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Abstract

Shape analysis deals with the synthesis of invariants for programs manipulating
heap-allocated data structures. Explicit shape analysis algorithms do not scale very
well. This work proposes a framework for symbolic shape analysis that addresses
this problem. Our contribution is a framework that allows to abstract programs
with heap-allocated data symbolically by Boolean programs. For this purpose, we
combine abstraction techniques from shape analysis with ideas from predicate ab-
straction. Our framework is parameterized by a set of abstraction predicates. We
propose a class of predicates that can be used to analyze reachability properties for
linked data structures. This class may potentially be used for automated abstrac-
tion refinement.
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Chapter 1

Introduction

Shape analysis deals with programs manipulating heap allocated data structures.
Explicit shape analysis algorithms do not scale very well. One direction to ad-
dress scalability is to use symbolic methods. This work proposes a framework for
symbolic shape analysis.

1.1 Motivation

Invariants synthesized by program analysis are over-approximations of the set of
reachable program states. They are useful in a variety of applications, ranging from
instruction scheduling and code optimization in compilers to formal verification.

Most program analysis problems for infinite state systems are undecidable.
Therefore, one needs techniques for approximation. Abstract interpretation [7] is a
framework that formalizes approximation for program analysis. In order to com-
pute invariants, the program is interpreted over an abstract domain of abstract
states. The creative act in applying abstract interpretation lies in the identification
of a suitable abstract domain.

Shape analysis aims for the synthesis of invariants for programs manipulating
heap-allocated data structures. In order to model the state of a program with heap-
allocated data, one has to model the state of the heap. The heap can be represented
as a graph, where the nodes correspond to allocated objects and edge relations that
reflect how objects are connected via pointers. Each pointer field of a stored data
structure corresponds to one edge relation of the graph. Since a priori there is no
bound on the number of allocated heap objects, these graphs can be arbitrary large.
Consequently, the number of possible program states is unbounded and therefore
we need abstraction.

Abstract domains used for shape analysis are based on several variants of shape
graphs [17, 5, 29, 26, 27]. The common idea of these abstractions is to partition the
set of nodes in a concrete graph into a finite set of equivalence classes. These equiv-
alence classes are represented by abstract nodes in a shape graph. An equivalence
class contains all nodes that are indistinguishable under a particular set of shape
properties, e.g. expressing that a node is pointed to by a program variable, or that
it is reachable from a program variable by following pointer fields in a data struc-
ture. In [27] a parametric framework for shape analysis is proposed that identifies
shape properties as unary abstraction predicates that denote sets of nodes.

Although the use of abstract domains based on shape graphs gives approxi-
mating algorithms, these algorithms have high complexity, because the abstract
domain is though finite, still very large. If one uses an explicit representation of
abstract states, such as shape graphs, the analysis does not scale very well. One
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CHAPTER 1. Introduction

way to address this problem is to use symbolic methods.
In the following, we discuss one symbolic method in more details. Predicate

abstraction (see e.g. [12]) is a technique used to symbolically abstract infinite state
systems. It is successfully applied in software model checkers such as SLAM [3]
and BLAST [13]. The abstract domain is given by a finite class of formulas built
from a chosen set of abstraction predicates. These abstraction predicates denote
sets of program states. The program is abstracted symbolically by a Boolean pro-
gram whose program variables correspond to the abstraction predicates [1]. One
of the merits of predicate abstraction is that the analysis of the obtained abstract
Boolean program can be implemented efficiently using a symbolic representation
of abstract states, e.g. based on BDDs.

The computed invariants can be used to verify whether a given property is
satisfied by the program. If the invariants are too weak to entail the target prop-
erty, the abstract domain has to be refined, in order to obtain stronger invariants.
Abstraction refinement is a key technology for fully automated formal verification.

For abstract domains that are parameterized by a set of abstraction predicates,
refinement amounts to adding additional abstraction predicates. For predicate ab-
straction there are successful automated abstraction refinement procedures; see
e.g. [6, 14, 2]. However, in shape analysis there are, so far, only heuristics that help
to find additional predicates; see e.g. instrumentation predicates proposed in [27].
The question whether these predicates can be derived automatically is still open.

This work proposes a framework for symbolic shape analysis. We give a sym-
bolic abstract domain that allows to handle abstract programs symbolically. The
framework enables the integration of automated abstraction refinement procedures.
However, contrary to predicate abstraction, the abstract domain is parameterized
by unary predicates that denote sets of nodes in the abstracted graphs. This con-
forms to the abstract domains for shape analysis that are based on shape graphs.

