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A number of representation systems have been proposed that extend the purely propo-
sitional Bayesian network paradigm with representation tools for some types of first-order
probabilistic dependencies. Examples of such systems are dynamic Bayesian networks and
systems for knowledge based model construction. We can identify the representation of prob-
abilistic relational models as a common well-defined semantic core of such systems. Recursive
relational Bayesian networks (RRBNs) are a framework for the representation of probabilistic
relational models. A main design goal for RRBNs is to achieve greatest possible expres-
siveness with as few elementary syntactic constructs as possible. The advantage of such an
approach is that a system based on a small number of elementary constructs will be much more
amenable to a thorough mathematical investigation of its semantic and algorithmic properties
than a system based on a larger number of high-level constructs. In this paper we show that
with RRBNs we have achieved our goal, by showing, first, how to solve within that framework
a number of non-trivial representation problems. In the second part of the paper we show how
to construct from a RRBN and a specific query, a standard Bayesian network in which the
answer to the query can be computed with standard inference algorithms. Here the simplicity
of the underlying representation framework greatly facilitates the development of simple al-
gorithms and correctness proofs. As a result we obtain a construction algorithm that even for
RRBNs that represent models for complex first-order and statistical dependencies generates
standard Bayesian networks of size polynomial in the size of the domain given in a specific
application instance.

Keywords: first-order probabilistic representations, knowledge based model construction,
Bayesian networks, temporal and relational models

1. Introduction

1.1. From propositional to relational probabilistic models

Uncertain information can often be modeled as a joint probability distribution of a
set X1, . . . ,Xn of random variables. An important subclass of such joint distributions is
given by the case where each random variable Xi can only take on finitely many different
values. A random variable with k possible values can also be encoded with �log(k)�
Boolean random variables, i.e., random variables whose possible values are only true
and false. A joint distribution of random variables with finite ranges, thus, can also be
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encoded as a joint distribution of Boolean random variables. Such a distribution we call
a probabilistic propositional model (ppm).

Bayesian networks are the most prominent representation framework for ppms.
Figure 1(a) shows a classic example of a Bayesian network representing a joint distrib-
ution of the Boolean random variables burglary(Holmes) (standing for the event that
Holmes’ home was broken into), earthquake(Holmes) (there was an earthquake in
the area where Holmes lives), alarm(Holmes) (the alarm at Holmes’ house went off),
and call(Watson, Holmes) (Holmes received a phone call from his neighbor Watson).
The network structure, in conjunction with the conditional probability tables attached to
the nodes, specify a joint probability distribution of the network’s variables [10,23].

The network in figure 1(a) is adequate for Holmes to evaluate the probability of a
burglary at his house when Holmes has exactly one neighbor, Watson. If Holmes has
two neighbors, Watson and Gibbon, then he needs to use the ppm represented by the
network shown in figure 1(b).

Figures 1(a) and (b) show two distinct Bayesian networks representing two distinct
ppms. The two models are very similar, however: the random variables in network (a)
are a subset of the random variables in network (b), and the distribution defined by the
network (a) is just the marginal on the random variables the two networks have in com-
mon of the distribution defined by the network (b). In fact, the similarities between the
two models are such that one can hardly speak about two distinct models, but only about

(a)

(b)

Figure 1. Different instances of the same basic model.
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two different instances of one basic underlying model. This underlying model, however,
no longer can simply be a ppm. Instead, the underlying model must essentially be a blue-
print for the construction of individual ppms. To obtain a mathematical formalization of
such a blueprint, we first observe that all the random variables in figure 1 are desig-
nated by what in predicate logic would be called a ground atomic formula, or, shorter, a
ground atom: a predicate (or relation) symbol (burglary, . . . ,call) applied to some
constants (Holmes, Watson). We also see that the random variables appearing in the
two ppms of figure 1 are constructed by applying the same relations to the two distinct
sets of constants {Holmes, Watson} and {Holmes, Watson, Gibbon}, respectively. The
blueprint that underlies the two ppms of figure 1, thus, can be understood as a generic
probabilistic model for the relations burglary, . . . ,call, which can be applied to
any (finite) domain of individuals. A (provisional) mathematical definition of such a
generic probabilistic model (or blueprint for the construction of ppms) is as follows.

Provisional definition. A probabilistic relational model (prm) consists of a set R of
relation symbols, and a mapping that assigns to every finite set D = {d1, . . . , dn} of
constants a joint probability distribution of the set{

r(di1 , . . . , dil ) | r ∈ R, di1 , . . . , dil ∈ D (l = arity of r)
}

of Boolean random variables.

In other words, a prm maps finite domains D to a ppm whose random variables are
the ground atoms r(di1 , , . . . , dil ) (dij ∈ D). Each such ppm defined by some domain D

we call an instance of the prm. Comparing these definitions with the networks shown in
figure 1, we find that, strictly speaking, the networks do not represent instances of a prm,
because they do not contain nodes for all ground atoms that can be formed with the given
relation and constant symbols. A full instance of a prm given by D = {Holmes, Watson}
is represented by the network shown in figure 2 (the probability tables for nodes other
than call(Holmes, Holmes) and call(Watson, Watson) being as in figure 1). Sim-
ilarly, figure 1(b) only shows a part of the instance of the underlying prm obtained for
D = {Holmes, Watson, Gibbon}.

The concept of a prm is much more general than perhaps suggested so far by our
introductory example. Another class of prms is represented by dynamic Bayesian net-

Figure 2. A full instance of a prm for D = {Holmes, Watson}.
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Figure 3. Prm represented by dynamic Bayesian network.

works. Dynamic Bayesian networks [7,21] were introduced to model time dependent
random variables X1, . . . ,Xk (which, again, may be assumed to be Boolean). A dynamic
Bayesian network is given by a standard Bayesian network that represents the joint dis-
tribution of X1, . . . ,Xk at time t = 0, and a standard Bayesian network fragment that
represents the joint distribution of X1, . . . ,Xk for t � 1 conditional on their values at
t − 1 (only discrete time models are used). In figure 3 the two network fragments defin-
ing a dynamic Bayesian network for X1,X2 are highlighted. For any tmax ∈ N one can
concatenate tmax copies of the network fragment for t � 1 with the initial network for
t = 0, and thereby obtain a standard Bayesian network for the Boolean random vari-
ables X1(0),X2(0), . . . ,X2(tmax). Thus, a dynamic Bayesian network represents a prm
for X1, . . . ,Xk, now interpreted as unary relation symbols. Instances of this prm are
given by domains D = {0, 1, . . . , tmax} of time points.

This does not quite fit our provisional definition of a prm, as there it was demanded
that a prm defines a ppm for every finite domain D. A dynamic Bayesian network,
however, requires that the domain consists of points in time. This domain need not
necessarily consist of natural numbers 0, . . . , tmax. All that is really needed is that the
elements of the domain are totally ordered: when it is given, for instance, that blue <

green < red, then the dynamic Bayesian network of figure 3 will also define a joint
probability distribution of X1(blue), . . . ,X2(red).

This leads to a crucial modification of our provisional concept of prms: different in-
stances of the prm, in general, are not given by unstructured domains D = {d1, . . . , dn},
but by structures D = (D, S), consisting of a finite domain D, and a set S of predefined
relations on D.

For a fixed (finite) domain D, and a set R of relation symbols, we denote by
ModD(R) the set of all R-structures over D, i.e., the set of all algebraic structures with
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domain D and interpretations of the symbols r ∈ R.1 A structure D ∈ ModD(R)

can be identified with an assignment of truth values true, false to all ground atoms
r(di1 , . . . , dil ) (r ∈ R, di1 , . . . , dil ∈ D, l = arity of r). We also refer to this set
of ground atoms as the ground atoms of ModD(R). This also means that a probability
distribution over ModD(R) can be identified with a joint probability distribution of the
ground atoms of ModD(R) (viewed as Boolean random variables). We can now give the
final definition of a prm.

Definition 1.1. Let R, S be two sets of relation symbols. The elements of R are called
the probabilistic relations; the elements of S are called the predefined relations. A prob-
abilistic relational model for R and S is a partial mapping P that assigns to S-structures
D with finite domain D a probability distribution P(D) over ModD(R). In the sequel
we write PD for P(D).

By the equivalence of PD with a joint probability distribution of the ground atoms
of ModD(R), we can still view PD as a ppm. As before, we call each PD an instance of
the prm. A prm will usually not define PD for all S-structures D: a dynamic Bayesian
network, for instance, can be described as a prm with S = {<}, such that PD is defined
iff < is a total order on D.

The predefined symbols in S are restricted to relation symbols just as a matter
of convenience: this simplifies some of our subsequent definitions. As functions and
constants can always be encoded as a relation, this definition really also provides for
predefined functions and constants, and we will use them freely in examples.

Probabilistic relational models are a fundamental semantic construct that appear
in several places in discrete mathematics and computer science. Random graphs, for
instance, are studied from a theoretical point of view in combinatorics, and are applied
in average case analysis (see [9] for an overview). Models for random graphs are prms in
the sense of definition 1.1 (with S = ∅ and R containing a single binary (edge) relation).
As a semantic model for probabilistic knowledge representation in AI, prms probably
were first explicitly used in [14]. The term “probabilistic relational model” itself was
introduced by Friedman et al. [8].

To make practical use in AI applications of the semantic notion of prms, two ques-
tions have to be answered:

Representation: How can prms be represented within a formal syntactical framework?
Inference: What algorithms can be used to answer queries about a prm?

For ppms the currently favored answers to the corresponding questions are: use
Bayesian networks and their inference algorithms. For prms no similarly clear-cut an-
swers have yet emerged. In the following two subsections we will briefly review the

1 In the following, we will usually not pursue a strict distinction between a (syntactic) symbol and its
(semantic) interpretation. Thus, according to context, d ∈ D is both a constant symbol, and the element
of a semantic domain designated by d; r ∈ R is both a relation symbol, and a relation defined on some
domain.
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different answers that have been proposed so far in the literature, and outline our an-
swers, which then are presented in detail in the remainder of this paper.

1.2. Representation paradigms

Few systems presented in the literature were developed precisely for the represen-
tation of prms in the sense of definition 1.1. Some variations in their individual semantics
notwithstanding, the representation of prms nevertheless can be identified as a common
core functionality of a number of different systems. In the sequel we discuss these sys-
tems only with regard to this core functionality.

1.2.1. Network templates
One possible method for representing prms we already encountered in dynamic

Bayesian networks: network templates. By network templates we mean any representa-
tion that consists of a number of generic Bayesian network fragments, whose nodes can
be instantiated with the ground atoms of a particular domain. Another example of a rep-
resentation framework that is essentially a template representation are the probabilistic
frame based systems of Koller and Pfeffer [19].

Figure 4 shows a simple template representation of our introductory prm.
The nodes in these templates are labelled with (non-ground) atoms alarm(v),
call(v,w), . . . , where v,w are logical variables. A finite domain D gives rise to
the set of instantiations of these templates by performing all possible substitutions of
domain elements (constants) for the variables (where distinct domain elements are to
be substituted for distinct variables in a template). The resulting collection of standard
Bayesian network fragments can be put together in a unique way to form a single stan-
dard Bayesian network. For D = {Holmes, Watson} the templates of figure 4 yield the
network of figure 2.

