨ P (fx, c)

P (a, b)

P (b, c)

¬P (fa, c)

2 3

4

1

1

¬P (a, b)

∗
¬P (b, z)

5

¬P (a, b)

∗
¬P (b, c)

∗
P (a, c)

6

¬P (a, c)

∗
P (fa, c)

∗

P (a, z)

5
6

Fig. 1. DCC needs additional instances

Corollary 5. There exist refuting PPI proofs that cannot be simulated by any
DCC proof.

3.2 From DCC to SInst-Gen

The fact that SInst-Gen proofs cannot always be simulated by DCC proofs is a
consequence of the tree structure of DCC proofs. One might expect that in the
other direction there is no such obstacle, but surprisingly, this is not the case.

Theorem 6. There exist refuting DCC proofs that cannot be simulated by any
SInst-Gen proof.

Proof. Figure 2 shows a closed disconnection tableau for an unsatisfiable set of
input clauses. We claim that this tableau cannot be simulated by SInst-Gen.

In order to verify this claim, let us consider all possible SInst-Gen proofs for
the given set of clauses:

P (a, x, y, z) ∨ Q(a, b, z), ¬P (x, y, z, b) ∨ R(x), P (a, x, y, b) ∨ S(y),

¬Q(x, y, z) ∨ ¬P (x, b, z, y), ¬S(b), ¬R(a)

An underlined literal means that no other selection is possible in that clause.
If there is no underlined literal, we consider all possible selections. There is

162 S. Jacobs and U. Waldmann

input clauses

P (a, x, y, z) ∨ Q(a, b, z)

¬P (x, y, z, b) ∨ R(x)

P (a, x, y, b) ∨ S(y)

¬Q(x, y, z) ∨ ¬P (x, b, z, y)

¬S(b)

¬R(a)

1

P (a, x, y, b)

¬P (a, x, y, b)

∗
R(a)

∗

Q(a, b, b)

3

¬Q(a, b, b)

∗
¬P (a, b, b, b)

4

P (a, b, b, b)

∗
S(b)

∗

3

2

1

4

Fig. 2. SInst-Gen needs additional instances

an inconsistency between P (a, x, y, z) in the first and ¬P (x, y, z, b) in the sec-
ond clause, which is equivalent to link number 1 in the tableau (i.e., produces
the same instances). Also, there are inconsistencies between ¬P (x, y, z, b) in the
second and P (a, x, y, b) in the third clause, and between R(x) in the second
clause and the unit clause ¬R(a), which both produce only one of these in-
stances, ¬P (a, x, y, b) ∨ R(a). There are four other possible inferences on this
set of clauses, but all of them produce instances which are not on the given
tableau.

Let us first consider the simulating proof which only produces ¬P (a, x, y, b)∨
R(a) in the first step. Except the one mentioned first above, none of the pos-
sible inferences between the input clauses is usable for a simulation. Thus, we
only need to consider inconsistencies referring to the newly generated clause.
Moreover, as R(a) is complementary to the given unit clause ¬R(a), we only
need to consider inconsistencies between ¬P (a, x, y, b) and literals of the given
clauses. Only one new inconsistency is introduced by the new clause, related
to P (a, x, y, z) in the first input clause. Furthermore, both of the inferences
which are admissible for a simulating proof produce the same instance, which is
P (a, x, y, b) ∨ Q(a, b, b).

Comparing Instance Generation Methods for Automated Reasoning 163

Thus, after either taking the first inference step mentioned above, or one of
the other two possible inference steps and one of the two admissible subsequent
inferences, we arrive at the following set of instances:

P (a, x, y, z) ∨ Q(a, b, z), ¬P (x, y, z, b) ∨ R(x), P (a, x, y, b) ∨ S(y),

¬Q(x, y, z) ∨ ¬P (x, b, z, y), ¬S(b), ¬R(a), ¬P (a, x, y, b) ∨ R(a),

P (a, x, y, b) ∨ Q(a, b, b)

All admissible inferences between input clauses have been carried out and selec-
tion is fixed on all of the generated instances. Thus, we have only one possible
inference, which is between Q(a, b, b) in the last and ¬Q(x, y, z) in the fourth
clause. This step is equivalent to linking step number 3 in the tableau, generating
the instance ¬Q(a, b, b) ∨ ¬P (a, b, b, b).

Now, we have to select ¬P (a, b, b, b) in the last instance, which only gives
us one new inference, connected to P (a, x, y, z) in the first clause. Note that
the inference equivalent to linking step number 4 is not possible, as P (a, x, y, b)
is ⊥-complementary to ¬P (a, x, y, b), which has to be selected in the seventh
clause. The new inference generates P (a, b, b, b) ∨ Q(a, b, b), which is not on the
given tableau. At this point, there is no inference which does not violate our
simulation property, which means that simulation has failed.