1.2 Contributions
Our contribution is a framework for symbolic shape analysis:

• We propose a symbolic abstract domain that allows to represent abstract pro-
grams symbolically. We call the obtained abstract programs Boolean heap pro-
grams.

• The construction of Boolean heap programs requires the identification of a
suitable set of unary abstraction predicates. We propose modal node predicates
that can be used for the analysis of reachability properties for linked data
structures.

• We give preliminary results that may be useful for the development of ab-
straction refinement procedures for properties expressed by modal node pred-
icates.

In the following, we give a more detailed discussion of these contributions.

Boolean Heap Programs. We propose a symbolic abstract domain for shape anal-
ysis. This abstract domain is parameterized by a set of unary abstraction predi-
cates. In analogy to predicate abstraction, the concrete program is abstracted by
a Boolean program. We call these abstract programs Boolean heap programs. A
Boolean heap program is formally characterized in terms of an over-approximation
of the best abstract post operator on the chosen abstract domain. This guarantees
soundness of the resulting analysis. In addition, we examine under which condi-
tions a Boolean heap program coincides with the best abstract post operator.
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CHAPTER 1. Introduction

Modal Node Predicates. We identify the class of modal node predicates, which are
unary abstraction predicates that express reachability properties for linked data
structures. We give a first result regarding decidability of the satisfiability problem
for modal node predicates. Moreover, we show that modal node predicates are
closed under weakest liberal preconditions. These results may be useful for the
development of an abstraction refinement procedure for properties expressed by
modal node predicates.

1.3 Outline
The remainder of the thesis is organized as follows:

Chapter 2 gives the preliminaries. We first briefly introduce the basic notions
of abstract interpretation (2.1). Afterwards, we revise the definition of first-order
logic with transitive closure (2.2) which is then used to formally describe the con-
crete semantics of programs manipulating heap allocated data structures (2.3).
This gives the formal foundation of our abstract interpretation based symbolic
shape analysis.

In Chapter 3, we develop our abstraction framework. We give a symbolic ab-
stract domain that is parameterized by a set of unary abstraction predicates (3.1).
Thereafter, we show how the best abstract post operator on this abstract domain is
approximated by an abstract post operator that corresponds to a Boolean program
(3.2.1-3.2.4). Moreover, we analyze under which conditions the Boolean program
coincides with the best abstract post (3.2.5). Finally, we propose a method that can
be applied, in order to gain back precision in the case that the Boolean program
gives imprecise results with respect to the best abstract post (3.2.6).

Chapter 4 introduces modal node predicates (4.1,4.2), a class of unary predi-
cates that can be used to instantiate the framework presented in Chapter 3. We
give first results regarding decidability of the satisfiability problem (4.3) and show
that modal node predicates are closed under weakest liberal preconditions (4.4).

In Chapter 5 the developed framework is illustrated in a case study. We verify a
program that reverses singly-linked lists. The analysis uses modal node predicates.
The steps of the corresponding fixed point iteration are given in Appendix B.

Chapter 6 compares the presented framework to related work. We discuss
shape analysis algorithms that are based on shape graph abstraction (6.1), con-
sider other approaches that apply symbolic methods in shape analysis (6.2), and
discuss recent results on decidable logics for shape analysis (6.3).

In Chapter 7 we conclude and discuss open problems for future work.
In Appendix A one can find the proofs of all statements made in this work.
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Chapter 2

Preliminaries

This chapter gives a brief introduction into abstract interpretation based on Galois
connections. Abstract interpretation is a formal, semantics-based framework for
the systematic construction of sound static program analyses. Our approach pre-
sented in the later chapters conforms to this framework. We further revise the def-
inition of first-order logic with transitive closure. This logic allows one to formally
define the concrete representation of program stores and serves as a specification
language for the properties we want to analyze.

2.1 Abstract Interpretation
The goal of a program analysis is to collect information over a program’s runtime
behavior for all possible input data. Running a program on all its inputs is usu-
ally either impossible, because the number of input values is infinite, or infeasible,
because it is finite, but too large to be handled by exhaustive testing. Static analy-
sis infers information over all possible program executions without executing the
program explicitly.

Since nearly every interesting problem concerning a program’s runtime behav-
ior is undecidable, the use of approximation is inevitable to ensure termination of
the analysis. The goal is thus to develop incomplete, but automatic methods that
produce reliable results. Abstract interpretation gives a formal, semantics-based
framework for the systematic construction of such approximations.

