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Abstract. In this paper we establish a link between satisfiability of
universal sentences with respect to varieties of distributive lattices with
operators and satisfiability with respect to certain classes of relational
structures. We use these results for giving a method for translation to
clause form of universal sentences in such varieties, and then use results
from automated theorem proving to obtain decidability and complexity
results for the universal theory of some such varieties.

1 Introduction

In this paper we give a method for automated theorem proving in the universal
theory of certain varieties of distributive lattices with well-behaved operators.
For this purpose, we use extensions of Priestley’s representation theorem for
distributive lattices. The advantage of our method is that we avoid the explicit
use of the full algebraic structure of such lattices, instead using sets endowed with
a reflexive and transitive relation and with additional functions and relations
that correspond to the operators in the lattices in a standard way. Our interest
in such algebras is motivated by the fact that many existing non-classical logics
are sound and complete with respect to varieties of distributive lattices with
additional well-behaved operators. Moreover, uniform word problems in lattices
also occur in more general contexts such as database dependency theory [6].

The main contributions of this paper are the following:

– We establish a link between satisfiability of universal sentences with respect
to varieties of distributive lattices with operators and satisfiability with re-
spect to classes of relational structures. This extends the results from [19].

– We use these results for giving a method for translation to clause form of
universal sentences in such varieties.

– We use existing results from automated theorem proving to obtain decid-
ability and complexity results.

We first studied this type of relationships in the context of finitely-valued logics
in [18], and then extended the ideas to certain classes of non-classical logics in
[20]. This paper shows that the idea is much more general, and can be used
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for the whole universal theory of certain varieties of distributive lattices with
operators. In particular, the method presented here subsumes in a natural way
both existing methods for translating modal logics to classical logic and methods
for automated theorem proving in finitely-valued logics based on distributive
lattices with operators. The approach has the following advantages:

– It avoids the problems that occur when ACI-operators have to be considered
(as is the case in algebraic automated reasoning for lattices).

– Known saturation-based techniques for theories of reflexive and transitive
relations, such as ordered chaining with selection, can be used successfully.

– Decidability and complexity results follow in many cases as consequences of
existing decision procedures based on ordered resolution or ordered chaining.

– We obtain decidability and complexity results for uniform word problems in
certain non locally finite varieties of distributive algebras with operators (as
far as we know, no such results were known).

– Considerations concerning the structure of the sets of clauses generated with
our method make certain algebraic properties of these varieties visible.

The applicability of our method depends on the possibility of finding the ap-
propriate relational structures that can replace the algebras in the variety in
the automated theorem proving process. It is known from modal logic that such
structures may not always exist. Another limitation is given by the fact that,
in general, resolution is a semi-decision procedure, and it may be hard or im-
possible to obtain resolution-based decision procedures for the classes of clauses
generated by the method we describe. However, we show that in many cases the
method is applicable and leads to decision procedures.

The idea of using representation theorems for establishing a link between the
algebraic and relational semantics of non-classical logics goes back to Jónsson
and Tarski [11], who for this purpose used an extension of Stone’s representation
theorem for Boolean algebras with operators. Our work is influenced by the
results of Goldblatt [9], who showed that the “modal case” is an illustration
of more general results from universal algebra. He gives an extension of the
Priestley duality to join and meet hemimorphisms, which we extended in [19] to
lattices endowed with certain classes of anti(hemi)morphisms. In this paper we
use the results in [9] and [19] and show that the use of representation theorems
has applications which range far beyond the area of applications in modal logics.

The paper is structured as follows. In Section 2 the main notions and results
needed in the paper are presented. Section 3 contains the main results. Section 4
contains some run examples and a comparison to a more standard approach.
Section 5 contains some conclusions and plans for future work.

2 Preliminaries

This section contains the main notions and results needed in this paper.
Partially Ordered Sets and Lattices. We assume known standard notions,
such as partially-ordered set, order-filter and order-ideal in a partially-ordered
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set, cf. [7]. Given a partially-ordered set (X,≤), by O(X) we denote the set of
order-filters of X. A lattice is a partially-ordered set (L,≤) with the property
that every two elements x, y ∈ L have a supremum and an infimum (denoted
x∨y resp. x∧y) in L. Alternatively, a non-empty set L together with two binary
operations ∨ and ∧ on L is called lattice if ∨ and ∧ are associative, commutative
and idempotent and satisfy the absorption laws. A distributive lattice is a lattice
that satisfies either of the distributive laws. A lattice L has a first element if
there is an element 0 ∈ L such that 0 ≤ x for every x ∈ L; it has a last element
if there is an element 1 ∈ L such that x ≤ 1 for every x ∈ L. A lattice having
both a first and a last element is called bounded. The pseudocomplement of an
element a ∈ L (denoted by ¬a) is the largest element of {c ∈ L | a ∧ c = 0}
(if any). Given a, b ∈ L, the pseudocomplement of a relative to b (denoted by
a ⇒ b) is the largest element of {c ∈ L | a ∧ c ≤ b} (if any). A filter in a lattice
L is a non-empty order-filter closed under meets. A filter F is said to be prime
if F 6= L and for every x, y ∈ L, if x ∨ y ∈ F then x ∈ F or y ∈ F . Ideals and
prime ideals are defined dually.

Priestley Representation for Bounded Distributive Lattices. The Priest-
ley representation theorem [16] states that every bounded distributive lattice
A is isomorphic to the lattice of clopen (i.e. closed and open) order filters of
the ordered topological space having as points the prime filters of A, ordered
by inclusion, and the topology generated by the sets of the form Xa = {F |
F prime filter, a ∈ F } and their complements as a subbasis. The partially or-
dered set of all prime filters of A, ordered by inclusion, and endowed with the
topology mentioned above will be denoted D(A) (we will refer to it as the dual
of A). If we denote the lattice of clopen order filters of an ordered topological
space X by ClopenOF(X), the Priestley representation theorem states that there
exists an isomorphism of bounded lattices, ηA : A → ClopenOF(D(A)).