Figure 4. Template representation of introductory prm.
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Network templates can only represent a restricted class of prms. To understand
their basic limitation, consider the generic node alarm(v) in figure 4. Assume that
D is a domain containing Holmes. The standard Bayesian network defined by the
templates of figure 4 for this domain contains the node alarm(Holmes) with parents
burglary(Holmes) and earthquake(Holmes) (cf. figure 2 ). In particular, the set
of parents of alarm(Holmes) does not depend on D. Similarly, if D also contains
Watson, then the node call(Watson, Holmes) only depends on alarm(Holmes), irre-
spective of the other elements in the domain. This is an intrinsic limitation of template
representations: by specifying conditional probability distributions in the templates with
probability tables, the structure of the parent sets of nodes is fixed for every instance of
the template, and cannot depend on the domain.

However, the set of parents of a ground atom may very well be domain depen-
dent in a realistic model. For example, add an additional relation symbol worried to
our vocabulary. The ground atom worried(Holmes) stands for the fact that Holmes is
worried because one of his neighbors has called and informed him that his alarm bell is
ringing. Figure 5 shows the node worried(Holmes) in two instances of a prm given by
the domains {Holmes, Watson} and {Holmes, Watson, Gibbon}. The conditional prob-
ability tables at worried(Holmes) are different in the two instances, which therefore
cannot be obtained as instantiations of network templates labelled with fixed conditional
probability tables. What is needed to represent complex prms, therefore, are (finitary)
representations of the (infinite) classes of conditional probability tables needed in the
different instances of the prm.

1.2.2. Rule based systems
A number of representation systems have been developed that are based on some

form of probabilistic logic programs [5,11,20,24,25]. The most advanced of these sys-
tems are the probabilistic knowledge bases of Ngo and Haddawy [20]. The exact def-
initions of syntax and semantics given in [20] are rather involved, so that here we can

(a) (b)

Figure 5. The worried(Holmes) node in two different domains.
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only give an impression of the characteristics of Ngo and Haddawy’s system by showing
how it can be used to represent our example prm. The central syntactic constructs in a
probabilistic knowledge base are probabilistic rules like

P
(
worried(v) = true | call(w, v) = true

) = 0.9. (1)

The variables v,w in this rule are again to be instantiated with the elements of a partic-
ular domain. For D = {Holmes,Watson,Gibbon} we obtain among the instantiations
of the rule P(worried(Holmes) = true | call(Watson,Holmes) = true) = 0.9 and
P(worried(Holmes) = true | call(Gibbon,Holmes) = true) = 0.9. These instanti-
ated rules can be thought of as partial specifications of the conditional probability table
of figure 5(b). To define all the probability values needed in the full table, the rule (1) is
supplemented with a combining rule. By declaring the combining rule

combining-rule(worried) = noisy-or, (2)

for instance, one would obtain as the definition of the conditional probability table for
the node worried(Holmes) in a model for the domain D = {Holmes, d1, . . . , dk}
P

(
worried(Holmes) = true | call(d1,Holmes)=α1, . . . ,call(dk,Holmes)=αk

)
= 1 − (1 − 0.9)l(α1,...,αk),

where αi ∈ {true, false}, and l(α1, . . . , αk) = |{i | αi = true}|. Taken together, (1) and
(2) say that any call by a neighbor will cause Holmes to be worried with probability 0.9,
and that the effect of calls by several neighbors are independent, so that when l different
neighbors call, the probability of Holmes to be worried is 1 − (1 − 0.9)l .

For the particular domain {Holmes, Watson, Gibbon} (1) and (2) will gener-
ate the first three lines of the conditional probability table of figure 5(b). The last
line, however, will be P(worried(Holmes) = true | call(Watson,Holmes) =
false,call(Gibbon,Holmes) = false) = 0. If we want to have a “base probability”
0.05 of being worried even when no one has called instead, this would have to be ac-
complished by a suitable modification of the combining rule.

As this example illustrates, the probabilistic knowledge base approach overcomes
the limitation of network templates in that domain dependent dependency structures and
probability values can be represented. The probabilistic rules can provide a flexible and
intuitive way to specify aspects of a prm in a modular way. In general, however, the
probabilistic rules have to be regarded with a great deal of caution. Their intuitiveness is
to some extent illusory because a probabilistic rule alone has no declarative semantics:
in spite of its suggestive syntax, the rule (1) in itself does not define a conditional proba-
bility. What it says about the probabilities in a prm depends on the associated combining
rule. The more complicated a prm becomes, which one wants to represent with a proba-
bilistic knowledge base, the more complicated combining rules have to be used, and the
less transparent the meaning of the numerical parameters specified in the probabilistic
rules will be.
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1.2.3. Relational Bayesian networks
Relational Bayesian networks were introduced in [14]. The main tool for the repre-

sentation of prms used in relational Bayesian networks is the probability formula. Prob-
ability formulas are functional expressions that define the entries in the conditional prob-
ability tables for the different instances of the prm. A suitable probability formula could
be used to define, for instance,

P
(
worried(v) = t

) =
{

1 − (1 − 0.9)l if |{w | call(w, v)}| = l > 1,

0.05 if ¬∃wcall(w, v).
(3)

This definition then generates the probability tables for worried(Holmes) in figure 5.
The expression on the right hand side of (3) only is a high-level representation

of a probability formula. Probability formulas in the strict sense are constructed in a
formal syntax that consists of only four elementary construction rules. This reduction of
the basic representation syntax to a small number of primitive constructs has two main
advantages: first, the semantics of the representation system becomes straightforward
and transparent. Second, the representation framework is quite amenable to theoretical
investigations of its properties, as many basic questions can be answered by a four-step
induction on the construction of probability formulas.

In section 2 we will review syntax and semantics of probability formulas and re-
lational Bayesian networks. These definitions were already given in [14]. In that pa-
per two types of relational Bayesian networks were distinguished: (plain) relational
Bayesian networks (RBNs), and recursive relational Bayesian networks (RRBNs). The
former can only be used to represent prms without predefined relations (S = ∅ in def-
inition 1.1), whereas the latter allow predefined relations. In preceding papers [15,16]
the focus was on RBNs, as these are significantly simpler than RRBNs, and have a
number of interesting theoretical properties, which are not shared by RRBNs. In the
present paper, we turn to RRBNs, as they are much more expressive than RBNs. Sec-
tion 3.1 highlights with some examples the ability of RRBNs to represent complex
prms.

1.3. Inference

For any representation of a prm one would like to answer the following questions:
given an S-structure D, is PD defined by the prm? If so, and given ground atoms
r0(d0),r1(d1), . . . ,rk(dk) of ModD(R) and αi ∈ {true, false} (1 � i � k), what is
the value of

PD
(
r0(d0) = true | r1(d1) = α1, . . . ,rk(dk) = αk

)
? (4)

If PD is defined, being a ppm, it can be represented with a standard Bayesian net-
work. The standard approach to solve the two inference problems therefore is to try to
construct a standard Bayesian network representing PD, so that the construction fails
iff PD is undefined. When a standard network representing PD has been constructed,
one can compute probabilities (4) using the standard algorithms. In fact, the connection
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between representations of prms and the construction of standard Bayesian networks
representing instances of the prm originally was so close, that representations of prms
were identified with construction rules for standard Bayesian networks. The process of
constructing individual standard Bayesian networks as instances of a general specifica-
tion has become known as knowledge based model construction [27].

Given a high-level representation of a prm, it is not immediately clear, however,
that one cannot do better than solving inference problems by constructing (possibly very
large) standard networks first. In [14] hope was expressed that for RBNs more high-level
and efficient inference procedures could be found. Unfortunately, it turned out that the
complexity of the given inference problems is inherently so high, that one cannot do
better than standard network construction [17].

In this paper, therefore, we will take a closer look at standard network construction
as an inference procedure for RRBNs. We develop in section 4 a method for the con-
struction of small standard Bayesian networks representing instances PD. “Small” here
means that the size of the standard network only grows polynomially in the size of D.
As inference in standard Bayesian networks, although of exponential complexity in the
worst case [6], has turned out to be tractable in practice, this is a step towards making
the computation of probabilities (4) tractable in many practical cases. Another step in
the direction of making these computations feasible is presented in section 5: there it is
shown how one can avoid to construct a full network representing PD , by constructing a
network directly for the conditional distribution PD(· | r1(d1) = α1, . . . ,rk(dk) = αk),
and by limiting this construction to a fragment of the full network which is relevant for
the node r0(d0).

2. Recursive relational Bayesian networks

In this section we reintroduce syntax and semantics of recursive relational Bayesian
networks. Apart from some slight generalizations the definitions given here are the same
as in [14].

We begin with fixing some notational conventions. Throughout we will be con-
cerned with two sets R, S of relation symbols, as given in definition 1.1. To mark
the distinction between the two sets, we use standard mathematical fonts and symbols
(s, r,�, . . .) for the relations in S, and typewriter font (X,r,alarm, . . .) for the rela-
tions in R.

The arity of any relation r is denoted by |r|. Throughout, we use boldface v, d, . . .

to denote tuples of variables or domain elements. The length of a tuple v is denoted
by |v|. Expressions like u ⊆ v and w ∈ v are to be interpreted by identifying a tuple
v = (v1, . . . , vn) with the set {vi | 1 � i � n} of its components.

As observed in section 1.1, a distribution PD on ModD(R) can be identified with
a joint probability distribution of the ground atoms of ModD(R). When a1, . . . , am is
an enumeration of these ground atoms, then we can factorize the joint probability of the
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events ai = αi (αi ∈ {false, true}, 1 � i � m) in the usual way:

PD(a1 = α1, . . . , am = αm) =
m∏
i=1

PD(ai = αi | a1 = α1, . . . , ai−1 = αi−1). (5)

This identity holds for all instantiations α1, . . . , αm, so that we can also write it as an
identity between distributions:

PD(a1, . . . , am) =
m∏
i=1

PD(ai | a1, . . . , ai−1). (6)

Conditional independencies will often allow us to simplify the conditional distributions
PD(ai | a1, . . . , ai−1) to conditional distributions PD(ai | Pa(ai)), where Pa(ai) is a
subset of {a1, . . . , ai−1}. Then

PD(a1, . . . , am) =
m∏
i=1

PD
(
ai | Pa(ai)

)
. (7)

From (7) we derive our strategy for the representation of a prm: for every S-structure D,
and every atom ai of ModD(R), our representation will define a function PD(ai | Pa(ai))
that maps instantiations (i.e., truth assignments) of a set Pa(ai) of atoms into [0, 1].
Probability formulas are our representation language for functions of this form.

Two key ingredients of probability formulas are S-constraints and combination
functions. S-constraints are the tool employed by probability formulas to make use of
predefined relations.

Definition 2.1. Let S be a set of relation symbols. An S-constraint is any Boolean
combination of atomic formulas that can be constructed from logical variables u, v, . . . ,
the identity relation =, and relation symbols from S. We write c(v) for an S-constraint
that only contains variables from the tuple v (but not necessarily all the variables in
the v). We use τ to denote an arbitrary tautological constraint, e.g., u = u.

More succinctly, we can also say that an S-constraint is a quantifier free S-formula
(in the sense of first-order logic). Combination functions are the main tool for numerical
computations.

Definition 2.2. A combination function is any function that maps finite multisets with
elements from [0, 1] into [0, 1].