2.1.1 Transition Systems and Transformer Functions
In order to be able to formally reason about a system, it is crucial to have a for-
mal semantics of the system behavior. Transition systems offer the most simple
and unified approach to describe the semantics of a broad range of systems, in
particular (concurrent) imperative programs. The common semantic properties of
transition systems are well understood. In the following, we introduce the basic
notions and summarize some of the more prominent properties that will become
useful, later on. A detailed discussion of transition systems, transformer functions
and their properties can be found for instance in [28].

Definition 2.1.1 (Transition System). A transition system S is a tuple 〈State, init, R〉
with:

• State: the (possibly infinite) set of states of the system,

• init ⊆ State: the set of initial states,
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• R ⊆ State × State: the transition relation.

Given a transition system S, the properties of the transition relation R can be
elegantly described in terms of the associated transformer functions. The post op-
erator maps sets of states to the set of all successor states under R, the pre operator
maps a set of states to the set of all predecessors under R, and the dual of the pre
operator, maps a set of states to its weakest liberal precondition (wlp).

Definition 2.1.2 (Transformer Functions).

post
def
= λS . { s′ ∈ State | ∃s ∈ S : (s, s′) ∈ R }

pre
def
= λS . { s ∈ State | ∃s′ ∈ S : (s, s′) ∈ R }

p̃re
def
= λS . { s ∈ State | ∀s ∈ State : (s, s′) ∈ R⇒ s′ ∈ S }

The operator pre is not much of interest in our setting. We concentrate on post

and p̃re and summarize some of their well-known properties. The following list is
not to be meant complete, but it suffices for our further discussion.

Proposition 2.1.3. Given a transition system S = 〈State, init, R〉, the following proper-
ties hold:

(i) post distributes over joins,

(ii) p̃re distributes over meets,

(iii) post and p̃re are monotone,

(iv) post ◦ p̃re is reductive: ∀S ⊆ State : post(p̃re(S)) ⊆ S,

(v) p̃re ◦ post is extensive: ∀S ⊆ State : S ⊆ p̃re(post(S)),

(vi) ∀S, S′ ⊆ State : post(S) ⊆ S′ ⇐⇒ S ⊆ p̃re(S′).

All properties can be easily proven just using the definitions of post and p̃re,
respectively. In particular, (iii) follows from properties (i) and (ii), and (vi) follows
from properties (iii), (iv), and (v).

Proposition 2.1.4. For a transition system S the following is equivalent:

(i) R is total and deterministic,

(ii) p̃re is a homomorphism on the power set Boolean algebra of State.

2.1.2 State Invariants and Reachability
A state invariant expresses a temporal property of a transition system. The expres-
siveness of state invariants is restricted to a particular subclass of temporal prop-
erties, so called safety properties. Safety properties are properties that guarantee the
absence of abnormal system behavior in the sense that there is no possible execu-
tion that leads to a particular set of error states. We now formally investigate the
connection between state invariants and reachability of system states.

Given a transition system S with

S = 〈State, init, R〉

the post operator post is extended to the operator F , as follows:

F ∈ 2State → 2State

F
def
= λS . init ∪ post(S).

The set of reachable system states is now defined in terms of the operator F .
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Definition 2.1.5 (Reachable States). The set of reachable system states reach is the least
fixed point of post under init, i.e.:

reach
def
= lfp(F ).

The monotonicity of post guarantees the existence of the least fixed point of the
operator F , thus the set of reachable states is well-defined.

Definition 2.1.6 (State Invariant). A state invariant I ⊆ State of transition system
S is an over-approximation of the reachable states: reach ⊆ I . A state invariant I is called
inductive, if it is closed under post: post(I) ⊆ I .

Proposition 2.1.7. I ⊆ State is an inductive state invariant if and only if it is closed
under the operator F , i.e. F (I) ⊆ I .

Since any inductive state invariant is closed under the operator F , algorithms
that synthesize state invariants rely on the iterative construction of the least fixed
point of F , or to be more precise, the construction of approximations of lfp(F ).

2.1.3 Abstract Interpretation and Galois Connections
The problem whether a given set of program states is reachable in an infinite state
systems is in general undecidable. As a consequence, the construction of lfp(F )
might not terminate. Even for systems with a finite state space it might be infeasi-
ble to construct lfp(F ), because the state space is still to large to be managed by an
exhaustive exploration of all reachable states. Hence, there is a need for approxi-
mation.

The idea of abstract interpretation is to come up with an abstraction of a con-
crete system S that mimics the behavior of S. This abstraction has to be safe in the
sense that every state invariant of the abstraction can be mapped to a state invari-
ant of the concrete system. Abstract interpretation based on Galois connections
[7, 8] is a formal framework for the construction of such abstractions.