Universal Algebra. For the necessary notions of universal algebra we refer e.g.
to [5]. For every signature Σ and every arity function a : Σ → N, a Σ-algebra
is a structure (A, {σA}σ∈Σ), where for every σ ∈ Σ, σA : Aa(σ) → A. If the
signature Σ is known we may use the notation A for the Σ-algebra (A, {σA}σ∈Σ).
A Σ-algebra A has a bounded distributive lattice reduct if there exist operations
∨,∧, 0, 1 in Σ such that (A, 0, 1,∨A,∧A) is a bounded distributive lattice. A
distributive p-lattice (resp. Heyting algebra) is an algebra (A, 0, 1,∨,∧,¬) (resp.
(A, 0, 1,∨,∧,⇒,¬)) with a bounded distributive lattice reduct such that for
every a, b ∈ A, ¬a is the pseudocomplement of a, and a ⇒ b is the relative
pseudocomplement of a with respect to b.

Given a set X, the term algebra over Σ in the variables X will be de-
noted TermΣ(X). An equation is an expression of the form t1 = t2 where
t1, t2 ∈ TermΣ(X); an implication is an expression of the form β1∧· · ·∧βm → α,
where β1, . . . , βm, α are equations. A conditional equation (or quasi-equation) is
an expression which is either an equation or an implication. A Σ-algebra A sat-
isfies a quasi-equation γ (notation: A |= γ) if the quasi-equation is true for every
substitution of elements in A for the variables. A class K of algebras satisfies γ
(notation: K |= γ) iff all algebras in K satisfy γ. Truth of conditional equations
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is preserved under isomorphic images, subalgebras, and products. Truth of equa-
tions is additionally preserved under homomorphic images. A variety is the class
of all algebras that satisfy a set of identities, or, alternatively, a class of algebras
which is closed under homomorphic images, subalgebras and direct products.

Logic. Let K be a class of algebras. The elementary theory of K is the collection
of all closed formulae in first-order predicate logic with equality that are valid in
K. The universal theory of K is the collection of those closed formulae valid in K
which are of the form ∀x1 . . .∀xk(

∧m
i=1 ((¬)ti1 = si1 ∨ · · · ∨ (¬)tini = sini)). The

universal Horn theory of K is the collection of those closed formulae valid in K
which are of the form ∀x1 . . .∀xk(t11 = t12 ∧ · · · ∧ tn1 = tn2 → s1 = s2). The
equational theory of K is the set of all closed formulae valid in K which are of
the form ∀x1 . . . xk(t = s). Given a recursively enumerable set E of conditional
Σ-equations we say that the word problem for E is decidable if we can decide
for every t, s ∈ TermΣ(X) whether s ≡E t, where ≡E denotes the congruence
on TermΣ(X) generated by E. We say that the uniform word problem for E is
decidable if the universal Horn theory of the class of all models of E is decidable.
McKinsey [13] showed that for every class K of Σ-algebras which is closed under
direct products, if a sentence of the form

∀x1 . . .∀xk(s11 = s12 ∧ · · · ∧ sn1 = sn2 → t11 = t12 ∨ · · · ∨ tm1 = tm2)

is true in K, then there exists j ∈ {1, . . . , m} such that

∀x1 . . .∀xk(s11 = s12 ∧ · · · ∧ sn1 = sn2 → tj1 = tj2)

is true in K. In particular it follows that for every class K of algebras which is
closed under direct products, if its universal Horn theory is decidable, then its
universal theory is decidable.

Decidability Results for Distributive Lattices. Decidability of the theories
related to various classes of algebras has been studied extensively. In what follows
we will present existing decidability and complexity results for the variety of
distributive lattices. It is known (cf. e.g. [4], p.16) that the elementary theory of
every non-trivial variety of lattices is undecidable. Thus, the elementary theory
of the variety DLat of distributive lattices is undecidable. The uniform word
problem for distributive lattices is decidable (since DLat = ISP (2), where 2 is
the 2-element lattice), and has been proved to be co-NP-hard by Bloniarz et al.
[10]. By the result of McKinsey [13] mentioned above it follows that the universal
theory of the variety of distributive lattices is decidable. (In 1920, Skolem [17]
gave a polynomial time decision procedure for the uniform word problem for
general lattices, which cannot be used for the variety of distributive lattices.)

Struth [21] gives a calculus based on non-symmetric rewriting (modulo ACI)
for the elementary theory of finite distributive lattices. Besides the possibil-
ity of extending this calculus to families of well-behaved operators on lattices,
and the complexity results established for (boolean) Tarskian set constraints by
McAllester et al. [12], and Mielniczuk and Pacholski [14], we are not aware of any
systematic study on automated theorem proving or decidability and complexity
results for varieties of distributive lattices with additional operators.
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Resolution as a Decision Procedure. We assume known the usual notions
and notations in first-order logic and resolution. For details we refer to any
text on automated theorem proving. Unrefined resolution is only a semi-decision
procedure for first-order logic. However, for some classes of formulae known to
be decidable, the resolution principle can be adapted in order to obtain decision
procedures. The main idea is to find a complete resolution refinement (usually
an ordering refinement, possibly combined with the use of a selection function)
which is terminating on the specified class of clauses. Termination may be proved
for instance by finding a depth and a length limit for the resolvents.