We use braces |}, {| to denote multisets: if qi ∈ [0, 1] for all i from some index
set �, then {|qi | i ∈ �|} denotes the multiset that contains |{i ∈ � | qi = r}| copies of
r ∈ [0, 1]. We also use the notation {|r1 : k1, . . . , rn : kn|} for the multiset that contains
ki copies of the number ri (1 � i � n), or explicit enumerations {|q1, . . . , ql |}. Thus,
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when q1 = q2 = 0.3, and q3 = 0.8, then {|qi | i ∈ {1, 2, 3}|} = {|0.3 : 2, 0.8 : 1|} =
{|0.3, 0.3, 0.8|}. Two important examples of combination functions are

noisy-or: n-o{|qi | i ∈ �|} := 1 −
∏
i∈�

(1 − qi),

mean: mean{|qi | i ∈ �|} := 1

|�|
∑
i∈�

qi .

For technical reasons, combination functions also have to be defined on the empty mul-
tiset. For noisy-or and mean we here employ the conventions n-o∅ = mean∅ := 0.

Probability formulas, now, are defined with respect to two relational vocabularies R

and S.

Definition 2.3. Let R, S be sets of relation symbols. The class of R, S-probability for-
mulas is inductively defined as follows.

(i) (Constants). Each q ∈ [0, 1] is a probability formula.

(ii) (Indicator functions). For each r ∈ R, and every |r|-tuple v of variables, r(v) is a
probability formula.

(iii) (Convex combinations). When F1, F2, F3 are probability formulas, then so is
F1F2 + (1 − F1)F3.

(iv) (Combination functions). When F1, . . . , Fk are probability formulas, comb is any
combination function, v,w are tuples of variables, and c(v,w) is an S-constraint,
then

comb{|F1, . . . , Fk | w; c(v,w)|}
is a probability formula.

Special cases of convex combinations are products F1F2 (setting F3 = 0) and the
inverse 1 − F1 of a formula F1 (setting F2 = 0 and F3 = 1).

Example 2.4. For R = {call} and S = ∅ an R, S-probability formula is

F(v) ≡ n-o{|0.9call(w, v) | w;w �= v|}. (8)

It is straightforward to define the set of free variables of a probability formula F :
the free variables of r(v) are the variables in the tuple v, the free variables of a convex
combination are the union of the free variables of F1, F2, F3, and the free variables of a
combination function are the union of the free variables of F1, . . . , Fk and c, minus the
variables in w (thus, a combination function binds the variables w). We write F(v) for
a probability formula whose free variables are among v. An important measure for the
complexity of a probability formula is its quantifier depth:
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Definition 2.5. Let F(v) be an R, S-probability formula. We define the quantifier depth
qd(F ) ∈ N inductively as follows: if F is a constant or an indicator function, then
qd(F ) := 0. If F = F1F2 + (1 − F1)F3 then qd(F ) := max{qd(Fi) | i = 1, 2, 3}. If
F = comb{|F1, . . . , Fk | w; c(v,w)|} then qd(F ) := max{qd(Fi) | i = 1, . . . , k} + |w|.

We now turn to the semantics of probability formulas. Eventually, they will be
used to define the probabilities PD(ai | Pa(ai)) in (7), so we have to say how probabil-
ity formulas determine such probability values. A probability formula F(v) computes
probabilities as a function of three inputs: an S-structure D, a tuple d of domain ele-
ments from D which is substituted for v, and the truth values of the ground R-atoms
that are needed to evaluate indicator functions in F . An explicit representation of this
set of ground R-atoms is obtained by defining for every symbol r ∈ R a first-order for-
mula paF,r(v, z) such that the evaluation of F(d) depends on the atom r(d ′) just when
paF,r(d, d

′) holds.

Definition 2.6. Let F(v) be an R, S-probability formula. Let r ∈ R and z an |r|-tuple
of variables that do not occur in v. We define the first-order formula paF,r(v, z) in the
vocabulary S by induction on the structure of F :

(i) If F ≡ q then paF,r(v, z) = ε, where ε denotes an arbitrary unsatisfiable formula.

(ii) If F ≡ r̃(u), then u ⊆ v, and we define

paF,r(v, z) ≡


|r|∧
i=1

ui = zi if r = r̃,

ε otherwise.

(iii) F ≡ F1F2 + (1 − F1)F3 then

paF,r(v, z) ≡ paF1,r(v, z) ∨ paF2,r(v, z) ∨ paF3,r(v, z).

(iv) If F ≡ comb{|F1, . . . , Fk | w; c(v,w)|} then

paF,r(v, z) ≡ ∃w
(
c(v,w) ∧ (

paF1,r(v,w, z) ∨ · · · ∨ paFk,r(v,w, z)
))
.

In the case where w = ∅ this simplifies to

paF,r(v, z) ≡ c(v) ∧ (
paF1,r(v1, z) ∨ · · · ∨ paFk,r(vk, z)

)
.

Example 2.7. For F(v) as in example 2.4, we obtain

paF,call(v, z1, z2) ≡ ∃w(
w �= v ∧ (w = z1 ∧ v = z2)

)
(which is equivalent to z1 �= v ∧ z2 = v). For

F ′(v} ≡ 0.4F(v) + 0.6alarm(v) (9)
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we obtain paF ′,call(v, z1, z2) ≡ z1 �= v ∧ z2 = v as before, and paF ′,alarm(v, z1) ≡
v = z1 (in both cases after some simplifications of the result obtained from the recursive
definition 2.6).

For a given S-structure D ∈ ModD(S), and for a tuple d ∈ D|v|, the formula
paF,r(v, z) defines the set of ground r-atoms

Par
(
F(d)[D]) := {

r(e)|D |= paF,r(d, e)
}

(10)

and the set of R-atoms

Pa
(
F(d)[D]) :=

⋃
r∈R

Par
(
F(d)[D]). (11)

Example 2.8. For F ′(v) as given by (9), and D given by D = {Holmes,Watson,
Gibbon} (S being empty), we obtain

Pacall
(
F ′(Holmes)[D]) = {

call(Watson,Holmes),call(Gibbon,Holmes)
}
,

Paalarm(F
′(Holmes)[D]) = {

alarm(Holmes)
}
.

Often we will drop the explicit reference to the underlying structure D, and simply
write Pa(F (d)) for Pa(F (d)[D]). Given a truth assignment for all atoms in Pa(F (d)),
the formula F now defines a probability value for d.

Definition 2.9. Let F(v) be a R, S-probability formula. Let D ∈ ModD(S), d ∈ D|v|,
and I an instantiation for all ground atoms in Pa(F (d)[D]) with truth values {true,
false}. We then define F(d)[D, I ] ∈ [0, 1] inductively as follows:

(i) F ≡ q: F(d)[D, I ] := q.

(ii) F ≡ r(u) (with u ⊆ v):

F(d)[D, I ] :=
{

1 if I (r(̃d)) = true,

0 if I (r(̃d)) = false,

where d̃ is the tuple of domain elements obtained by substituting for each variable
vi in u the domain element di .

(iii) F ≡ F1F2 + (1 − F1)F3:

F(d)[D, I ] := F1(d)[D, I ]F2(d)[D, I ] + (
1 − F1(d)[D, I ])F3(d)[D, I ].

(iv) F = comb{|F1, . . . , Fk | w; c(v,w)|}:
F(d)[D, I ] := comb{|F1(d, e)[D, I ], . . . , Fk(d, e)[D, I ] | e ∈ D|w|;D |= c(d, e)|}.
In the case w = ∅ this simplifies to

F(d)[D, I ] :=
{

comb{|F1(d)[D, I ], . . . , Fk(d)[D, I ]|} if D |= c(d),

comb ∅ otherwise.



M. Jaeger / Complex probabilistic modeling with recursive relational Bayesian networks 193

That F(d)[D, I ] is defined when I instantiates Pa(F (d)[D]) follows by straightforward
induction on the structure of F . Again, we usually drop the reference to D, and write
F(d)[I ] for F(d)[D, I ] .

Example 2.10. Let F ′ and D be as in example 2.8. Let I (call(Watson,Holmes)) =
true, I (call(Gibbon,Holmes)) = false, and I (alarm(Holmes)) = true. Then

F ′(Holmes)[D, I ] = 0.4n-o{|0, 0.9|} + 0.6 = 0.96.

Example 2.11. Consider the formula

F(v,w, u) ≡ n-o{|0.6r(v,w) | ∅;w < v|}. (12)

For (d1, d2, d3) ∈ D3 we now have Par(F (d1, d2, d3)[D]) = {r(d1, d2)} if D |= d2 < d1,
and Par(F (d1, d2, d3)) = ∅ if D �|= d2 < d1. In the first case, we need for the evaluation
of F(d1, d2, d3) an instantiation I of r(d1, d2), and obtain

F(d1, d2, d3)[D, I ] :=
{

n-o{|0.6|} = 1 − 0.4 if I (r(d1, d2)) = true,

n-o{|0|} = 0 otherwise.

In the second case we obtain F(d1, d2, d3)[D] = n-o ∅ = 0. As the variable u does
not actually appear on the right-hand side of (12), the value F(d1, d2, d3)[D, I ] does not
depend on d3.

The following probability formula has a somewhat different flavor:

F(v) ≡ mean{|n-o{|1 | ∅; v = w|} | w; τ |}. (13)

As F does not contain any indicator functions, we have Pa(F (d)[D]) = ∅ for all D, d.
To see what formula (13) does, first consider the inner subformula F ′(v,w) ≡ n-o{|1 |
∅; v = w|} . For any d, d ′ ∈ D we obtain that F ′(d, d ′) = 1 if d = d ′, and 0 else. To
evaluate F(d) we have to evaluate F ′(d, d ′) for every d ′ ∈ D, and then apply mean to
the resulting multiset. This, however, will be the multiset {|1 : 1, 0 : |D| − 1|}, the mean
of which is 1/|D| . Thus, F(d)[D] is just the inverse of the domain size (for every d).

To define probability distributions on ModD(R), we now assign to each r ∈ R

exactly one probability formula.

Definition 2.12. Let R, S be sets of relation symbols. A recursive relational Bayesian
network for R with predefined S is a set

# = {
Fr(v1, . . . , v|r|) | r ∈ R

}
of R, S-probability formulas.

(Non-recursive) relational Bayesian networks (RBNs), which were the main focus
of [14–16] are a special case of recursive relational Bayesian networks (RRBNs) de-
fined by the following two restrictions: (1) S = ∅, so that the constraints c(v,w) in
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combination functions only use the equality relation, (2) the relations in R are arranged
in a directed acyclic graph, and each formula Fr only contains indicator functions s(v)
for symbols s that are parents of r in the graph. Relational Bayesian networks without
this restriction were called “recursive” in [14] because the probability for r-atoms may
depend recursively on other r-atoms.

The second of the restrictions that distinguish the narrower class of RBNs makes
it clear why this form of representation was called a “network”. In the generalized form
of definition 2.12 this term is no longer a good description of the representation, but was
here retained to remain consistent with earlier work.

Definition 2.9 is the cornerstone of the semantics of a RRBN #. For the numbers
Fr(d)[D, I ] to induce a probability distribution PD, it only is required that an appropri-
ate acyclicity condition holds:

Definition 2.13. Let # be an R, S-recursive relational Bayesian network, D an
S-structure with finite domain D. # and D induce a dependency relation ≺ on the
atoms of ModD(R) via

s
(
d ′) ≺ r(d) iff s

(
d ′) ∈ Pa

(
Fr(d)[D]).

If the relation ≺ is acyclic, then a probability distribution P#
D is defined on ModD(R)

via

P#
D :=

∏
r∈R

∏
d∈D|r|

P#
D

(
r(d) | Pa(Fr(d)[D])),

where the conditional distributions on the right are given by

P#
D

(
r(d) = true | I ) := Fr(d)[D, I ]

for each instantiation I of Pa(Fr(d)[D]).