The basic idea of this approach is that, instead of constructing lfp(F ) on the
concrete (complete) lattice 〈2State ,⊆, ∅,State,∪,∩〉, the least fixed point of an ab-
straction of F is constructed on some (complete) abstract lattice 〈D#,v,⊥,>,t,u〉
of finite hight. The abstraction of F is defined in terms of abstraction function
α, mapping sets of states to elements in the abstract domain, and concretisation
function γ, mapping abstract values back to sets of states:

α ∈ 2State → D#

γ ∈ D# → 2State .

The intuitive notion of a safe abstraction can now be formalized in terms of α
and γ. The abstraction is safe, if every set of states is over-approximated by the
consecutive application of α and γ:

∀S ∈ 2State : S ⊆ γ(α(S)).

Finding some pair of safe abstraction and concretisation function is usually not
a hard problem. However, we are not interested in any safe abstraction, we are
interested in the best possible safe abstraction that can be defined for the chosen
abstract lattice. The notion of a Galois connection formalizes this requirement.

Definition 2.1.8 (Galois Connection). Given two partially ordered sets 〈D,⊆〉 and
〈D#,v〉, the pair 〈α, γ〉 is called a Galois connection, or a pair of adjoint functions iff:

∀c ∈ D, a ∈ D# : α(c) v a ⇐⇒ c ⊆ γ(a).
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Note that, without mentioning it explicitly, we have already seen an example
for a Galois connection. As mentioned in Proposition 2.3.7, the operators post and
p̃re form a Galois connection on the power set lattice of State.

There are several equivalent characterizations of Galois connections. The fol-
lowing proposition captures some of them.

Proposition 2.1.9. Let 〈D,⊆,⊥,>,∪,∩〉 and 〈D#,v,⊥#,>#,t,u〉 be two complete
lattices. For two functions α ∈ D → D# and γ ∈ D# → D the following is equivalent:

(i) 〈α, γ〉 forms a Galois connection,

(ii) the following two conditions hold:

• γ is a complete meet-morphism, i.e.
∀S# ⊆ D# : γ(

⊔
S#) =

⋃
{ γ(a) | a ∈ S# } and γ(>#) = >

• α = λ c ∈ D .
d
{ a ∈ D# | c ⊆ γ(a) },

(iii) the following two conditions hold:

• α is a complete join-morphism, i.e.
∀S ⊆ D : α(

⋂
S) =

d
{α(c) | c ∈ S } and α(⊥) = ⊥#

• γ = λ a ∈ D# .
⋃
{ c ∈ D | α(c) v a },

(iv) the following three conditions hold:

• α and γ are monotone,
• α ◦ γ is reductive: ∀a ∈ D# : α(γ(a)) v a,
• γ ◦ α is extensive: ∀c ∈ D : c ⊆ γ(α(c)).

For proof see [8].

The pair of abstraction and concretisation function 〈α, γ〉 defines the best pos-
sible abstraction for D and D# if and only if it forms a Galois connection. This is
due to the fact that given that α and γ form a Galois connection, α maps a set of
states S to the smallest abstract value that over-approximates S under γ. If u is the
meet-operation on the abstract lattice, according to Proposition 2.1.9, we have:

α(S) =
l

{ a ∈ D# | S ⊆ γ(a) }.

We are now able to characterize the most precise abstraction F# of the operator
F . It is given by the composition of α, F , and γ:

F# ∈ D# → D#

F# = α ◦ F ◦ γ.

The monotonicity of F is preserved by the abstraction. This gives us a continu-
ous operator F# on the finite-hight abstract lattice. The computation of lfp(F#) is
based on Kleene’s fixed point characterization for continuous operators:

lfp(F#) =
⊔

n∈
�

F#n(⊥).

We increasingly iterate F#, starting from the bottom element ⊥ of the abstract do-
main, until we reach the least fixed point. The absence of infinite ascending chains
in the abstract domain ensures termination.
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2.2 First-Order Logic with Transitive Closure

In order to describe the memory state (program store) of a program manipulating
heap-allocated data structures, we need an appropriate memory model, i.e. we
have to formalize program stores in terms of mathematical objects.

We follow the setting in [27] and represent concrete program stores using first-
order logical structures. First-order logic also serves as a specification language
for the properties we want to analyze. However, it is known that first-order logic
itself is too weak to express various interesting properties of graphs. For instance
reachability or connectivity cannot be expressed. Extending first-order logic with
transitive closure is one possible way to overcome this weakness. The resulting
logic is strong enough to express the properties we are interested in and in addi-
tion allows us to relate the formal concrete semantics of program stores and their
symbolic abstraction in a concise way.