In this paper reflexive and transitive relations will play an important rôle.
In the presence of this kind of relations, superposition and ordered chaining
have successfully been used for obtaining decidability results. The superposition
calculus is a refutationally complete inference system for arbitrary first-order
clauses with equality. Its inference rules are restricted versions of paramodula-
tion, resolution, and factoring, parametrized by a total reduction ordering � on
ground expressions and a selection function S. The ordered chaining calculus is
an extension of the superposition calculus to more general reflexive and transi-
tive relations. Its inference rules are restricted versions of (positive and negative)
chaining, resolution, and factoring, parametrized by a total reduction ordering
� on ground expressions and a selection function S. In both cases, S assigns to
each clause a (possibly empty) multiset of negative literals. For details cf. [1,2].
Superposition with selection and simplification has been proved to be a deci-
sion procedure for the monadic class with equality [3]. Ordered chaining with
selection was used to obtain decision procedures for the relational translation of
propositional modal logics with modal operators satisfying the axiom 4 [8].

3 On the Universal Theory of Subvarieties of DLO�

We start by presenting some results on a Priestley representation for distribu-
tive lattices with operators. We show that this helps to establish a link between
satisfiability of universal sentences with respect to varieties of distributive lat-
tices with operators and satisfiability with respect to certain classes of relational
structures. These results are used for giving a method for translation to clause
form of universal sentences in such varieties.

Definition 1. Let A be an algebra with a bounded lattice reduct. A lattice an-
timorphism on A is a function k : A → A which maps 0 to 1, 1 to 0, joins to
meets and meets to joins. A join hemimorphism on A is a function f : An → A
that preserves 0 and all finite joins in every argument. A meet hemimorphism
on A is a function g : An → A that preserves 1 and all finite meets in every
argument. A join hemiantimorphism on A is a function f ′ : An → A that maps
1 to 0 and meets to joins in every argument. A meet hemiantimorphism on A is
a function g′ : An → A that maps 0 to 1 and joins to meets in every argument.

Let Σ be a signature containing function symbols in several classes; in order
to distinguish these classes, we will write Σ = Lh∪La∪Jh∪Mh∪Ja∪Ma, where
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Lh, La, Jh, Mh, Ja, and Ma may be empty. Let DLOΣ be the class of all bounded
distributive lattices with operators in Σ, (A,∨,∧, 0, 1, {σA}σ∈Σ), such that if σ
is an operation symbol in Lh, La, Jh, Mh, Ja, or Ma, then σA is, respectively,
a lattice homomorphism, lattice antimorphism, join or meet hemimorphism, or
join or meet hemiantimorphism. DLOΣ is a variety.

3.1 Priestley Representation for DLOΣ and Σ-Relational Structures

In [19] we showed that, given an algebra A ∈ DLOΣ , the operators in Σ induce in
a canonical way functions and relations on its Priestley dual D(A) which, in their
turn, induce operators on ClopenOF(D(A)). Taking into account these correspon-
dences, we showed that the canonical isomorphism ηA : A → ClopenOF(D(A))
from the Priestley duality is an isomorphism of algebras in DLOΣ. For details,
including a categorical duality theorem, we refer to [7,9,18,19]. The Priestley du-
ality has been extended to distributive p-lattices and Heyting algebras (cf. e.g.
[15], [9]). The dual spaces (X,≤, τ ) satisfy in this case the additional condition
that for every clopen order-filter U , X\ ↓ U is clopen.

Definition 2. Let (X,≤) be such that ≤ is a reflexive and transitive relation
on X, and let R ⊆ Xn+1. R is called increasing if for every x ∈ Xn and every
y, z ∈ X, if R(x, y) and y ≤ z then R(x, z); R is called decreasing if for every
x ∈ Xn and every y, z ∈ X, if R(x, y) and z ≤ y then R(x, z).

For every set X endowed with a reflexive and transitive relation ≤, its set
H(X) of hereditary (i.e. upwards-closed with respect to ≤) subsets can be en-
dowed with a bounded lattice structure (where join is union, meet is intersection,
0 = ∅ and 1 = X). We can canonically define additional operators on H(X) as
showed below.

Theorem 1. Let (X,≤) be a set endowed with a reflexive and transitive relation.

(1) Every ≤-preserving map HX : X → X induces a lattice morphism hH :
H(X) → H(X), defined for every U ∈ H(X) by hH(U) = H−1

X (U).
(2) Every ≤-reversing map KX : X → X induces a lattice antimorphism kK :

H(X) → H(X), defined for every U ∈ H(X) by kK(U) = X\K−1
X (U).

(3) Every increasing relation RX ⊆ Xn+1 induces a join hemimorphism fR :
H(X)n → H(X), and a join hemiantimorphism f ′

R : H(X)n → H(X),
defined for every U1, . . . , Un ∈ H(X) by:
fR(U1, . . . , Un) = {x ∈ X | ∃x1, . . . , xn(xi ∈ Ui for all i, and RX(x1, . . . , xn, x))},
f ′

R(U1, . . . , Un) = {x ∈ X | ∃x1, . . . , xn(xi 6∈ Ui for all i, and RX(x1, . . . , xn, x))}.
(4) Every decreasing relation QX ⊆ Xn+1 induces a meet hemimorphism gQ :

H(X)n → H(X), and a meet hemiantimorphism g′Q : H(X)n → H(X),
defined for every U1, . . . , Un ∈ H(X) by:
gQ(U1, . . . , Un) = {x ∈ X | ∀x1, . . . , xn (QX (x1, . . . , xn, x) → ∃i, xi ∈ Ui)},
g′

Q(U1, . . . , Un) = {x ∈ X | ∀x1, . . . , xn (QX (x1, . . . , xn, x) → ∃i, xi 6∈ Ui)}.
(5) Moreover, a pseudocomplementation ¬ and a relative pseudocomplementa-

tion ⇒ can be defined on H(X) by ¬U = {x | ∀y(x ≤ y → y 6∈ V )} and
U ⇒ V = {x | ∀y((x ≤ y ∧ y ∈ U) → y ∈ V )}.
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Proof : (Sketch) The proof closely follows the proof of the similar results estab-
lished in [9,19] for relational structures endowed with partial orders. It can be
seen that the antisymmetry of ≤ is not needed anywhere in the proof. 2

Let Σ = Lh ∪ La ∪ Jh ∪ Mh ∪ Ja ∪ Ma be a signature as discussed above.