This result also holds if hyper-inferences are allowed in SInst-Gen, as one can
easily verify that the possible hyper-inferences either produce instances which
violate simulation, or only produce the same instances as the standard inferences.

3.3 Weak Simulation

We have shown that simulation of refutational SInst-Gen (or PPI) proofs by
DCC, or vice versa, fails in general. We can get positive simulation results,
however, if the definitions of the calculi are slightly changed and if the definition
of simulation is modified in the following way:

Definition 7. A proof by method A simulates a given proof by method B weakly,
if every instance generated by the simulating A-proof is a generalization of an
instance generated in the original B-proof.

Recently, Letz and Stenz [LS04] introduced a more general version of the
linking rule, which uses instead of standard unification a special form of a unifier:
Given two literals L and L′, a substitution σ is called a ⊥-unifier of L and L′

if Lσ⊥ = L′σ⊥. σ is called a most general ⊥-unifier of L and L′ if it is more
general than every ⊥-unifier of L and L′. E.g., ⊥-unification of P (a, x, y) and
P (x′, y′, y′) results in P (a, x, y) and P (a, y′, y′).

It has already been stated [GK03] that the degree of instantiation of an
SInst-Gen inference can be chosen flexibly, as long as at least one variable is
instantiated properly. As for properly instantiated variables there is no difference
between standard and ⊥-unification, we can safely assume that we can use ⊥-
unification also for SInst-Gen.

164 S. Jacobs and U. Waldmann

Theorem 8. Let S be an unsatisfiable set of clauses, S′ a set of instances of
clauses from S such that (S ∪ S′)⊥ is unsatisfiable. If M is a finite subset of
S ∪ S′ such that M⊥ is unsatisfiable, then SInst-Gen with ⊥-unification can
prove unsatisfiability of S by only generating generalizations of clauses from M .

Proof. As the set of all generalizations of clauses in M is finite (up to renaming),
it is not necessary to consider infinite derivations using such clauses. So the only
way how the construction of an SInst-Gen proof using generalizations of clauses
in M can fail is that at some point of the proof, SInst-Gen has generated a set
of clauses M1 such that M1⊥ is satisfiable and every possible inference on M1
results in generation of an instance which is not a generalization of any clause in
M . As M1⊥ is satisfiable, we can choose a selection function sel on M1. Every
clause Cσ ∈ M has at least one most specific generalization C with respect
to M1. Suppose we choose one of these most specific generalizations for every
Cσ ∈ M and select the literal Lσ ∈ Cσ if L is selected by sel in C. As M⊥
is unsatisfiable, we must have selected at least one pair of ⊥-complementary
literals, say L1σ1 ∈ C1σ1 and L2σ2 ∈ C2σ2.

Thus, in M1, sel selects L1 ∈ C1 and L2 ∈ C2. As L1σ1 and L2σ2 are
⊥-complementary, we can state that L1 and L2 are complementary unifiable,
say by τ . As they are not ⊥-complementary, there is an SInst-Gen inference
with ⊥-unification between them. The substitution used in this inference is a
most general ⊥-unifier, therefore the clauses produced by this inference will
also be generalizations of clauses from M . Note that this would not hold for
SInst-Gen without ⊥-unification. The inference generates at least one proper
instance with respect to the premises, say C1τ is a proper instance of C1. There
cannot be a variant of C1τ in M1, as C1 was chosen to be a most specific
generalization of C1σ. Thus, we have produced a new generalization of a clause
from M , contradicting our assumption that no such inference is possible.

Corollary 9. For every refuting DCC proof (with or without ⊥-unification)
there exists a weakly simulating SInst-Gen proof (with ⊥-unification).

Proof. For a DCC proof that shows the unsatisfiability of a set of clauses S,
let S′ be the finite set of all clauses on the DCC tableau. Since (S ∪ S′)⊥ is
unsatisfiable, we can apply the previous theorem.

Theorem 10. Let S be an unsatisfiable set of clauses, S′ a set of instances of
clauses from S such that (S ∪ S′)⊥ is unsatisfiable. If M is a finite subset of
S ∪ S′ such that M⊥ is unsatisfiable, then DCC with ⊥-unification can prove
unsatisfiability of S by only generating generalizations of clauses from M .