We assume that V is a countable infinite set of variables with typical elements
v, v′ ∈ V . First-order formulas are defined with respect to a given signature of
predicate and function symbols. Since functions can be axiomatized in first-order
logic via predicates, we only consider a signature of predicate symbols.

Definition 2.2.1 (Syntax of FOTC). Given a signature Σ of predicate symbols p with
arity n ≥ 0 (written p/n), the set FOTC[Σ] of first-order formulas with transitive closure
over Σ is defined as follows:

ϕ, ψ ∈ FOTC[Σ] ::= true | false

| v≈ v′

| p(v1, . . . , vn) p/n ∈ Σ

| ¬ϕ | ϕ∨ψ

| ∃ v.ϕ

| (TC v1, v2.ϕ)(v, v′) (transitive closure)

We introduce the usual syntactic abbreviations for conjunction ∧, implication
→, equivalence ↔, and universal quantification ∀ (cf. Figure 2.1). Additionally, for
a formula ϕ(v, v′), we introduce the abbreviations ϕ+(v, v′) for the transitive clo-
sure, and ϕ∗(v, v′) for the reflexive transitive closure of ϕ. Parenthesis are omitted
due to the following operator precedence �p:

¬ �p ∧ �p ∨ �p → �p ↔ �p TC �p ∀ �p ∃.

For a quantifier Q ∈ {∃, ∀} we abbreviate Qv1. . . . Qvn. ϕ by Qv1, . . . , vn. ϕ.
For Q ∈ {∃, ∀,TC} and formula Qv1, . . . , vn. ϕ, we call ϕ the scope of Qv1, . . . , vn.
An occurrence of a variable x is bound if it is inside the scope of Qv1, . . . , vn and
x ∈ {v1, . . . , vn}. Other occurrences are called free. A formula is closed if no
free variables occur. We write ϕ(v1, . . . , vn) to indicate that at least the variables
v1, . . . , vn occur free in the formula ϕ.

The semantics of formulas is given in the usual way, i.e. formulas are inter-
preted over first-order logical structures.

Definition 2.2.2 (Logical Structure). A logical structure over Σ is a tuple S = 〈U, ι〉,
where

• U is a nonempty set, the universe of S, and

9
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ϕ∧ψ
def
= ¬(¬ϕ∨¬ψ) (conjunction)

ϕ→ ψ
def
= ¬ϕ∨ψ (implication)

ϕ↔ ψ
def
= (ϕ → ψ)∧(ψ → ϕ) (equivalence)

∀v.ϕ
def
= ¬∃ v.¬ϕ (universal quantification)

ϕ+(v, v′)
def
= (TC v, v′.ϕ(v, v′))(v, v′) (transitive closure of ϕ(v, v′))

ϕ∗(v, v′)
def
= ϕ+(v, v′)∨ v≈ v′ (reflexive, transitive closure of ϕ(v, v′))

Figure 2.1: Additional syntactic abbreviations

• ι is the interpretation function for predicate symbols in Σ, i.e. for an n-ary predi-
cate symbol p/n ∈ Σ, the function ι p ∈ Un →

�
assigns truth-values to n-tuples

over U .

We write US for the universe of S, if it is not given an explicit name. The set Σ-Struct
denotes all logical structures over Σ.

Definition 2.2.3 (Semantics of FOTC). Let S = 〈U, ι〉 be a logical structure and β ∈
V → U an assignment that maps variables to elements of the universe of S. The inter-
pretation function J·KS ∈ FOTC[Σ] → (V → U) →

�
, assigning truth-values to FOTC

formulas, is inductively defined as follows:

JfalseKS(β) = 0

JtrueKS(β) = 1

Jv1 ≈ v2KS(β) = ifβ v1 = β v2 then 1 else 0

Jp(v1, . . . , vn)KS(β) = ι p (β v1, . . . , β vn)

J¬ϕKS(β) = 1 − JϕKS(β)

Jϕ∨ψKS(β) = max{JϕKS(β), JψKS(β)}

J∃x.ϕKS(β) = max{ JϕKS(β[x 7→ u]) | u ∈ U }

J(TC v1, v2.ϕ)(v, v′)KS(β) = 1 ⇐⇒ there exists u1, . . . , un ∈ U s.t.
u1 = β v, un = β v′ and
min

1≤i<n
{JϕKS(β[v1 7→ ui, v2 7→ ui+1])} = 1

We introduce the following notions of validity and entailment:
S satisfies ϕ under β: S, β |= ϕ

def
⇐⇒ JϕKS(β) = 1.