Definition 3. An RT Σ-relational structure is a set endowed with a reflexive
and transitive relation ≤ and with additional maps and relations indexed by
Σ, (X,≤, {σX}σ∈Σ), where if σ ∈ Lh, σX : X → X is a ≤-preserving map,
if σ ∈ La, σX : X → X is a ≤-reversing map, if σ ∈ Jh ∪ Ja with arity
n, σX ⊆ Xn+1 is an increasing relation, and if σ ∈ Mh ∪ Ma with arity n,
σX ⊆ Xn+1 is a decreasing relation.

The class of RT Σ-relational structures will be denoted by RTSΣ . For every
X ∈ RTSΣ and every σ ∈ Σ let σH(X) be the operation on H(X) associated
with σX as explained in Theorem 1. The corresponding algebra is again denoted
by H(X). By Theorem 1, H(X) ∈ DLOΣ . Conversely, for every A ∈ DLOΣ,
the ordered space U(D(A)), obtained from D(A) by ignoring the topology, is in
RTSΣ . ClopenOF(D(A)) is a subalgebra (in DLOΣ) of H(D(A)) = O(D(A)).

Notation. As a convention, if not explicitly specified otherwise, in what follows
h (resp. k) will denote an operation symbol in Lh (resp. La), f one in Jh ∪ Ja,
and g one in Mh ∪ Ma. Sometimes, in order to distinguish between elements
in Jh and Ja, resp. Mh and Ma, the operation symbols in Ja and Ma will
be denoted by f ′ resp. g′. The symbols in Jh ∪ · · · ∪ Ma are interpreted as
maps for elements in DLOΣ, and as relations in RTSΣ . For the sake of clarity
we will always overline the operation symbol in the latter case. In particular,
in Section 3.3 (Theorem 3) and Section 3.4 the function resp. relation symbols
h, k, f, g are in the classes corresponding to the labeling in (Ren).

Let φ = ∀x1, . . . , xk(
∧n

i=1 si1 = si2 → ∨m
j=1 tj1 = tj2) (where sil, tjp ∈

TermΣ′({x1, . . . , xk}), and Σ′ is Σ ∪ {∨,∧, 0, 1} to which possibly ¬ and ⇒ are
adjoined). ST (φ) denotes the set of all subterms of sil and tjp, 1 ≤ i ≤ n, 1 ≤
j ≤ m, l, p ∈ {1, 2}, ns = |ST (φ)|, nf = |Lh ∪ La|, np = |Jh ∪ Ja ∪ Mh ∪ Ma|,
and mp is the maximal arity of an operation in Jh ∪ Ja ∪ Mh ∪ Ma.

3.2 A Link between Algebraic and Relational Models

We study the link between satisfiability of universal sentences with respect to
algebraic and relational models. As algebraic models we consider subvarieties V
of DLOΣ (possibly with an additional p-lattice or Heyting algebra structure),
satisfying the condition (K) below:

(K) There exists a class K of RT Σ-relational structures such that:
(i) for every A ∈ V, the RT Σ-relational structure U(D(A)) is in K;
(ii) for every X ∈ K, the algebra H(X) is in V.

Theorem 2. Let φ = ∀x1, . . . , xk(
∧n

i=1 si1 = si2 → ∨m
j=1 tj1 = tj2). Assume

that V satisfies condition (K). Then V |= φ iff for every X ∈ K, H(X) |= φ.
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Proof : (Sketch) The direct implication follows from the fact that, by (K)(ii), for
every X ∈ K, H(X) ∈ V; the inverse implication follows from the fact that, by
(K)(i), for every A ∈ V, the RT Σ-relational structure corresponding to D(A)
is in K, and that, by the Priestley representation theorem, A is isomorphic to
ClopenOF(D(A)) which is a subalgebra of O(D(A)). 2

3.3 Structure-Preserving Translation to Clause Form

If the class K is first-order definable, Theorem 2 justifies a structure-preserving
translation of universal formulae to sets of clauses, inspired by the method of
Tseitin [22] for transforming quantifier-free formulae to clausal normal form.

Theorem 3. Assume that V satisfies (K), where the class K is definable by
a finite set C of first-order sentences1. Let φ = ∀x1, . . . , xk(

∧n
i=1 si1 = si2 →∨m

j=1 tj1 = tj2). Then V |= φ iff the following conjunction is unsatisfiable:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(Dom) C,
(Her) ∀x, y(x ≤ y ∧ Pe(x) → Pe(y)),
(Ren)
(1, 0) ∀xP1(x), resp. ∀x¬P0(x),
(∧) ∀x(Pe1∧e2(x) ↔ Pe1(x) ∧ Pe2(x)),
(∨) ∀x(Pe1∨e2(x) ↔ Pe1(x) ∨ Pe2(x)),

(Lh) ∀x(Ph(e)(x) ↔ Pe(h(x))),

(La) ∀x(Pk(e)(x) ↔ ¬Pe(k(x))),

(Jh) ∀x(Pf(e1,...,ep)(x) ↔ ∃x1, . . . , xp(
Vp

i=1 Pei(xi) ∧ f(x1, . . . , xp, x))),
(Mh) ∀x(Pg(e1,...,ep)(x) ↔ ∀x1, . . . , xp(g(x1, . . . , xp, x) → (