Example 2.14. To illustrate the definitions given so far, we show how to represent as a
RRBN the prm given by the dynamic Bayesian network of figure 3.

Let S = {zero, s}, where zero is a constant, and s a binary relation. The network
of figure 3 defines a distribution P ∗

D on ModD({X1,X2}) for every S-structure D that
interprets zero and s as the minimal element and the successor relation, respectively,
of a linearly ordered domain. We have to define a RRBN # = {FX1, FX2}, such that
P#
D = P ∗

D for all D of this form. In the following, D is an arbitrary such structure.
In particular, for every d ∈ D, d �= zero, there is a unique element d − 1 ∈ D with
s(d − 1, d).

The definition of FX1 is simple: just let FX1 ≡ 0.3. For FX2 we first define a
probability formula

Z(v) := n-o{|1 | ∅; v = zero|}
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which for every D and d ∈ D has the value Z(d)[D] = 1 if D |= d = zero, and
Z(d)[D] = 0 else. The probability formula FX2 then has the structure

FX2 ≡ Z(v)F0(v) + (
1 − Z(v)

)
Ft(v)

with subformulas F0(v) and Ft(v) that determine the probability of X2(d) for d = zero
and d �= zero, respectively.

The first of these is a straightforward representation of the probability table for
X2(0) of figure 3:

F0(v) :≡ 0.2X1(v) + 0.4
(
1 − X1(v)

)
.

For Ft(v) things are slightly more complicated, because here we have to access the truth
value of X2(v − 1). This is done via the subformula

T (v) :≡ n-o{|X2(w) | w; s(w, v)|}.
This formula has the following properties: for d ∈ D we have Pa(T (d)) = ∅ if d = zero,
and Pa(T (d)) = {X2(d − 1)} if d �= zero. In the latter case we have

T (d)
[
X2(d − 1) �→ true

] = 1 and T (d)
[
X2(d − 1) �→ false

] = 0.

Thus, T (d)[I ] is 1 if d �= zero and I (X2(d − 1)) = true, and 0 else (the use of n-o as
a combination function here is quite arbitrary: any combination function with comb∅ =
comb{|0|} = 0 and comb{|1|} = 1 would do). With T (v) we can now represent the
conditional probability table for X2(t) in the formula Ft(v) as

Ft(v) :≡ T (v)0.7 + (
1 − T (v)

)(
X1(v)0.8 + (

1 − X1(v)
)
0.6

)
.

Ft (v) is an illustration how probability formulas naturally encode context-specific in-
dependence [4]: the fact that X2(d) only depends on X1(d) if I (X2(d − 1)) = false is
directly reflected in the structure of the formula Ft(v). In section 5 it will be shown
how this structural aspect of probability formulas helps us to develop methods for more
efficient inference.

3. Representations

We illustrate the expressive power of RRBNs from two perspectives: in section 3.1
from a practical perspective by showing how to solve realistic non-trivial representation
problems, in section 3.2 from a theoretical perspective by showing that, in principle,
every probabilistic relational model can be represented by a RRBN.

3.1. Practical modelling

We use as a running example the following scenario: a bicycle race of k partici-
pants is to be monitored over tmax time steps. We are interested in making probability
assessments of the following kind: given that at time t participant a is ahead of b, what
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is the probability that at time t + 3 b is ahead of a? Given that a finishes among the first
10% of participants, what is the probability that he will be qualified for the next race?

It is not our goal to construct a whole coherent RRBN for this scenario. We will
only use individual aspects of this toy example to illustrate how RRBNs solve some very
general modelling problems that are relevant in many different application domains.
The temporal aspect of our example makes it related to dynamic Bayesian networks
(and, in fact, it is partly inspired by the application of dynamic Bayesian networks for
traffic monitoring [13]). It goes beyond dynamic Bayesian networks, however, in that
at each time step we are dealing with a random relational structure over a domain of k

participants.

3.1.1. Sorted domains
The domains of structures D for which PD is to be defined consist of time points

0, 1, . . . , tmax, and participants p1, . . . , pk. Atoms whose probabilities are to be assessed
will be of the form ahead(t, p2, p7) or in_shape(p3). The probabilities for these
atoms must obviously be defined in a way that distinguishes time point arguments from
participant arguments. To do this with RRBNs we assume that predefined unary rela-
tions T , P are given whose interpretations in D are just the time points and participants,
respectively. A probability formula that says that a participant is in shape with probabil-
ity 0.7 (and a time point is in shape with probability 0) then is

Fin_shape(v) ≡ 0.7n-o{|1 | ∅;Pv|}. (14)

Again, the use of noisy-or here is quite arbitrary, as any combination function with
comb{|1|} = 1 and comb ∅ = 0 would do.

Once we have ascertained that certain constructs are expressible in the strict syntax
of probability formulas, we can introduce appropriate syntactic abbreviations to increase
the readability of the formulas. As a first convention, we abbreviate the formula n-o{|1 |
∅; c(v)|} (c(v) an arbitrary S-constraint) by c(v) (the indicator of c: c(d)[D] = 1 if
D |= c(d), and c(d)[D] = 0 if D �|= c(d)). Formula (14) then simplifies to

Fin_shape(v) ≡ 0.7Pv. (15)

Sort constraints on variables can also be encoded even more conveniently by obvious
conventions on the variable names, so that (15) becomes even simpler

Fin_shape(p) ≡ 0.7.

3.1.2. First-order conditioning
Once we have defined a random relation ahead(t, p1, p2) standing for p1 to be

ahead of p2 at time t , we may next want to represent the relation leader(t, p) standing
for p leading the field at time t . The relation leader is deterministically defined in
terms of the relation ahead: leader(t, p) ⇔ ¬∃p′ahead(t, p′, p). This can be
done in a probability formula as follows:

Fleader(t, p) ≡ 1 − n-o{|ahead(t, p′, p) | p′; τ |}.
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The subformula n-o{|ahead(t, p′, p) | p′; τ |} evaluates to 1 if ahead(t, p′, p) holds
for at least one participant p′, and to 0 else. Thus it is the indicator of the for-
mula ∃p′ahead(t, p′, p). This is inverted by 1 − · · · , obtaining the indicator for
¬∃p′ahead(t, p′, p).

More generally, by using the noisy-or construct for existential quantification, the
construct 1 − · · · for negation, multiplication for conjunction, indicators of defini-
tion 2.3(ii) for atomic R-formulas, and indicators c(v) (as discussed above) for atomic
S-formulas, we can define for any first-order formula φ(v) over R ∪ S a probability for-
mula Fφ(v), such that in all S-structures D, for all d ∈ D|v|, and for all instantiations I

of the atomic R-formulas on which the truth value of φ(d) depends, we have

Fφ(d)[I ] =
{

1 if (D, I ) |= φ(d),

0 else.

Extending the conventions adopted above for S-constraints, we simply use φ(v) to
denote the probability formula Fφ . We can then write, for instance,

F(t, p) ≡ 0.7
(¬∃p′ahead(t, p′, p)

) + 0.1
(∃p′ahead(t, p′, p)

)
,

which evaluates to 0.7 if p is the leader at time t , and to 0.1 else. Note that F¬φ =
1 − Fφ , so that formulas of the form φ(v)F2 + ¬φ(v)F3 are a special form of convex
combinations in the sense of definition 2.3.

3.1.3. Proportions
One of the primary concerns of probabilistic extensions of first-order logic in AI [1,

12] was to provide a framework for reasoning with statistical probabilities, where (on
finite domains) the statistical probability of some property usually is identified with the
proportion of domain elements that have the property. To reason with such proportions
Bacchus [1] introduces the syntactic construct

[φ(v,w) | ψ(v,w)]w (16)

to represent the proportion of tuples w that satisfy the formula φ(v,w) among those
w that satisfy ψ(v,w) (in other words, the conditional statistical probability for w of
φ(v,w) given ψ(v,w); this conditional probability is parameterized by the free vari-
ables v).

Proportions are a very useful tool for our model representation task: consider, for
instance, the relation qualified(p) representing that p qualifies for the next race. The
probability of qualified(p) will usually depend on the relative position in which p

finishes, i.e., on the proportion of p′ with ahead(tmax, p
′, p) (assuming here that the

race is over at time tmax, and the relation ahead(tmax, ·, ·) stores the order of finishing).
This proportion can be represented with the probability formula

F(p) ≡ mean{|ahead(tmax, p
′, p) | p′; τ |}.
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We could now define

Fqualified(p) ≡ 1 − F(p),

making the probability of qualifying inversely proportional to the relative position of
finishing.

More generally, for any S-constraint c(v,w), and any R-formula φ(v,w), we have
the probability formula

[φ(v,w) | c(v,w)]w :≡ mean{|φ(v,w) | w; c(v,w)|}. (17)

For d ∈ D|w| then [φ(d,w) | c(d,w)]w evaluates to the conditional statistical probabil-
ity for w of φ(d,w) given c(d,w).

This construct is asymmetric in that the first argument of the formula (17) is re-
quired to be an R-formula, and the second a (quantifier-free) S-formula. We could gen-
eralize the construct to also allow R-formulas ψ(v,w) as conditioning propositions. The
representation of such a conditional probability [φ(v,w) | ψ(v,w)]w, however, seems
to require combination functions for which our subsequent results in section 4 are not
applicable. For this reason we do not pursue such more general constructs for statistical
probabilities here.

3.1.4. Functional relations
So far we have not addressed the key modelling problem in our example: how

to model the random relation ahead, in particular, how to maintain ahead(t, p, p′)
over time, i.e., how to define ahead(t, ·, ·) conditional on ahead(t − 1, ·, ·) so that
ahead(t, ·, ·) is guaranteed to be an order relation on P provided that ahead(t−1, ·, ·)
is such an order relation, and the transition from t − 1 to t models a random change in
the order.

Our solution to this modelling problem illustrates the use of functional relations,
and how to encode them with probability formulas (a (partial) functional relation from
Dk to Dl is a relation r(v,w) on Dk+l such that for all d ∈ Dk there exists at most one
d ′ ∈ Dl with r(d, d ′)).

Our model for the transition from ahead(t − 1, ·, ·) to ahead(t, ·, ·) is based on
the assumption that the time units are so small that in the interval [t − 1, t] at most
one event of the form “participant p passes participant p′” takes place. The model then
consists of the random selection of one participant p, and advancing him by one position
in the order ahead.

A random selection is the special case of a random functional relation with
k = 0, l = 1, i.e., a unary relation select for which select(p) holds for at most
one p. To define a random selection with probability formulas, we assume that the
domain elements of sort P , too, are equipped with some predefined strict total order
<P . In the sequel we take this order to correspond with the naming of the elements,
i.e., p1 <P p2 <P · · · <P pk. Intuitively, we can define a random selection by going
through the elements of P in the order <P , and for each pi assign select(pi) the con-
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ditional probability 1/(k − i + 1) given that no pj <P pi has already been selected, and
conditional probability 0 else. Then for all pi :

P
(
select(pi) = 1

) = (
1 − P

(
select(p1) = 1

))(
1 − P(select(p2) = 1

)) · · ·(
1 − P

(
select(pi−i) = 1

))
P

(
select(pi) = 1

)
=

(
1 − 1

k

)(
1 − 1

k − 1

)
· · ·

(
1 − 1

k − i + 2

)
1

k − i + 1

= 1

k
.