ϕ entails ψ: ϕ |= ψ
def
⇐⇒ S, β |= ϕ implies S, β |= Ψ, for all S and β.

ϕ is valid in S (S is a model of ϕ): S |= ϕ
def
⇐⇒ S, β |= ϕ, for all β ∈ V → U .

The set of all models of ϕ is denoted by:

Mod(ϕ)
def
= {S ∈ Σ-Struct | S |= ϕ }.

The set of all finite models of ϕ is denoted by:

Modfin (ϕ)
def
= {S ∈ Σ-Struct | S |= ϕ and US is finite }.

10
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typedef struct node {
struct node *n;
int data;

} *List;

Figure 2.2: A simple type definition for singly-linked lists in C

2.3 System Description

2.3.1 Program Stores
In the analysis of programs without dynamic memory allocation a program store
is described as a valuation of program variables to appropriate data objects, e.g.
integers. That means, it can be modeled as an assignment from first-order variables
to elements of the appropriate data domain.

In order to be able to represent the state of the heap, we need more than just
first-order variable assignments. The state of the heap can be modeled as a graph.
The nodes of the graph represent allocated heap objects and edge relations reflect
how objects are connected via pointers. For each pointer-valued field in a data
structure the graph has one corresponding edge relation. Graph-like structures
can be equivalently described as logical structures, where edge relations are rep-
resented as binary predicates. This logical characterization of program stores con-
forms to the setting in [27].

In order to represent program stores that contain a particular data structure
type, we consider a signature of predicate symbols Σ consisting of:

• a unary predicate symbol x for each pointer-valued program variable x,

• a unary predicate symbol null for NULL,

• and a binary predicate symbol n for each pointer-valued structure field n.

In our concrete model we abstract away all non-pointer-valued program vari-
ables or structure fields. In addition, we restrict ourselves to stores that may just
contain one single data structure type at any time. As an example, consider the
List data type given in Figure 2.2. The signature for program stores containing
singly-linked lists that are accessible by a program variable x is given by:

ΣList = {x/1,null/1,next/2}.

A program store S is given by a logical structure S = 〈U, ι〉 over Σ. U represents
the finite set of allocated instances of the stored data structure type. We call the
elements of U nodes. The value NULL is represented as a node of its own, we added
the unary predicate null to the signature, in order to distinguish NULL from all
other nodes. The interpretation function ι interprets the predicates according to
the program variables and pointer-valued data structure fields.

Not every logical structure represents a store. The number of objects that is
allocated at a particular point in the program execution is always finite. Thus, we
are only interested in finite structures. However, there are additional constraints
that have to be satisfied. Since any structure field or program variable can only
point to exactly one other node, the binary predicates should denote functional
relations and the unary predicates should represent singleton sets. All necessary
constraints can be modeled by an integrity formula [30]. The actual choice of this

11
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US {u1, u2, u3}

ιS

unary predicates binary predicates

u1 u2 u3

x 1 0 0
null 0 0 1

n u1 u2 u3

u1 0 1 0
u2 0 0 1
u3 0 0 0

u1 u2 u3

null

x
n n

Figure 2.3: A store S containing a singly linked list accessible by variable x.

formula depends on the concrete model of program stores one has in mind. The
minimal requirements on stores that we will refer to in this work are modeled by
the following integrity formula F :

F
def
=

∧

x/1∈Σ

∃ v.x(v)∧ ∀v′.x(v′) → v≈ v′

∧
∧

n/2∈Σ

∀v.¬null(v) → ∃ v′.n(v, v′)∧∀v′′.n(v, v′′) → v′ ≈ v′′

∧∀v, v′.n(v, v′) → ¬null(v).

Once we have chosen an appropriate integrity formula, we can define the set of all
program stores Store.

Definition 2.3.1 (Program Stores). Let F be an integrity formula. The set of program
stores Store for F is the set of all finite models of F :

Store
def
= Modfin (F ).

In order to visualize logical structures we adopt the graphical representation
used in [27]. The elements of U are represented as nodes in a graph. Binary pred-
icates are represented as labeled edges and unary predicates as labeled arrows
pointing to the nodes they are satisfied by. Figure 2.3 shows a program store both
represented as a logical structure over ΣList and using the graphical notation.