Wp
i=1 Pei(xi)))),

(Ja) ∀x(Pf(e1,...,ep)(x) ↔ ∃x1, . . . , xp(
Vp

i=1 ¬Pei(xi) ∧ f(x1, . . . , xp, x))),
(Ma) ∀x(Pg(e1,...,ep)(x) ↔ ∀x1, . . . , xp(g(x1, . . . , xp, x) → (

Wp
i=1 ¬Pei(xi)))),

(⇒) ∀x(Pe1⇒e2 (x) ↔ ∀y(x ≤ y ∧ Pe1(y) → Pe2(y))),
(¬) ∀x(P¬e(x) ↔ ∀y(x ≤ y → ¬Pe(y))),

(P) ∀x(
Vn

i=1 Psi1(x) ↔ Psi2(x)),
(N1) ∃x1Pt11(x1) 6↔ Pt12(x1),
. . . . . .
(Nm) ∃xmPtm1(xm) 6↔ Ptm2(xm),

where the unary predicates Pe are indexed by elements in ST (φ).

Proof : (Sketch) By Theorem 2, V |= φ iff for every X ∈ K and every m :
{x1, . . . , xk} → H(X), H(X) |=m φ. The conclusion now follows from the fact
the set of formulae (Dom)∪ (Her) ∪ (Ren) ∪ (P)∪ (N1)∪ · · · ∪ (Nm) is satisfiable
iff there exists X ∈ K and m : {x1, . . . , xk} → H(X) such that H(X) 6|=m φ. 2

The problem of deciding whether a universal formula is true in a variety
V can be reduced to deciding whether a set of clauses corresponding to the
conjunction in Theorem 3 is unsatisfiable. In what follows we show that ordered
chaining with selection gives a decision procedure in the case when V is the
variety DLOΣ, the variety of distributive p-lattices or that of Heyting algebras.
1 The set C contains formulae expressing the properties of ≤ (such as reflexivity and

transitivity), monotonicity properties of the functions and relations in Σ, as well as
the possible interdependence between the functions and relations in Σ ∪ {≤}
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3.4 DLOΣ : Decidability and Complexity Results

Let now V = DLOΣ . From the results on Priestley duality for DLOΣ and by
Theorem 1 it follows that DLOΣ satisfies condition (K) where K = RTSΣ. This
class is defined by a set RT of formulae expressing the reflexivity and transitivity
of ≤, together with the set CΣ of formulae, corresponding to the fact that in
every structure in RTSΣ the functions in Lh preserve ≤, those in La reverse ≤,
the relations in Jh ∪ Ja are increasing and those in Mh ∪ Ma are decreasing:
CLh ∀x, y(x ≤ y → h(x) ≤ h(y)) h ∈ Lh,

CLa ∀x, y(x ≤ y → k(y) ≤ k(x)) k ∈ La,

CJh,Ja ∀x1, . . . , xp, x, y(x ≤ y ∧ f(x1, . . . , xp, x) → f(x1, . . . , xp, y)) f ∈ Jh ∪ Ja,
CMh,Ma ∀x1, . . . , xp, x, y(y ≤ x ∧ g(x1, . . . , xp, x) → g(x1, . . . , xp, y)) g ∈ Mh ∪ Ma.

The set CΣ(φ) of clauses generated by translating the conjunction in Theo-
rem 3 to clause form is indicated below. (Note that |CΣ(φ)| = O(length(φ)).)

(Dom) clause form of the formulae in CΣ ,
(RT) clause form of the reflexivity and transitivity axioms,
(Her) {¬x ≤ y,¬Pe(x), Pe(y)},
(Ren)
(1, 0) {P1(x)}, {¬P0(x)},
(∧) {¬Pe1∧e2(x), Pe1(x)}, {¬Pe1∧e2(x), Pe2(x)}, {¬Pe1(x),¬Pe2(x), Pe1∧e2(x)},
(∨) {¬Pe1∨e2(x), Pe1(x), Pe2(x)}, {¬Pe1(x), Pe1∨e2(x)}, {¬Pe2(x), Pe1∨e2(x)},
(Lh) {¬Ph(e)(x), Pe(h(x))}, {Ph(e)(x),¬Pe(h(x))},
(La) {Pk(e)(x), Pe(k(x))},{¬Pk(e)(x),¬Pe(k(x))},
(Jh1) {¬Pf(e1,...,ep)(x), Pei(c

f(e1,...,ep)
i (x))}, i = 1, . . . , p,

(Jh2) {¬Pf(e1,...,ep)(x), f(c
f(e1,...,ep)
1 (x), . . . , c

f(e1,...,ep)
p (x), x)},

(Jh3) {Pf(e1,...,ep)(x),¬Pe1(y1), . . . ,¬Pep(yp),¬f(y1, . . . , yp, x)},
(Mh1) {Pg(e1,...,ep)(x),¬Pei(c

g(e1,...,ep)
i (x))}, i = 1, . . . , p,

(Mh2) {Pg(e1,...,ep)(x), g(c
g(e1,...,ep)
1 (x), . . . , c

g(e1,...,ep)
p (x), x)},

(Mh3) {¬Pg(e1,...,ep)(x), Pe1(y1), . . . , Pep(yp),¬g(y1, . . . , yp, x)},
(Ja1) {¬Pf(e1,...,ep)(x),¬Pei(c

f(e1,...,ep)
i (x))}, i = 1, . . . , p,

(Ja2) {¬Pf(e1,...,ep)(x), f(c
f(e1,...,ep)
1 (x), . . . , c

f(e1,...,ep)
p (x), x)},

(Ja3) {Pf(e1,...,ep)(x), Pe1(y1), . . . , Pep(yp),¬f(y1, . . . , yp, x)},
(Ma1) {Pg(e1,...,ep)(x), Pei(c