Proof. Again, the fact that the set of all generalizations of clauses in M is finite
ensures that unfair derivations need not be considered. Suppose a DCC tableau
for S has an open branch B that cannot be extended without generating in-
stances that are not generalizations of clauses in M . Every clause in Cσ ∈ M
has at least one most specific generalization C with respect to the clauses on the
tableau path PS ∪ PB . We select in each Cσ ∈ M the literal corresponding to

Comparing Instance Generation Methods for Automated Reasoning 165

the literal of C on the tableau path. As M⊥ is unsatisfiable, ⊥-complementary
literals Lσ ∈ Cσ and Kτ ∈ Dτ are selected. Thus the literals L and K of the
most specific generalizations C and D are on the tableau path. The DCC in-
ference with ⊥-unification from C and D uses a most general ⊥-unifier, so the
instances produced by this inference are again generalizations of Cσ and Dτ ;
moreover, at least one of them is a proper instance of a premise. This instance
cannot be a variant of a clause on the tableau path, since C and D were chosen
as most specific generalizations of Cσ and Dτ . Therefore, the tableau can be
extended with a generalization of a clause in M , contradicting our assumption.

Corollary 11. For every refuting SInst-Gen or PPI proof (with or without ⊥-
unification) there exists a weakly simulating DCC proof (with ⊥-unification).

4 Comparing Consistency Proofs

4.1 From SInst-Gen to DCC

The case of consistency proofs differs in several aspects from the case of re-
futing proofs. First, it is clear that no theorem proving method is guaranteed
to terminate for satisfiable sets of clauses. Second, in order to declare a set of
clauses unsatisfiable, SInst-Gen must check all propositional interpretations for
the given set of clauses and show that none of them is a model. In contrast to
this, termination on a satisfiable set of clauses only depends on one interpretation
which can be extended to a first-order model of the input clauses. Essentially, the
same holds for DCC. Simulation can therefore be based on the final set of clauses
and selection function. In the following, we will show that this fact enables us
to simulate any SInst-Gen proof which terminates on satisfiable input by DCC.

Theorem 12. Let S be a satisfiable set of input clauses, S ∪ S′ a finite set of
clauses saturated under SInst-Gen proof with selection function sel. Then the
given consistency proof can be simulated by DCC.

Proof. We prove our claim by induction on the number of proof steps of the
simulating proof, where a proof step consists of both the selection of literals and
the generation of instances. Simulation is not based on the steps of the given
proof, but only on the final set of clauses S ∪ S′ and the selection function sel.
We will show that every step of the simulating proof produces only instances
from S ∪ S′, while the tableau path we follow is always equivalent to sel for the
clauses which are on this path.

First, we choose the initial path PS of our simulating proof to select the
same literals as sel on S. Then, every link on PS can only produce instances
from S ∪ S′, as otherwise there would be an inconsistency of sel. Thus, we may
carry out an arbitrary link from those which are available on PS , resulting in a
set of clauses which is a subset of S ∪ S′.

Now, suppose an arbitrary number of steps has been carried out by our
simulating proof, always following a tableau path which selects the same literals

166 S. Jacobs and U. Waldmann

as sel for clauses on the path and only generating instances from S ∪S′. We can
extend the path from the last step such that it selects the same literals as sel
on the new instances. As sel does not select ⊥-complementary literals, the path
must also be open. By the same argument as above, we may again carry out any
possible linking step, producing only instances from S ∪ S′.

In this way, we carry out all possible linking steps. As we choose our tableau
path such that only instances from S ∪ S′ are produced, the process must ter-
minate after a finite number of steps. As termination of the process means that
we have saturated the current path, we can state that we have reached our goal
to simulate the given proof.

It may happen that a linking step adds two instances, but sel is such that
we cannot select a tableau path which is equivalent to the selection function
and considers both of these clauses. This happens if both of the selected literals
are not linked literals of the linking step that produces them. In this case, our
tableau path can only consider one of the produced clauses. However, as we
want to saturate the branch we are following, missing clauses and links are not
a problem, but a benefit in this case.

4.2 From DCC to SInst-Gen

We have shown that every SInst-Gen consistency proof can be simulated by
DCC. The reverse, however, does not hold: Figure 3 shows a saturated discon-
nection tableau for a satisfiable set of input clauses. Saturation of the tableau is
achieved by generating a single non-proper instance of an input clause.

input clauses

P (x, y) ∨ Q(x, y)

¬P (x, x)

¬Q(a, f(a))

1

1

P (x, x)

∗
Q(x, x)

Fig. 3. Saturated disconnection tableau

An SInst-Gen proof for the given set of clauses would have to select Q(x, y)
in the first input clause, as ⊥-complementary literals must not be selected. Thus,
we have an inconsistency between this literal and ¬Q(a, f(a)), which produces
an instance we do not have on the tableau. Without producing this instance
however, satisfiability of the input set cannot be detected by SInst-Gen.