2.3.2 Program Semantics
In order to syntactically restrict the class of pointer programs that we have to con-
sider, we permit nested dereferencing of program variables and structure fields.
Any program can be translated into this restricted class, possibly by introducing
fresh temporary program variables. This restriction leaves us with five kinds of
atomic commands:

• commands assigning program variables or NULL to program variables:
x = t, where t is a program variable, or NULL,

• commands assigning field values to program variables:
x = y->n,

12
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• commands assigning program variables or NULL to structure fields:
x->n = t, where t is a program variable, or NULL,

• allocation of a single fresh memory cell:
x = malloc(),

• deallocation of a memory cell:
free(x).

We explain the semantics of programs in terms of program stores, rather then
program states. A program state can be considered as a tuple consisting of pro-
gram store and program counter, hence it is always clear how to extend from stores
to states.

Let c be some atomic command. The semantics of c is given by the transition
relation c

−→ on stores. In [27] the transition relation is characterized in terms of
predicate-update formulas. There is a relationship between predicate-update formu-
las and weakest liberal preconditions (wlp) that justifies this approach. In the follow-
ing, we want to further investigate on this relationship.

The post and wlp operator on sets of stores are standard as follows:

postc
def
= λM . {S′ ∈ Store | ∃S ∈ M : S

c
−→ S′ }

p̃rec
def
= λM . {S ∈ Store | ∀S′ ∈ Store : S

c
−→ S′ ⇒ S′ ∈ M}.

Since we will represent program stores symbolically using formulas, it is crucial to
be able to handle the symbolic execution of commands. The effect of some com-
mand on the stores denoted by some formula should be expressible in terms of
a predicate transformer on formulas. This predicate transformer should be com-
putable as a purely syntactic operation, such that the denoted set of stores must
not be considered explicitly.

In the setting of programs without heap-allocated data, where a store is rep-
resented as a first-order valuation of program variables, this causes no problems,
because the predicate transformers are again expressible in first-order logic. Prob-
lems arise from the fact that, in our setting of programs with heap allocated data,
stores are represented as first-order structures over a signature containing binary
predicates. However, binary predicates correspond to second-order variables. Thus,
it is in general not guaranteed that postc or p̃rec are expressible as predicate trans-
formers in first-order logic.

As we will see, the fact that all atomic commands are deterministic at least al-
lows us to express the operator p̃rec as a purely syntactic operation on formulas.
Although postc is still not first-order expressible, due to the fact that postc and p̃rec

form a Galois connection on the power set lattice of stores, it suffices that one of
the two adjoints can be expressed.

At first, we do not want to consider allocation and deallocation of heap cells.
Since the remaining commands may only change pointer values, they simply cor-
respond to updates of the interpretation of predicate symbols. The universe is
unaffected by all these commands. Hence, we can fix a universe U that is shared
by all logical structures that we consider for the rest of this section.

For a given logical structure S, a formula ϕ with n free variables denotes an
n-ary relation over the universe U . We use an isomorphic representation and con-
sider the denotation JϕK of some formula ϕ to be the set of all pairs of stores S and
assignments β that satisfy ϕ:

JϕK def
= { (S, β) ∈ Store × (V → U) | S, β |= ϕ }.

13



CHAPTER 2. Preliminaries

c p(v1, . . . , vn) p′c(v1, . . . , vn)

x = NULL x(v) null(v)
x = y x(v) y(v)
x = y->n x(v) ∃ v′.y(v′)∧ n(v′, v)
x->n = NULL n(v1, v2) n(v, v′)∧¬x(v)∨ x(v′)∧ null(v′)
x->n = y n(v, v′) n(v, v′)∧¬x(v)∨ x(v)∧ y(v′)

Table 2.1: Predicate-update formulas.

In order to give a predicate transformer on arbitrary FOTC formulas we have to
extend the transformer functions postc and p̃rec to functions on subsets of extended
stores:

ExtStore
def
= Store × (V → U).

We define the extended operators ext-postc and ext-p̃rec simply by keeping the sec-
ond component of an extended store untouched:

ext-postc ∈ 2ExtStore → 2ExtStore

ext-postc
def
= λM . { (S′, β) ∈ ExtStore | ∃S ∈ Store : S

c
−→ S′ ∧ (S, β) ∈ M}

ext-p̃rec ∈ 2ExtStore → 2ExtStore

ext-p̃rec
def
= λM . { (S, β) ∈ ExtStore | ∀S ′ ∈ Store : S

c
−→ S′ ⇒ (S′, β) ∈ M}.

Since p̃rec and postc are just lifted from stores to extended stores, their characteristic
properties are preserved. In particular, the following propositions hold.