g(e1,...,ep)
i (x))}, i = 1, . . . , p,

(Ma2) {Pg(e1,...,ep)(x), g(c
g(e1,...,ep)
1 (x), . . . , c

g(e1,...,ep)
p (x), x)},

(Ma3) {¬Pg(e1,...,ep)(x),¬Pe1(y1), . . . ,¬Pep(yp),¬g(y1, . . . , yp, x)},
(P) {¬Psi1(x), Psi2(x)},{Psi1(x),¬Psi2(x)}, i = 1, . . . , n,
(N) {Ptj1 (cj), Ptj2(cj)}, {¬Ptj1(cj),¬Ptj2(cj)}, j = 1, . . . , m,

where the predicate symbols Pe are indexed by subterms in ST (φ), c
f(e1,...,ep)
i are

Skolem functions obtained from the existential quantifiers in the transformation
of terms of the form f(e1 , . . . , ep), where p = a(f); c1, . . . , cm are Skolem con-
stants introduced by the existential quantifiers in (N1), . . . , (Nm) in Theorem 3;
and f, g for f ∈ Jh ∪ Ja, g ∈ Mh ∪ Ma are also considered predicate symbols.

The following result is a direct consequence of Theorem 3.

Corollary 1. DLOΣ |= φ iff CΣ(φ) is unsatisfiable.
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We now show that ordered chaining with selection is a decision procedure for
CΣ(φ). We assume given a reduction ordering � which is total on ground terms.
Based on �, an ordering on literals (also denoted by �) will be defined. Let c be
the complexity measure defined for every ground literal L by cL = (maxL, pL, sL)
where maxL is the maximal term occurring in L, pL is 1 if L is negative and 0 if
L is positive, and sL is 1 if L is of the form (¬)s ≤ t with s � t, and 0 otherwise.
(The choice of cL was inspired by [8].) c induces a well-founded ordering �c on
ground literals, defined by L �c L′ iff cL > cL′ (in the lexicographic combination
of � and >, where 1 > 0). Let � be a total and well-founded extension of �c.
(Such an ordering is left-to-right admissible in the sense used in [2].) Let S be the
selection function that selects (i) all negative occurrences of literals containing
≤, and (ii) all occurrences of negative literals containing a predicate symbol in
Jh ∪ · · · ∪ Ma in clauses which do not contain ≤. The chaining calculus based
on the literal ordering � and the selection function S will be denoted C�

S .

Theorem 4. C�
S decides the unsatisfiability of CΣ(φ) in exponential time.

Proof : (Sketch) It can be shown that, due to ordering constraints and the choice
of S, no C�

S inferences between clauses in (RT)∪(Her) and clauses in (Ren)∪(P)∪
(N) are possible, and all clauses obtained by C�

S inferences from (RT) ∪ (Her)
are redundant. Using the definition of � on literals, it can be shown that all
clauses obtained by ordered resolution with selection from (Ren)∪ (P)∪ (N) have
term depth 1 and either (i) are ground (and contain only one constant), or (ii)
contain only one variable (occurring in every literal) and no constant or, (iii) are
factors of (Jh3), (Ja3), (Mh3) or (Ma3). Moreover, all negative occurrences of a
predicate symbol in Jh∪Ja∪Mh∪Ma must occur in clauses of type (iii). Due to
the definition of �, neither the term depth of clauses nor the number of variables
in the clause increase by ordered resolution. For every constant ci (resp. every
variable x) the number of all possible atoms for the clauses containing ci (resp.
x) and of term depth at most 1 is ns·(mp·ns+nf+1)+np·(mp·ns+nf+1)mp+1

(ns resp. np is the number of all unary, resp. at most mp-ary predicate symbols;
among the function symbols one also has to count the (unary) Skolem functions
associated to the subterms in ST (φ), of which there are at most mp · ns). This
shows that, assuming np, nf, and mp are constant, the number clauses that can
be generated by ordered resolution with selection from (Ren) ∪ (P) ∪ (N) is of
the order 3O(nsm+1). 2

Remark. The above proof shows that the clauses containing the predicate sym-
bol ≤ are not needed in order to prove unsatisfiability of CΣ(φ). The reason is
that every algebra in DLOΣ is a sublattice of a lattice whose Priestley dual has
the discrete ordering, i.e. DLOΣ = IS({L ∈ DLOΣ | D(L) discretely ordered}),
and, hence, a universal formulae is valid in DLOΣ iff it is valid in every algebra in
DLOΣ whose dual is discretely ordered. All varieties in this subsection have this
property; in Section 3.5 we discuss two varieties which do not have this property,
i.e. for which ≤ has to be explicitly taken into account.

Example 1: The Variety D01 of Bounded Distributive Lattices. Let
Σ = ∅. In this case DLOΣ = D01. The considerations above show that D01
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fulfills condition (K), K being the class RTS of all sets endowed with a reflexive
and transitive relation. In the translation to clause form only the set C(φ) =
(RT) ∪ (Her) ∪ (Ren)(0, 1) ∪ (Ren)(∧) ∪ (Ren)(∨) ∪ (P) ∪ (N) of clauses needs to
be taken into account. (In this case (Ren) = (Ren)(0, 1) ∪ (Ren)(∧) ∪ (Ren)(∨).)

The results in Theorem 4 can be sharpened in this case. Due to the special
form of the clauses in C(φ), all possible resolvents are either ground and all
literals contain the same constant, or all their literals contain the same variable
(and no constant), and, additionally, the term depth of all clauses is 0. Thus,
only at most (m + 1) · 3ns clauses can be generated in this case.