As in our model one selection takes place at every point in time t , the relation
select needs to have a second argument of sort T . Its probabilistic model now is
encoded in the probability formula

Fselect(t, p) ≡ ¬∃p′(p′ <P p∧select(t, p′)
)
mean{|p = p̃ | p̃;p <P p̃∨p = p̃|}.

(18)
The factor mean{| . . . |} here counts the elements p̃ with p �P p̃ in a similar way as (13)
counted domain elements. For p = pi it thus returns the value 1/(k− i+1). This factor
is preceded by a logical expression that by the conventions introduced above stands for
a formula that evaluates to 0 or 1 according to whether select(t, p′) is true for some
p′ <P p.

Once the relation select(t−1, ·) has been determined, the relation ahead(t, ·, ·)
can be defined for t > 0 by a purely logical probability formula:

Fahead,t (t, p, p
′)≡ (

select(t − 1, p) ∧ in_front(t − 1, p′, p)
)

∨ (¬(
select(t − 1, p) ∧ in_front(t − 1, p′, p)

)
∧ ahead(t − 1, p, p′)

)
.

Here in_front(t − 1, p′, p) is an abbreviation for a subformula that says that at time
t − 1 p′ was directly in front of p. A full probabilistic model for ahead can then be
given by a formula

Fahead(t, p, p
′) ≡ (t = 0)Fahead,0(p, p

′) + (t > 0)Fahead,t (t, p, p
′),

where Fahead,0(p, p
′) is a formula that generates a random initial order. This can be

done with similar functional constructs as the select relation used in Fahead,t .
The way a functional relation is defined by (18) easily generalizes to the case where

a functional relation r(v,w) with the following properties is to be defined: the domain
of r is defined by an R, S-formula φ(v), the range of r is defined by an S-constraint
c(w), and for d with φ(d) all d ′ with c(d ′) are equally likely to be the unique value for
which r(d, d ′) is true. A probability formula that defines such a functional r then is:

Fr(v,w)

≡ φ(v)¬∃w′(w′ < w ∧ r(v,w′))mean{|w = w̃ | w̃; (w < w̃ ∨ w = w̃) ∧ c(w)|}
(the relation w′ < w now is some predefined total order on Dl).
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As in the case of proportion formulas above, we here have an asymmetry in that
the domain of a functional relation can be defined by an arbitrary R, S-formula, its range
only with a S-constraint. As above, this could be generalized with the aid of suitable
combination functions other than mean and noisy-or.

It should be pointed out that the functional relations we here have considered are
fundamentally different from random functions with a predefined set of possible values,
which is fixed for all domains (this is the concept of a random function to be found, e.g.,
in [19,20]). This is a much simpler case of a random function (or functional relation), and
can easily be handled in the RRBN framework by adding to the predefined relations S a
constant symbol for each of the possible function values.

3.2. A completeness theorem

The theorem proved in this section says that basically every prm can be repre-
sented by a RRBN. Some qualifications are necessary however. The first qualification
is that RRBNs can only represent prms that are compatible with isomorphisms. Loosely
speaking, a prm is compatible with isomorphisms if for any two isomorphic S-structures
D,D′ the two distributions PD and PD′ also are isomorphic. The precise condition is as
follows: when D,D′ are S-structures with domains D and D′, C and C′ are R-structures
over the same domains D and D′, respectively, and i :D → D′ is both an isomorphism
from D to D′ and from C to C′, then PD(C) = PD′(C′) The second qualification is that
we require a predefined total order < on the domain. Finally, we shall only consider
prms that are total for ordered structures, i.e., for every D ∈ ModD(S) in which < is
interpreted as a strict linear order on D, we have that PD is defined. While RRBNs can
also represent a large class of prms that are not total in this sense, an exact statement of
what types of partial prms can be represented would introduce additional technicalities
that we here want to avoid.

Theorem 3.1. Let R, S be disjoint relational vocabularies, with <∈ S a binary relation
symbol. Let P be a prm that is compatible with isomorphisms and total for ordered
structures. There exists an R, S-RRBN # with P#

D = PD for all ordered D.

Proof. To simplify the proof we assume that all relations in R ∪ S \ {<} have the same
arity q � 1. The proof of the general case is basically the same, it only requires a larger
load of notation.

Let D ∈ ModD(S) with < interpreted as a linear order on D. Let |D| = n. Let
R = {r1, . . . ,rk}, S \{<} = {s1, . . . , sl}. A strict linear order ≺ is defined on the atoms
of ModD(R) by: ri(d) ≺ rj (d

′) iff i < j or i = j and d precedes d ′ in the lexicographic
order induced by � on q-tuples of D. Let a1, . . . , am be the enumeration of the atoms of
ModD(R) according to the order ≺. The distribution PD then is given by the conditional
distributions PD(ai | a1, . . . , ai−1) (1 � i � m, cf. (6)). The straightforward approach
now is to assign to the relation rj ∈ R a probability formula Frj

(v), such that for the
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atom ai = rj (d) we get Pa(Frj
(d)) = {a1, . . . , ai−1}, and for an instantiation I of

a1, . . . , ai−1

Frj
(d)[D, I ] = PD

(
rj (d) = true | I )

. (19)

The right-hand side of (19) is a number in [0, 1] that depends on D, I and d . The
plan, now, is to ruthlessly exploit the generality of the definition of combination func-
tions, which allows us to define a combination function combP,j that encodes the func-
tion P in such a manner that

Frj
(d)[D, I ] = combP,j (D, I, d) = PD

(
rj (d) = true | I )

. (20)

The problem now is that the middle term in (20) is not really meaningful, as a combi-
nation function is applied to a structured argument (D, I, d), not a [0, 1]-multiset. The
main part of the proof of the theorem therefore will be to show how to code (D, I, d) as
a multiset. This encoding, in turn, has to be done with probability formulas.

Essentially, (D, I, d) can be represented by an (l + j) × nq-matrix

X = (xγ,δ)1�γ�l+j,1�δ�nq

whose rows are the characteristic vectors of the instantiations of the relations in S ∪
{r1, . . . ,rj } given by D and I . The relation rj , however, is only partially instantiated
by I : denoting by 〈d〉 the index of d in the lexicographic order of Dq , we have that I
instantiates the first 〈d〉 − 1 rj -atoms only. The precise definition of X now is given by

xγ,δ :=


1 if 1 � γ � l, and D |= sγ (d

′) for d ′ with 〈d ′〉 = δ,

1 if l + 1 � γ � l + j − 1, and I (rγ (d
′)) = 1 for d ′ with 〈d ′〉 = δ,

1 if γ = l + j, δ < 〈d〉, and I (rj (d
′)) = 1 for d ′ with 〈d ′〉 = δ,

0 else.

The first l rows of X code D only up to isomorphism, which is why from this point
onward we cannot distinguish isomorphic S-structures. X can be turned into a multiset
MX via

MX :=
{∣∣∣∣ xγ,δ

(γ − 1)nq + δ

∣∣∣ 1 � γ � l + j, 1 � δ � nq

∣∣∣∣}.
From MX the matrix X can be reconstructed when the parameters (l + j) and q are
given: MX contains a total number of (l + j)nq elements, which determines n, and thus
the dimensions of X. The entry xγ,δ is 1 iff MX contains the number 1/(γ − 1)nq + δ.

X, respectively MX , does not fully encode the tuple (D, I, d), as it does not iden-
tify d , or, equivalently, the domain of atoms on which I is defined. For this we also need
to know the parameter 〈d〉. We integrate 〈d〉 into the multiset encoding by modifying
MX slightly to obtain

M(D, I, d) :=
{∣∣∣∣(1

3

)〈d〉
,

xγ,δ

2((γ − 1)nq + δ)

∣∣∣ 1 � γ � l + j, 1 � δ � nq

∣∣∣∣}.
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Here the original entries of MX have all been divided by 2, so that the nonzero ones
among them now are of the form 1/z, z even, and can thereby be distinguished from the
encoding (1/3)〈d〉 of 〈d〉. Thus, from M(D, I, d) both X and 〈d〉, and hence (D, I, d)

can be recovered.
We next define probability formulas whose evaluations will generate the elements

of M(D, I, d). In particular, we will use a formula F〈〉 with

F〈〉(d)[D, I ] =
(

1

3

)〈d〉
,

formulas Fγ (w1, . . . , wq) for 1 � γ � l + j − 1 with

Fγ

(
d ′)[D, I ] = xγ,〈d ′〉

2((γ − 1)nq + 〈d ′〉)
(
d ′ ∈ Dq

)
,

and a formula Fl+j (v1, . . . , vq, w1, . . . , wq) with

Fl+j

(
d, d ′)[D, I ] = xl+j,〈d ′〉

2((l + j − 1)nq + 〈d ′〉)
(
d ′ ∈ Dq

)
(note that the right-hand side of this equation depends on d via the definition of the
xl+j,δ). Given such F〈〉 and Fγ we put

Frj
(v) ≡ combP,j{|F〈〉(v), F1(w), . . . , Fl+j−1(w), Fl+j (v,w) | w; τ |}. (21)

For d ∈ Dq and I then

{|F〈〉(d)[D, I ], F1(d
′)[D, I ], . . . , Fl+j−1(d

′)[D, I ], Fl+j (d, d
′)[D, I ] | d ′ ∈ Dq|}

= M(D, I, d).

We can now define for a multiset M

combP,jM :=
{
PD

(
rj (d) = true | I )

if M = M(D, I, d),

1 otherwise.

By the compatibility of P with isomorphisms, the value PD(rj (d) = true | I ) only
depends on the encoding M(D, I, d), so that combP,j is well-defined. The choice of the
value 1 in the else-case of this definition is arbitrary, as combP,j will never need to be
evaluated for multisets not encoding structures (D, I, d).

For Frj
defined by (21) we then obtain the desired equality (19), and we are done.

It remains to show how to define F〈〉 and the Fγ . This can be done by using some
additional tailor-made combination functions. For F〈〉 we use the combination function

power1/3M :=


(

1

3

)k

if M = {|1 : k|} (k ∈ N ∪ {0}),
1 otherwise,
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and put

F〈〉(v) :≡ power1/3{|1 | w;w < v|}.
For γ = 1, . . . , l Fγ is defined as

Fγ (w) :≡ sγ (w)combγ {|w̃ � w | w̃; ∅|}
with

combγM :≡


1

2((γ − 1)(k + m) + k)
if M = {|1 : k, 0 : m|} (k � 1, m � 0),

0 else.

The definition of Fγ for γ = l + 1, . . . , l + j − 1 is similar. The definition of Fl+j ,
too, follows the same pattern, only that now the evaluation of rj -atoms that are not
instantiated by I must be prevented:

Fl+j (v,w) :≡ n-o{|rj (w) | ∅;w < v|}combl+j {|w̃ � w | w̃,∅|}. �

In the proof of the theorem the representation of the prm P by a RRBN has essen-
tially been accomplished by encoding P with the very peculiar combination functions
combP,j . This is rather orthogonal to the approach taken in section 3.1, where we have
attempted to represent complex models with only a very limited supply of elementary
combination functions, so that the representation is really in the structure of the proba-
bility formulas. This latter approach is clearly meant for probability formulas, and thus
the general construction given in the proof of theorem 3.1 does not provide a pattern
for the solution of actual modelling problems. Nevertheless, the result shows that the
framework of probability formulas and combination functions, in principle, is general
enough to cope with practically all modelling problems.