Comparing Instance Generation Methods for Automated Reasoning 167

If ⊥-unification is used for both DCC and SInst-Gen, examples like this one
are obsolete, as only proper instances or variants of input clauses will be added
to the tableau. However, even in this case simulation is in general not possible,
as we have demonstrated by a more complicated counterexample [Jac04].

As for refutation proofs, this result still holds when hyper-inferences are
allowed in the simulating SInst-Gen proof.

5 Conclusions

We have compared the four instance generation methods DCC, Inst-Gen, SInst-
Gen, and PPI. Inst-Gen, which does not make any attempt to restrict the search
space, is obviously the most general of these calculi: any DCC, SInst-Gen, or
PPI proof can be simulated by an Inst-Gen proof.

PPI is essentially a special case of SInst-Gen, except for its term-depth-
based saturation strategy, which ensures completeness of the calculus but is not
subsumed by the fairness criterion of SInst-Gen. It would be interesting to search
for a more relaxed notion of fairness which allows all possible strategies of both
PPI and SInst-Gen.

For DCC and SInst-Gen, we have demonstrated that, for refutation proofs,
simulation between (the basic versions of) the methods is in general not possible.
This implies in particular that neither of the methods can be considered as a
special case of the other. In case of consistency proofs, we have shown that SInst-
Gen proofs that terminate on satisfiable input can always be simulated by DCC,
while this does not hold for the other direction. All of these results still hold
when SInst-Gen is allowed to use hyper-inferences.

We face a very different situation when we consider weak simulation, so that
we can not only use clauses from the given proof but also generalizations thereof.
We have shown that DCC and SInst-Gen with ⊥-unification can weakly simulate
each other; in fact we conjecture that DCC and SInst-Gen with ⊥-unification
can weakly simulate any instance-based calculus.

For DCC and SInst-Gen there are various refinements which are out of the
scope of this work. It is not clear how our results would translate to the refined
calculi, e.g. DCC with lemma generation and subsumption or SInst-Gen with
redundancy elimination. Additionally, for both methods extensions to equality
reasoning are available. A comparison of the different approaches to these refine-
ments and extensions might give more useful insights on the relation between
DCC and SInst-Gen.

References

[Bau00] Peter Baumgartner. FDPLL – A First-Order Davis-Putnam-Logeman-
Loveland Procedure. In CADE-17, LNAI 1831, pages 200–219. Springer,
2000.

[Bil96] Jean-Paul Billon. The disconnection method: a confluent integration of
unification in the analytic framework. In Tableaux 1996, LNAI 1071, pages
110–126. Springer, 1996.

168 S. Jacobs and U. Waldmann

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In
CADE-19, LNAI 2741, pages 350–364. Springer, 2003.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem proving. Communications ACM, 5:201–215, 1962.

[GK03] Harald Ganzinger and Konstantin Korovin. New directions in
instantiation-based theorem proving. In LICS-03, pages 55–64, Ottawa,
Canada, 2003. IEEE.

[HRCR02] John N. Hooker, Gabriela Rago, Vijay Chandru, and Anjul Rivastava.
Partial instantiation methods for inference in first-order logic. Journal of
Automated Reasoning 28, pages 371–396, 2002.

[Jac04] Swen Jacobs. Instance generation methods for automated reason-
ing. Diploma Thesis, Universität des Saarlandes, 2004. Available at
http://www.mpi-sb.mpg.de/˜sjacobs/publications.

[LP92] Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the
hyper-linking strategy. Journal of Automated Reasoning, 9:25–42, 1992.

[LS01] Reinhold Letz and Gernot Stenz. Proof and model generation with discon-
nection tableaux. In LPAR 2001, LNAI 2250, pages 142–156. Springer,
2001.

[LS04] Reinhold Letz and Gernot Stenz. Generalised handling of variables in
disconnection tableaux. In IJCAR 2004, LNCS 3097, pages 289–306.
Springer, 2004.

[Pla94] David A. Plaisted. Ordered semantic hyper-linking. Technical Report
MPI-I-94-235, Max-Planck-Institut für Informatik, Saarbrücken, Germany,
1994.

[Ste02] Gernot Stenz. The Disconnection Calculus. PhD thesis, TU München,
2002.

	Introduction
	Introducing the Calculi
	Logical Prerequisites
	The Disconnection Tableau Calculus
	Resolution-Based Instance Generation

	Comparing Refutation Proofs
	From SInst-Gen to DCC
	From DCC to SInst-Gen
	Weak Simulation

	Comparing Consistency Proofs
	From SInst-Gen to DCC
	From DCC to SInst-Gen

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