From the special form of the clauses in (Ren)∪(P)∪(N) it follows that if C(φ)
is satisfiable, then it is satisfied by a model with m points, namely {c1, . . . , cm}.
Moreover, C(φ) is satisfiable iff there exists a j ≤ m such that C(φj) (obtained
from C(φ) by only keeping the clauses containing cj in (N)) is satisfied by the one
point model {cj}. This is explained by the fact that D01 = ISP (2) (the quasi-
variety generated by the 2-element lattice), hence, every conditional equation is
true in D01 iff it is true in the 2-element lattice whose Priestley dual has one
element. Since D01 is closed under direct products, it follows [13] that D01 |= φ iff
there exists a j such that D01 |= ∀x1, . . .∀xk(

∧n
i=1 si1 = si2 → tj1 = tj2) iff there

exists a j such that 2 |= ∀x1, . . .∀xk(
∧n

i=1 si1 = si2 → tj1 = tj2) iff 2m |= φ.
Thus, a universal formula φ is true in D01 iff it is true in 2m, a distributive lattice
whose Priestley dual has m elements and is discretely ordered.

Example 2: Bounded Distributive Lattices with Lattice
(Anti)morphisms. The arguments in Theorem 4 can be adapted to bounded
distributive lattices endowed with (anti)morphisms. All clauses in (Ren)(0, 1) ∪
(Ren)(∧) ∪ (Ren)(∨) ∪ (Ren)(Lh) ∪ (Ren)(La) and all possible resolvents have
depth at most 1 and are either ground (and all literals contain the same con-
stant) or have exactly one variable (occurring in all literals). The number of all
function symbols is in this case nf (no Skolem functions occur). Therefore, at
most (m + 1) · 3ns·(nf+1) different clauses can be generated.

The fact that a universal formulae is valid in DLOΣ iff it is valid in every algebra
in DLOΣ whose dual is discretely ordered, opens the way for further results.
Proposition 1. The satisfiability problem for φ = ∀x1, . . . , xk(

∧n
i=1 si1 = si2 →∨m

j=1 tj1 = tj2) can be reduced to the satisfiability problem for the monadic class
with equality in polynomial time w.r.t. the length of φ.

Proof : (Sketch) The clauses in (Ren) ∪ (P) ∪ (N) can be brought to the form of
flat clauses considered in [3]. This can be done in the following steps:

1. Replace every occurrence of a literal of the form f(t1, . . . , tp) or ¬f(t1, . . . , tp)
with f(t1, . . . , tp) = >, resp. f(t1, . . . , tp) =⊥, f ∈ Jh ∪ · · · ∪ Ma.
Thus, the relation symbols in Jh∪Ja∪Mh∪Ma are interpreted as function
symbols of a different sort (sorts can be represented by unary predicates).

2. Use variable abstraction for the clauses in J = (Jh2) ∪ (Ja2) and M =
(Mh2) ∪ (Ma2), to bring them in the following form:

(J ′) {¬Pf(e1,...,ep)(x), y1 6=c
f(e1,...,ep)
1 (x), . . . , yp 6=c

f(e1,...,ep)
p (x), f(y1, . . . , yp, x)=>}

(M ′) {Pg(e1,...,ep)(x), y1 6=c
g(e1,...,ep)
1 (x), . . . , yp 6=c

g(e1,...,ep)
p (x), g(y1, . . . , yp, x)=>}
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The set of clauses obtained this way can be regarded as the result of skolemizing a
formula φ (in prenex form) in the monadic class with equality. The translation to
clause form, the procedure above, and length(φ) are polynomial w.r.t. length(φ).

2

Superposition with simplification is a decision procedure for the monadic
class with equality [3]. The reduction to the monadic class with equality also of-
fers decidability and complexity results for those subvarieties of DLOΣ in which
(i) the conditions in (Dom) are either (a) in CΣ or (b) expressible in the monadic
class with equality, and (ii) in case (b), only = and the predicate symbols cor-
responding to relations in Jh ∪ · · · ∪ Ma may occur. An upper bound for the
decision problem for the monadic class with equality is nexptime (cf. e.g. [3]).
This gives an upper bound for the complexity of the universal Horn theory of
such varieties.

3.5 Distributive p-Lattices and Heyting Algebras

Let Bω be the variety of distributive p-lattices, and let H be the variety of Hey-
ting algebras. From the Priestley duality for distributive p-lattices and Heyting
algebras and from Theorem 1 it follows that both Bω and H fulfill condition (K),
with K = RTS, i.e. (i) for every A ∈ Bω or H, D(A) ∈ RTS (if the topology
is ignored); and (ii) for every (X,≤) ∈ RTS, (H(X),∪,∩,¬, ∅, X) ∈ Bω and
(H(X),∪,∩,⇒,¬, ∅,X) ∈ H, where ¬ and ⇒ are as defined in Theorem 1(5).

Let φ = ∀x1, . . . , xk(
∧n

i=1 si1 = si2 → ∨m
j=1 tj1 = tj2). We reduce the

problem of deciding whether V |= φ to a problem solved in [8]. By the re-
sult of McKinsey mentioned before, V |= φ iff V |= φj for some j, where
φj = ∀x1 . . . xk(

∧n
i=1 si1 = si2 → tj1 = tj2). So the problem of deciding V |= φ

reduces to deciding V |= φj for j = 1, . . . , m. By Theorem 3, V |= φj iff the
set of clauses C(φj) is unsatisfiable, where C(φj) is obtained by adjoining to
(RT) ∪ (Her) ∪ (Ren)(∧) ∪ (Ren)(∨) ∪ (P) ∪ (N)j the clauses corresponding to
(Ren)(¬) if V = Bω, respectively to (Ren)(¬) and (Ren)(⇒) if V = H (where
(Ren)(¬) and (Ren)(⇒) are as in Theorem 3, and (N)j is (N) for cj only).