4. Inference

The inference problem is the following: given an R, S-RRBN #, and an
S-structure D, is P#

D defined? If P#
D is defined, and given an instantiation

r0(d0) = α0, r1(d1) = α1, . . . , rl(d l) = αl(
αi ∈ {false, true}, ri ∈ R, d i ∈ D|ri |),

of some atoms of ModD(R), what is the conditional probability

P#
D

(
r0(d0) = α0 | r1(d1) = α1, . . . ,rl(d l) = αl

)
? (22)

The solution to the first problem is straightforward: by definition 2.13, P#
D is de-

fined iff the dependency relation ≺ on the atoms of ModD(R) is acyclic. It is convenient
to view the relation ≺ as the edge relation in a dependency graph, defined as follows.



204 M. Jaeger / Complex probabilistic modeling with recursive relational Bayesian networks

Definition 4.1. Let # be an R, S-RRBN, D an S-structure. The directed graph G#
D is

defined as follows: the nodes of G#
D are the atoms of ModD(R); two nodes r(d) and

s(d ′) are joined by a directed edge from s(d ′) to r(d) iff s(d ′) ≺ r(d).

Given # and D, the acyclicity of G#
D can be checked in time polynomial in |D|:

for all r,s ∈ R we generate the formulas paFr,s according to definition 2.6 (in time
independent of |D|). Then G#

D is created by checking for all pairs of atoms r(d), s(d ′)
whether paFr,s(d, d

′) holds in D. This check can be done naively in time O(|D|ql),
where q is the quantifier depth of Fr, and l is the number of atoms in paFr,s (using the
slight idealization that we can check in constant time whether a ground S-atom holds
in D). Thus, we can create G#

D in time polynomial in |D| , and then test for acyclicity,
again in polynomial time.

When G#
D turns out to be acyclic, we can use it as the underlying directed acyclic

graph of a Bayesian network for P#
D : to represent P#

D it is only needed to label each
node r(d) in the graph with the probability formula Fr(d) (recall definition 2.13: Fr(d)
induces a function that maps instantiations I of Pa(Fr(d)) to the conditional probability
value P#

D (r(d) = true | I )).

Example 4.2. Let R = {r,s}, S = ∅. Let # be the R-RRBN given by

Fs(v,w)≡ 0.7,

Fr(v)≡ n-o{|0.4s(v,w) | w;w �= v|}.
Let D = {d1, . . . , d5}. One connected component of the graph G#

D is shown in fig-
ure 6. Labeling the nodes s(d1, di) with 0.7, and the node r(d1) with n-o{|0.4s(d1, w) |
w;w �= d1|} turns the graph into a Bayesian network with conditional probability tables
represented by probability formulas.

Generating a standard Bayesian network with the conditional probability distrib-
utions represented by probability formulas does not yet solve our inference problem,
because standard inference algorithms for Bayesian networks require explicit table rep-
resentations. There are several approaches one can take to overcome this problem: the
first is simply to expand the probability formula representation to a full table represen-
tation by computing the value Fr(d)[I ] for each instantiation I of Pa(Fr(d)). This,
however, will usually lead to representations with a size exponential in the size of the

Figure 6. The first network representation of P#
D .
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domain: in example 4.2, for instance, this approach will lead to conditional probability
tables for atoms r(di) of size 2|D|−1.

A second approach one could take is to develop a calculus that allows us to per-
form operations directly on probability formulas which are performed by standard in-
ference algorithms on conditional probability tables. The basic operations here needed
are multiplication and marginalization. Multiplication does not cause any problems, but
marginalizing an atom s(d ′) ∈ Pa(Fr(d)) out of Fr(d) leads to a function on instanti-
ations of Pa(Fr(d)) \ {s(d ′)} that is not again compactly representable by a probability
formula.

We will here pursue a third approach, which promises to lead to tractable inference
at least in many cases where the intractability caused by the construction of exponentially
large conditional probability tables in the first approach does not reflect any inherent
complexity of the inference problem. The basic idea behind the approach is to take the
graph G#

D labelled with the probability formulas Fr(d), and to decompose it by adding
additional variables, to form a graph DG#

D with the following properties: every atom of
ModD(R) is a node in DG#

D, the number of nodes in DG#
D is polynomial in the number

of nodes in G#
D, every node in DG#

D has at most 3 parents, and the nodes in DG#
D are

labelled with conditional probability tables so that the (marginal) probability distribution
induced by DG#

D on the atoms of ModD(R) again is P#
D . The remainder of this section

is devoted to develop a construction technique for such a network DG#
D.

To motivate our approach for the construction of DG#
D, consider figure 7. It shows

the decomposition of the network in figure 6, which is here directly obtained by insert-
ing an explicit representation of the causal model that originally motivated the noisy-or
combination function (cf. [23, figure 4.20]). In detail, we have added a layer of vari-
ables X(di), which are “noisy” versions of the variables s(d1, di) (i = 2, . . . , 5): the
conditional probability of X(di) = true is 0.4 if s(d1, di) = true, and 0 else. The con-
ditional probability of r1(d1) then becomes the deterministic or of the four variables
X(d2), . . . ,X(d5). A direct representation of this deterministic or as a conditional prob-
ability table for r(d) would still be exponential in size, but, by a standard construction,
we can decompose the or with 4 inputs using two auxiliary “or-nodes” Z1, Z2, so that

Figure 7. Decomposition of the network in figure 6.
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all nodes in the resulting subnetwork only have 2 parents. One readily verifies that the
conditional probability of r(d1) given s(d1, d2), . . .s(d1, d5) in the network of figure 7
is the same as in the network of figure 6 (indeed, noisy-or has just been defined for this
to be the case).

Our general strategy for decomposing the network G#
D now can be outlined as

follows: given a node r(d) in G#
D, which is labelled with a probability formula Fr(d) =

comb{|F(d,w) | w; c(d,w)|}, proceed as follows:

(D1) For each d ′ with c(d, d ′) create a new node X(d ′) with parents Pa(F (d, d ′)) la-
belled with F(d, d ′).

(D2) Make the nodes X(d ′) the parent set of r(d).

(D3) Insert a “computation network” for the computation of the conditional probability
of r(d) given {X(d ′) | c(d, d ′)} between r(d) and its parents, such that in the end
r(d) and each of the added auxiliary variables have at most two parents.

Only for certain combination functions will such a decomposition be possible. Our
first goal, therefore, will be to determine the class of these combination functions. For
the following definitions and results some standard terminology from probability the-
ory is required: a binary random variable X with P(X = 1) = p is called B(p)-
distributed. If Xi is B(pi)-distributed (1 � i � k), and the X1, . . . , Xk, are indepen-
dent, then the joint distribution of the Xi is denoted by B(p1) ⊗ · · · ⊗ B(pk). When
f (x1, . . . , xk) is a real-valued function, then E[f (X1, . . . , Xk)] denotes the expected
value of f (X1, . . . , Xk). To make explicit that this expectation is with respect to a
B(p1) ⊗ · · · ⊗ B(pk)-distribution of the Xi we also write Ep1,...,pk

[f (X1, . . . , Xk)].

Definition 4.3. A combination function comb is called an expectation if for all n � 1,
for all p1, . . . , pn ∈ [0, 1], and for B(p1) ⊗ · · · ⊗ B(pn)-distributed random variables
X1, . . . , Xn it holds that

E
[
comb{|X1, . . . , Xn|}

] = comb{|p1, . . . , pn|}. (23)

A simple “syntactic” characterization of expectations can be based on the following
definition.

Definition 4.4. A combination function is called multilinear if for all n � 1, and for all
i1, . . . , in ∈ {0, 1} there exists αi1,...,in ∈ R, such that for all p1, . . . , pn ∈ [0, 1]

comb{|p1, . . . , pn|} =
∑

(i1,...,in)∈{0,1}n
αi1,...,inp

i1
1 · · ·pin

n . (24)

Theorem 4.5. A combination function is an expectation iff it is multilinear.
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Proof. Assume first that comb is multilinear, and let X1, . . . , Xn be independent B(pi)-
distributed random variables. Noting that E[Xi] = E[X]i for all integrable random
variables X and i ∈ {0, 1}, we then obtain

E
[
comb{|X1, . . . , Xn|}

] =
∑

(i1,...,in)

αi1,...,inE[X1]i1 · · ·E[Xn]in

=
∑

(i1,...,in)

αi1,...,inp
i1
1 · · ·pin

n

= comb{|p1, . . . , pn|}.
For the converse direction, assume that comb is an expectation. We prove that

comb is multilinear by induction on n. For n = 1 we have

E[comb{|X1|}] = comb{|1|}p1 + comb{|0|}(1 − p1),

which is multilinear with α0 = comb{|0|} and α1 = comb{|1|} − comb{|0|}.
Now let n � 1. Then for B(p1) ⊗ · · · ⊗ B(pn)-distributed X1, . . . , Xn

E
[
comb{|X1, . . . , Xn|}

]
= E

[
comb{|X1, . . . , Xn|} | Xn = 0

]
(1 − pn) + E

[
comb{|X1, . . . , Xn|} | Xn = 1

]
pn

= E
[
comb0{|X1, . . . , Xn−1|}

]
(1 − pn) + E

[
comb1{|X1, . . . , Xn−1|}

]
pn (25)

for combination functions comb0 and comb1 that satisfy

combi{|X1, . . . , Xn−1|} = comb{|X1, . . . , Xn−1, i|} (i = 0, 1), (26)

and expectations now taken over the joint distribution of X1, . . . , Xn−1.
As comb is an expectation, the right-hand side of (25) is equal to comb{|p1, . . . , pn|},

which therefore is of the form

comb∗
0{|p1, . . . , pn−1|}(1 − pn) + comb∗

1{|p1, . . . , pn−1|}pn, (27)

where

comb∗
i {|p1, . . . , pn−1|} = Ep1,...,pn−1

[
combi{|X1, . . . , Xn−1|}

]
(i = 0, 1). (28)

We now need to show that the comb∗
i are multilinear functions of p1, . . . , pn−1, which

then makes (27) multilinear in p1, . . . , pn. To infer the multilinearity of the comb∗
i

from (28) and the induction hypothesis, we have to verify that

comb∗
i M = combiM (29)

for multisets M of the form M = {|1 : k, 0 : n − k − 1|} (0 � k � n − 1). Note that the
combi only are determined by (26) for arguments of this form, whereas the comb∗

i are
determined by (28) for all multisets of n − 1 elements from [0, 1].

To show (29), let 0 � k � n − 1, and put p1 = · · · = pk = 1, pk+1 = · · · =
pn−1 = 0. For B(pi)-distributed random variables Xi , (25) then becomes

comb0{|p1, . . . , pn−1|}(1 − pn) + comb1{|p1, . . . , pn−1|}pn (30)
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which has to be equal to (27) for all pn ∈ [0, 1]. But now (29) follows by letting pn = 1,
respectively pn = 0.

Thus, combining (28) and (29) we obtain

comb∗
i {|p1, . . . , pn−1|} = Ep1,...,pn−1

[
comb∗

i {|X1, . . . , Xn−1|}
]

for all p1, . . . , pn−1, so that by induction hypothesis the comb∗
i are multilinear for mul-

tisets of n − 1 elements, and thus comb is multilinear for multisets of n elements. �

Example 4.6. Noisy-or and mean are multilinear, and hence are expectations.

For combination functions that are expectations we can now give a general defin-
ition of the first two decomposition steps (D1) and (D2), and show that the probability
distribution on the nodes of the original network is not affected by the decomposition.