Let C�
S be the chaining calculus where � is a total, well-founded ordering on

ground literals compatible with the complexity measure cL defined in Section 3.4
(hence left-to-right admissible [2]), and, if a clause C contains a literal of the
form ¬s ≤ t with s � t, the selection function S selects one such literal.

Theorem 5. For every j = 1, . . . , m, C�
S (with eager condensation) decides the

unsatisfiability of C(φj).

Proof : (Sketch) The set C(φj) is in the class of clauses considered in [8]. There
it is proved that C�

S with eager condensation is a decision procedure for this
kind of clauses. (We use the fact that C(φj) has one constant; if m > 1, the
existence of m constants may cause problems in adapting Lemma 2 in [8].)
The complexity of the method is doubly exponential; a single-exponential space
complexity can be obtained by splitting the clauses into their variable-disjoint
regions and connecting them with the help of auxiliary monadic predicates as
pointed out in [8]. 2
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4 Experiments

We present some concrete, relatively simple examples which illustrate the type of
problems that can be solved with the method described in this paper (RTS), and
the way this method compares to a more standard approach, (DLat), that proves
that the conjunction of the negation of the formulae above and the axioms for
bounded distributive lattices with operators is unsatisfiable (in first-order logic
with equality). We considered the following formulae:

– φ1 = ∀a ∀b ∀c (a ≤ b → a ∨ (c ∧ b) = (a∨ c) ∧ b),
– φ2 = ∀a ∀b ∀c ((a ∧ b = c ∧ b &a ∨ b = c ∨ b) → a = c),
– φ3 = ∀a ∀b ∀c ((k2(a) ≤ a ∨ k(a) & k3(b) = a ∨ k(a) & k2(a) ≤ k(a) ∨ k(b) ∨

k(c)& k3(b) ≤ k(a) ∨ k(b) ∨ k(c)) → k2(a ∨ k(b)) ≤ (a ∧ k(b ∧ c)) ∨ k(a)), k ∈ La,
– φ4 = ∀a ∀b f(k(a∨ b)) = f(k(a)) ∨ f(k(b)), where f ∈ Ja and k ∈ La,
– φ5 = ∀a ∀b ∀c ∀d ((f(a ∨ b, d) = f(c ∨ b, d)& f(a, d) ∧ f(b, d) = f(c, d) ∧ f(b, d)) →

f(a, d) = f(c, d)), where f ∈ Jh.

The translation to clause form in RTS used the results in Theorem 2 and
Theorem 3. According to the proof of Theorem 4, all clauses containing ≤ were
ignored. In addition, to reduce the number of clauses generated, an inequality
a ≤ b was directly replaced by ∀x(Pa(x) → Pb(x)). In DLat we experimented
with various axioms for distributivity, namely (j) joins over meets, (m) meets
over joins, and (b) both. The unsatisfiability of the resulting sets of clauses was
checked by SPASS [23]. In both cases we indicate the number of input and derived
clauses, memory and time needed by SPASS V0.92 (on a 200 MHz Pentium Pro).

RTS DLat
Formula Variety # Cl # Cl Mem Time # Cl # Cl Mem Time

(in) (der) (KB) (ms) (in) (der) (KB) (ms)

j 13 1 382 20
φ1 D01 15 19 436 30 m 13 354 590 180

b 14 465 633 230

j 13 2 383 30
φ2 D01 18 31 421 20 m 14 3347 2388 4770

b 15 5533 3609 11990

j 20 4042 3532 10860
φ3 DLOLa 43 28 448 30 m 20 ∞

b 21 ∞
j 18 1 386 20

φ4 DLOLa,Ja 23 44 450 80 m 18 1 386 20
b 19 0 385 10

j 18 5703 4922 16150
φ5 DLOJh 38 72 470 90 m 18 5341 4541 15100

b 19 ∞
#Cl (in) resp. (der) represents the number of input, resp. derived clauses, and
∞ indicates the fact that execution did not terminate after more than 3 min.

The results above suggest that, except for very regular and simple formulae,
or for purely equational formulae, the first method, based on results presented
in this paper, behaves better than the second. In the future we plan to analyze
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more complex examples. We would be also interested to compare the theoretical
complexity of our method with that of other methods.

5 Conclusions and Plans for Future Work

In this paper we presented a resolution-based method for automated theorem
proving in the universal theory of certain varieties of distributive lattices with
operators. The method is based on extensions of the Priestley representation
theorem to distributive lattices with operators. Based on it, we obtained decid-
ability and complexity results (upper bounds) for the universal word problem
of D01, DLOΣ, and for the variety of distributive p-algebras and that of Hey-
ting algebras. The complexity results agree with those established for (boolean)
Tarskian set constraints without functions in [12], but the methods we use are
different. The fact that the same type of structures are used as relational models
for distributive lattices, distributive p-lattices and Heyting algebras (the only
difference is the signature) shows that the restriction of the universal theory of
Heyting algebras (or distributive p-lattices) to the signature {0, 1,∨,∧} coincides
with the universal theory of distributive lattices. This remark is consistent with
the remarks in [21] on the similarity of the cut rules necessary for the calculus
for distributive lattices developed there and the cut rules in intuitionistic logic.

By analyzing the possible inferences in a suitably chosen ordered chaining
calculus, we obtained a better understanding of the structure of such varieties.

These results seem to open a promising field of research that we would like
to explore in future work. We expect to be able to use similar ideas for other
varieties of distributive lattices or Heyting algebras with operators. One problem
to be solved is to find conditions for such varieties that would give decidability
results. It would also be important to find conditions which, given a variety V of
distributive lattices with operators, ensure that a class K of (first-order definable)
relational structures can be found, such that condition (K) is satisfied.
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