Definition 4.7. Let D be an S-structure, d a tuple of domain elements from D, and

F(d) ≡ comb{|F1(d,w), . . . , Fk(d,w) | w; c(d,w)|}
an R, S-probability formula. Let d1, . . . , dm be an enumeration of {d ′ ∈ D|w| | D |=
c(d, d ′)}. Let G be a Bayesian network, A a node in G whose parents are Pa(F (d)), and
which is labelled with F(d). We define a new network

G′ = decompose1(G,A)

as follows (cf. figure 8):

Figure 8. The first decomposition step.
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(1) For h = 1, . . . , k and j = 1, . . . , m let Xh(dj ) be a new Boolean random variable.

(2) Create a new graph by removing all edges between Pa(F (d)) and A, inserting an
edge from each node in Pa(Fh(d, dj )) to Xh(dj ), and inserting an edge from each
node Xh(dj ) to A.

(3) Label each node Xh(dj ) with Fh(d, dj ), and A with

comb{|X1(d1),X1(d2), . . . ,Xh(dj ), . . . ,Xk(dm)|}.

Theorem 4.8. Let P and P ′ be the probability distributions defined by G and G′ =
decompose1(G,A), respectively, on the random variables of G. If comb is an expecta-
tion, then P = P ′.

Proof. It suffices to show that for each instantiation I of Pa(F (d)) we have

P ′(A = true | I ) = P(A = true | I ). (31)

To show (31) we first write

P ′(A = true | I )=
∑
I ′

P ′(A = true | I ′)P (
I ′ | I )

=
∑
I ′

comb{|i′h,j | 1 � h � k, 1 � j � m|}P (
I ′ | I )

(32)

where I ′ varies over all instantiations of the new variables Xh(dj ), and

i′h,j =
{

0 if I ′(Xh(dj )) = false,

1 if I ′(Xh(dj )) = true.
(33)

As the variables Xh(dj ) are conditionally independent given Pa(F (d)), we have that
conditional on I they are B(F1(d, d1)[I ]) ⊗ · · · ⊗ B(Fk(d, dm)[I ])-distributed. The
right hand side of (32) thus is equal to

EF1(d,d1)[I ],...,Fk(d,dm)[I ]
[
comb{|X1(d1), . . . ,Xk(dm)|}

]
.

As comb is an expectation, this is equal to

comb{|F1(d, d1)[I ], . . . , Fk(d, dm}[I ]|} = P(A = true | I ). �

To complete the decomposition for node A we have to insert a suitable computation
network for its conditional probability distribution comb{|X1(d1), . . . ,Xk(dm)|}. That
this is always possible is the content of the next theorem.

Theorem 4.9. Let D, d,G and A be as in definition 4.7. Assume that in the construction
G′ = decompose1(G,A) new variables X1(d1), . . . ,Xk(dm) have been inserted. There
exists a network G′′ = decompose2(G′) with the following properties:

(1) The nodes of G′′ are the nodes of G′ together with l new nodes Z1, . . . ,Zl where
l � (km)6 + km.
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(2) A and the Zi have at most two parents each, these are all among the Xh(dj ) and
the Zi .

(3) A and the new Zi are labelled with conditional probability tables, so that P ′ = P ′′,
where P ′ is the distribution defined by G′, and P ′′ is the distribution defined by G′′
restricted to the nodes of G′.

Proof. We show that we can insert nodes Z1, . . . ,Zl as stated in the theorem such that
for every instantiation I ′ of X1(d1), . . . ,Xk(dm) we obtain P ′′(A = true | I ′) = P ′(A =
true | I ′). The following construction is illustrated in figure 9.

Let i′h,j be defined by (33). The value of P ′(A = true | I ′) = comb{|i′h,j | 1 � h �
k, 1 � j � m|} only depends on the number of entries i′h,j equal to 1. Denote the event
that this number is t by #I ′ = t . We introduce km+1 new variables Z0, . . . ,Zkm that are
to have the following property:

P ′′(Zt = true | #I ′ = t)= comb{|1 : t, 0 : km − t|}, (34)

P ′′(Zt = true | #I ′ �= t)= 0. (35)

Then the probability given I ′ that at least (and also: at most) one of the nodes Zt is
1 is equal to P ′(A = true | I ′). Connecting A to the variables Zt by a decomposed
deterministic or therefore yields P ′′(A = 1 | I ) = P ′(A = 1 | I ). It thus remains
to show that we can obtain (34) and (35) for the Zt . For this we appeal to results on
the formula complexity of symmetric Boolean functions [3,18] which imply that the
functions

St
km : {0, 1}km →{0, 1},

(x1, . . . , xkm) �→
{

1 if
∑km

j=1 xj = t,

0 if
∑km

j=1 xj �= t

can be represented by a Boolean circuit with at most (km)5 and, or and not gates. This
circuit can be used as a subnetwork with input nodes X1(d1), . . . ,Xk(dm), output node
Zt and internal nodes Zt,g (1 � g � (km)5). The conditional probability tables of
the Zt,g are deterministic and, or and not, as determined by the Boolean circuit. The
logical function of the output node Zt is modified by changing probability values 1 to
comb{|1 : t, 0 : mk−t|} (leaving 0-entries unchanged). Then (34) and (35) hold for the Zt .

To define the Zt we have added km subnetworks representing Boolean circuits of
size at most (km)5, i.e., a total of at most (km)6 new nodes. Another km nodes are added
by the final or over the Zt . All nodes between A and the Xh(dj ) have two parents at
most. �

For natural combination functions one can usually obtain computation networks
that are smaller and simpler than those obtained from the general construction of the
proof of theorem 4.9. In the case of noisy-or a straightforward generalization of the
construction shown in figure 7 yields computation networks with only 2n−1 new nodes
when applied to a node with n parents. Moreover, the inserted network here has a tree
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Figure 9. The second decomposition step.

structure and therefore does not introduce any new cycles into the network. We now
show that an equally small and structurally simple computation network exists for mean.

For this let A be a node in a network G with parents {X1, . . . ,Xn}, labelled
with mean{|X1, . . . ,Xn|} . We define decompose2(G,A) by introducing new variables
Y1, . . . ,Yn connected to X1, . . . ,Xn and A as shown in figure 10. The conditional prob-
ability tables for Y1,Yh (1 � h � n) and A are:

X1 P(Y1 = true) Yh−1 Xh P (Yh = true) Yn P (A = true)

false 0 false false 0 false 0
true 1 false true 1/h true 1

true false (h − 1)/h
true true 1

To show that the resulting network is a correct computation network for mean, we
have to check that for an instantiation I of X1, . . . ,Xn that instantiates exactly k of the
Xi to true we obtain

P(A = true | I ) = k

n
(0 � k � n). (36)

We show (36) by induction on the number n of input nodes. For n = 1 the instantiation
of A is just a deterministic copy of the instantiation of X1, so that (36) holds. Now assume
that (36) is satisfied for n − 1 inputs. Let I be an instantiation of X1, . . . ,Xn, and I ′ its
restriction to X1, . . . ,Xn−1. Let k and k′ be the number of nodes instantiated to true by
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Figure 10. Computation network for mean.

I and I ′, respectively (k′ ∈ {k − 1, k}). By induction hypothesis then

P
(
Yn−1 = true | I ′) = k′

n − 1
. (37)

Now (36) can be verified by straightforward computations, separately for the two cases
k′ = k − 1 and k′ = k. In the case k′ = k − 1, i.e., I (Xn) = true we obtain

P(A = true | I )=P(Yn = true | I )
=P(Yn = true | Yn−1 = true,Xn = true)P

(
Yn−1 = true | I ′)

+ P(Yn = true | Yn−1 = f alse,Xn = true)P
(
Yn−1 = false | I ′)

= k − 1

n − 1
+ 1

n

(
1 − k − 1

n − 1

)
= k

n
.

The case k′ = k is similar.
Thus, just as for noisy-or, we obtain a tree structured computation network that

only introduces n new nodes. Putting the two decomposition steps together, we now
define:

Definition 4.10. Let D, d,G and A be as in definition 4.7, with noisy-or or mean the
combination function of F(d). Then

decompose(G,A) := decompose2
(
decompose1(G,A),A

)
.

The definition of decompose(G,A) may be extended to other multilinear combination
functions for which an effective construction of computation networks has been defined.

The definition of decompose(G,A) for nodes A labelled with noisy-or or mean
combination functions is the cornerstone of the transformation from the network G#

D to
the network DG#

D. To fully define the transformation, we also have to explain how to
decompose nodes labelled with convex combinations.
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Figure 11. Decomposition of a convex combination.

Definition 4.11. Let D, d, G, A be as in definition 4.7, with

F(d) ≡ F1(d)F2(d) + (
1 − F1(d)

)
F3(d).

We define a new network G′ = decompose(G,A) as follows (cf. figure 11):

(1) Let X1, X2, X3 be new Boolean random variables.

(2) Create a new graph by removing all edges between Pa(F (d)) and A, inserting an
edge from each node in Pa(Fi(d)) to Xi , and inserting an edge from each node Xi ,
to A.

(3) Label each node Xi with Fi(d), and Awith the deterministic table shown in figure 11.

As a convex combination also is multilinear in its three probability formula ar-
guments, the same reasoning as for multilinear combination function shows that the
decomposition of definition 4.11 preserves the probability distribution defined by the
network.

The decomposition given in definition 4.11 is very similar to a decomposition given
by Boutilier et al. [4] for the utilization of context specific independence in probabilistic
inference. The similarity between the two decompositions is no coincidence, as the
one in [4] was designed to be particularly useful when conditional probability tables
are represented by (decision-) trees, and nested convex combinations are the probability
formula equivalent of a tree representation.

Calling a probability formula basic if it is either a constant or an indicator function,
and complex else, we can now define DG#

D via the algorithm decompose-network given
in table 1.

It is readily verified that the algorithm terminates, and that the structure of the out-
put network does not depend on the selection procedure for the node A to be decomposed
next. It also is clear that the probability distribution defined on the atoms of ModD(R)
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Table 1
Algorithm decompose-network.

Input: Network G#
D defined by RRBN # that uses noisy-or and mean as the only combination functions

Initialize: G := G#
D;

while G contains node A labelled with complex probability formula F(d)

G := decompose(G,A)
end while;
DG#

D := G

is the same in DG#
D as in G#

D, and that each node in DG#
D has at most three parents. It

remains to show that the size of DG#
D is polynomial in the size of D.

Theorem 4.12. Let # be an R, S-RRBN defined by probability formulas that contain
noisy-or and mean as the only combination functions. Let D be a S-structure with |D| =
n. The number of nodes in DG#

D as a function of n is O(nk+q), where k is the maximum
arity of relation symbols in R, and q is the maximal quantifier depth of probability
formulas in #.

The proof is almost immediate by noting that G#
D contains at most nk nodes, and

that the iterative decomposition of a node A in G#
D labelled with F(d) generates O(nq)

new nodes.
We now have shown that for an interesting class of RRBNs we can construct for

inference standard Bayesian networks of size polynomial in the size of the underlying
domain. This, of course, does not guarantee that inference will be polynomial in the do-
main size (and in view of the results mentioned in section 1.3 it is very unlikely that such
a guarantee could be given for any inference technique). For the very simple example 4.2
the result of the decomposition always is a singly connected network, so that here the
complexity of inference is actually linear in the domain size. An interesting question for
future work is to investigate under what conditions the good behavior of this example
generalizes, i.e., under what conditions will the DG#

D have graph theoretic properties
that guarantee probabilistic inference algorithms to run in time polynomial in |D|?

5. Context

The network DG#
D constructed in the previous section is a complete representation

of the distribution P#
D ; it can be used to compute the answer to any query (22). For a

particular query, DG#
D usually contains a lot of information which is not relevant for

the computation of the answer, and the query can also be answered by computations
in a small subnetwork of DG#

D. This observation is true not only for networks of the
type DG#

D, but for any (large) standard Bayesian network, and has led to the devel-
opment of pruning techniques [2] that in a preprocessing step generate a subnetwork
which is sufficient for the computation of a given query. In knowledge based model con-
struction (cf. section 1.3) the simplifications possible through pruning usually are taken
into account already during the construction of the standard Bayesian network, which
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works by an incremental construction starting from the nodes ri(dj ) appearing in the
query [5,20]. Analogous query dependent incremental construction techniques can also
be used in the RRBN framework to generate only a relevant subnetwork of G#

D, and
hence of DG#

D.

Example 5.1. Let S contain a constant LA and two unary relations C and P , denoting
objects of sort “city” and “person”, respectively. A RRBN for the random relations
R = {burglary,alarm,lives_in,earthquake} then is given by

Flives_in(p, c)≡ 0.05(c = LA) + 0.001(¬c = LA),

Fburglary(p)≡ 0.01,

Fearthquake(c)≡ 0.01(c = LA),

Falarm(p)≡ lives_in(p,LA)n-o{|0.9burglary(p),
0.2earthquake(LA) | ∅; τ |}

+ (¬lives_in(p,LA))0.9burglary(p).

These formulas use some of the simplifications introduced in section 3.1, especially
implicit sort constraints by the naming of variables. The formula Flives_in(p, c) simply
(and somewhat unrealistically) says that person p lives in city c with probability 0.05 if
c = LA, and with probability 0.001 else. A more sensible formula would have to make
lives_in a functional relation using the constructs discussed in section 3.1.

Let the given domain contain a person Holmes, and assume that the query is

P
(
burglary(Holmes) = true |
lives_in(Holmes,LA) = false,alarm(Holmes) = true

) =?

Then the relevant subnetwork of G#
D obtained by an incremental construction starting

with the nodes in the query is shown in figure 12.

The subnetwork of G#
D constructed in this example is not as small as it might

be: the node earthquake(LA) and its link to alarm(Holmes) is relevant only when
lives_in(Holmes,LA) is true. This illustrates a basic limitation of network reduction
by pruning (and the corresponding incremental construction methods): with these tech-
niques we cannot take into account the values to which ground atoms are instantiated in
the evidence – only the fact which atoms are instantiated has an influence on the con-

Figure 12. Network reduction with value-insensitive pruning.
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(a) (b)

Figure 13. Value-sensitive network reduction.

structed subnetwork. A much better use of the given evidence, however, would be to
only construct the network in figure 13(a) when it is given that lives_in(Holmes,LA)
is false, and the network in figure 13(b) when it is given that lives_in(Holmes,LA)
is true.

Techniques that try to utilize given instantiations of random variables to partic-
ular values for simplification of model representations and inference have become as-
sociated with the word context. In the context sensitive knowledge bases of Ngo and
Haddawy [20] probabilistic rules (1) are annotated with constraints that are expressed
by a designated set of context relations. Our example (which is taken almost di-
rectly from [20]), would be encoded in a context sensitive knowledge base by making
lives_in a designated context relation, and by entering two separate rules for alarm
into the knowledge base – one for the case of lives_in(·,LA) being false, and one for
it being true. Disadvantage of this approach is that it introduces an often not very nat-
ural distinction between context relations and probabilistic relations, and that it requires
that all atoms over the context relations are assigned truth values before probabilistic
inference can begin.

Boutilier et al. [4] define context specific independence of random variables, a con-
cept that initially only leads to more compact representations of conditional probability
tables. By decomposing nodes according to a similar rule as given in our definition 4.11,
however, this compact representation can also be used to enable value-sensitive network
reductions.

In the following we will show how by a simple extension of the decompose-network
algorithm of section 4, a construction algorithm for standard Bayesian networks is ob-
tained, which, in the context of given evidence, generates smaller networks in a manner
that is sensitive to the values of instantiated atoms. In particular, in the case of our intro-
ductory example, only the small networks in figure 13 will be constructed. Our approach
relies on the following standard network simplification, which also is the basis for cutset
conditioning algorithms [22,26].

Definition 5.2. Let N be a standard Bayesian network with nodes labelled with stan-
dard conditional probability tables. Let I be an instantiation of a subset E1, . . . ,Ek of
nodes. The network N ′ obtained by conditioning N on I is defined by deleting all outgo-
ing edges from instantiated nodes and by conditioning all conditional probability tables
on I . A conditional probability table for a node X in N with parents Pa(X) is condi-
tioned on I by making it a table that depends on Pa(X) \ {E1, . . . ,Ek} only, and assign-
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ing to every instantiation I ∗ of these nodes the original table entry for the instantiation
I ∗ ∪ I .

The conditional distribution given I is the same in N and N ′, so that N ′ can be
used for the computation of conditional probabilities given I .

When a conditional probability distribution is represented by a probability for-
mula, rather than a table, it sometimes can be conditioned on evidence simply by sub-
stituting 0 and 1 for the instantiated ground atoms. The probability formula at the node
alarm(Holmes) in the network of figure 12, for instance, is

lives_in(Holmes,LA)n-o{|0.9burglary(Holmes), 0.2earthquake(LA) | ∅; τ |}
+ (¬lives_in(Holmes,LA)

)
0.9burglary(Holmes). (38)

It can be conditioned on lives_in(Holmes,LA) = false by setting the indicator
lives_in(Holmes,LA) in (38) to 0, which leads to the much simpler formula

0.9burglary(Holmes). (39)

Thus, conditioning the probability formula at alarm(Holmes) on the evidence not
only removes the link from lives_in(Holmes,LA) to alarm(Holmes), but we also
obtain a representation of the new conditional distribution at alarm(Holmes) that shows
that this distribution no longer depends on earthquake(LA).

The probability formula (38) can be directly conditioned on instantiations of
lives_in(Holmes,LA), because its dependency on this ground atom is given explic-
itly through occurrences of (ground) indicator variables lives_in(Holmes,LA) in the
formula, which can be replaced with 0 or 1. In general, however, the dependence of
a probability formula F(d) on some ground atom r(d) can also be implicit, in that
r(d) ∈ Pa(F (d)), but F(d) does not contain the indicator r(d). An example is the
probability formula

Fr(d1) ≡ n-o{|0.4s(d1, w) | w;w �= d1|}, (40)

at the node r(d1) of the network in figure 6. This formula depends on s(d1, d4), for
instance, but it cannot be conditioned on an instantiation s(d1, d4) = α simply by sub-
stituting 0 or 1. This problem has disappeared in the decomposed version of the network
shown in figure 7. All probability formulas in this network depend explicitly on their
parent nodes. This is true in general: successive applications of the decompose operator
eliminate implicit dependencies on parent nodes.

A general strategy for the construction of decomposed networks that are simplified
in the most effective way by conditioning on given instantiations of ground atoms is to
substitute values 0 or 1 for ground indicator variables as soon as they appear explicitly
in the iterative construction of DG#

D. This substitution is formally defined as follows.

Definition 5.3. Let F(v) be an R, S-probability formula, d a tuple of domain elements,
I an instantiation of some ground R-atoms. We define the probability formula F(d)|I
obtained by conditioning F(d) on I as follows:
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(i) F(d) = q, then F(d)|I ≡ q.

(ii) If F(d) = r(d) then F(d)|I ≡ 0 if I (r(d)) = false, F(d)|I ≡ 1 if I (r(d)) = true,
and F(d)|I ≡ r(d) if r(d) is not instantiated by I .

(iii) If F(d) ≡ F1(d)F2(d) + (1 − F1(d))F3(d), then

F(d)|I ≡ F1(d)|IF2(d)|I + (1 − F1(d)|I )F3(d)|I

(when one of the Fi(d)|I is 0 or 1, then this expression is simplified according to
the rules 0F � 0, F + 0� F ).

(iv) If F(d) ≡ comb{|F1(d,w), . . . , Fk(d,w) | w; c(d,w)|}, then

F(d)|I ≡ comb{|F1(d,w)|I , . . . , Fk(d,w)|I | w; c(d,w)|}.

We can now integrate the conditioning operation of definition 5.3 into the
decompose-network algorithm of table 1 by preceding the decomposition step G :=
decompose(G,A) in the while-loop with the command

replace F(d) with F(d)|I .

The final result returned by this modified algorithm we denote with DG#
D |I . We record

in a theorem:

Theorem 5.4. Let I be an instantiation of some atoms of ModD(R). Let P,P ′ be the
probability distributions defined by DG#

D and DG#
D|I , respectively, on the atoms of

ModD(R). Then P(· | I ) = P ′(· | I ).

The proof follows immediately from the fact that in each execution of the while-
loop in the amended decomposition algorithm neither command changes the conditional
distribution given I in the current network G.

Note that it is really essential to condition probability formulas on the evidence
as soon as instantiated atoms appear explicitly: in our introductory example 5.1 for
instance, conditioning (38) on lives_in(Holmes,LA) = false before decomposing
the node alarm(Holmes) leads to the simplified formula (39), and subsequent decom-
position to the small network of figure 13(a). Decomposing alarm(Holmes) first, and
conditioning on lives_in(Holmes,LA) = false later, on the other hand, will no longer
lead to the elimination of the node earthquake(LA).

6. Conclusion

In recent years several frameworks for probabilistic modeling and inference have
been proposed that aim to integrate first-order logic representation constructs into the
Bayesian network paradigm. Probabilistic relational models can be regarded as a well-
defined common semantic core of these systems.



M. Jaeger / Complex probabilistic modeling with recursive relational Bayesian networks 219

Probability formulas and recursive Relational Bayesian networks are one frame-
work for probabilistic relational model representation. In this paper we have shown how
RRBNs can be used to represent complex prms, and how the structure of probability
formulas can be exploited to construct standard Bayesian networks that represent just
the part of a probabilistic model that is relevant for a particular query.

Key design goal of RRBNs was to base the representation framework on a small
number of elementary constructs. This has been achieved mostly by reducing the repre-
sentation language to the four simple construction rules for probability formulas. When,
furthermore, the combination function permitted in the construction of probability for-
mulas are limited to a small set of elementary functions, then the whole representation
framework of RRBNs consists of a small number of elementary constructs. We have sin-
gled out noisy-or and mean as very useful elementary combination functions, and have
seen that they alone allow us to deal with a variety of interesting modelling problems.

The price we pay for the simplicity of the representation framework is a rather rigid
language, in which even relatively simple representations become hard to read. This,
however, is not a major problem, as one can always introduce high-level constructs that
are definable in terms of the given basic ones. Experience tells us that this is the most
fruitful approach: given a certain type of semantic construct for which a formal repre-
sentation language is needed, one should identify small sets of elementary constructs
with which the problem can be solved in principle. Once such a set of elementary con-
structs has been obtained, one can always introduce secondary, defined constructs that
can be used to achieve better readability of complex representations. Investigations of
basic semantic or algorithmic questions, however, are much easier to conduct when only
the few underlying elementary constructs have to be taken into account. This is just why
the theory of computability is based on simple representation languages for algorithms
– Turing machine tables, recursive functions – not directly on high-level programming
languages. Mathematical logic, too, has only been so successful because it reduced the
rich language of mathematics to the few simple syntax rules of predicate logic. The ex-
periences gained in these foundational mathematical fields should not be ignored in the
lesser enterprise of studying the mathematics of probabilistic relational models.
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