Proposition 2.3.2. The operators ext-postc and ext-p̃rec form a Galois connection on the
power set lattice of extended stores.

Proposition 2.3.3. The relation c
−→ is total and deterministic if and only if ext-p̃rec is a

homomorphism on the power set Boolean algebra of extended stores.

If the transition relation for atomic command c is total and deterministic then
we interpret postc as a total function on stores and ext-postc as a total function on
extended stores, respectively.

The predicate-update formulas that are used in [27] to describe the semantics of
commands can now be formally defined in terms of the extended weakest liberal
precondition ext-p̃rec.

Definition 2.3.4 (Predicate-Update Formula). A predicate-update formula p′c for
n-ary predicate symbol p and atomic command c is an FOTC formula whose denotation
corresponds to the extended wlp of the denotation of p:

ext-p̃rec(Jp(v1, . . . , vn)K) = Jp′c(v1, . . . , vn)K.

Table 2.1 shows the predicate-update formulas for all atomic commands that
we considered so far. Predicate symbols whose interpretation does not change
under some command, i.e. where the predicate-update formula corresponds to
the predicate symbol itself, are omitted. It is easy to see that these formulas indeed
capture the semantics of the appropriate commands.
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Proposition 2.3.5. If the relation c
−→ is total and deterministic and if for every predicate

symbol p there exists a predicate-update formula p′c then the extended wlp of an FOTC for-
mula ϕ can be computed by substituting syntactically all occurrences of predicate symbols
in ϕ with their predicate-update formulas:

ext-p̃rec(JϕK) = Jϕ[p′c(v1, . . . , vn)/p(v1, . . . , vn)]K.

Proposition 2.3.5 gives rise to define weakest liberal preconditions as a predi-
cate transformer on formulas that can be computed purely syntactically.

Definition 2.3.6 (Weakest Liberal Preconditions of Formulas). The weakest liberal
precondition of an FOTC formula ϕ for command c, written wlpc(ϕ), is obtained by sub-
stituting syntactically every occurrence of a predicate symbol p(v1, . . . , vn) in ϕ with its
predicate-update formula p′c(v1, . . . , vn):

wlpc
def
= λϕ ∈ FOTC . ϕ[p′c(v1, . . . , vn)/p(v1, . . . , vn)].

The following proposition relates the symbolic weakest liberal precondition on
formulas with the post operator on stores.

Proposition 2.3.7. If c
−→ is total and deterministic then for a store S, FOTC formula ϕ

and assignment β, we have:

S, β |= wlpc(ϕ) ⇐⇒ postc(S), β |= ϕ.

In the setting of pointer programs, all atomic commands are deterministic. Un-
fortunately, in general not all of them are total. Dereferencing pointers to NULL is a
typical operation that is not permitted, i.e. in that case the post operator can not be
defined as a total function on stores. This problem can be solved by applying the
standard trick of introducing additional error states that turn the partial functional
relation c

−→ on program stores into a total functional relation on program states.

Handling allocation and deallocation is a bit more tricky. As an example, con-
sider the command c : x = malloc(). It is not possible to give a predicate-update
formula for predicate symbol x, since the node on which program variable x points
to after execution of c does not exist in the predecessor store. One possible solution
is to add the new node and temporarily introduce a predicate symbol that distin-
guishes the added node from all others. This temporary predicate symbol can then
be used to define the predicate-update formulas.

In order to keep the transition relation simple, we ignore allocation and deal-
location in this work. However, this is not a real restriction, since it is possible to
extend the presented framework in an appropriate way.

15





Chapter 3

Abstraction Framework

In this chapter we develop our abstraction framework. We first give a symbolic
abstract domain that incorporates abstraction techniques from shape analysis. Af-
ter that we apply methods from predicate abstraction, in order to abstract pro-
grams manipulating heap-allocated data structures by Boolean programs. The ob-
tained Boolean program is called a Boolean heap program. We formally characterize
a Boolean heap program as an over-approximation of the best abstract post opera-
tor on the chosen abstract domain and analyze its precision.

3.1 Node Predicate Abstraction

Finding a suitable abstract domain is considered to be one of the hardest parts in
abstract interpretation. In the previous chapter we have seen how concrete pro-
gram stores can be represented by logical structures. A formula is a symbolic rep-
resentation of sets of logical structures, namely the set of its models. Hence, this
shifts the problem of finding a suitable abstract domain to the problem of finding
a suitable class of formulas.

3.1.1 Node Predicates

Graph-based abstract domains for shape analysis are induced by a chosen set of
shape properties. In [27] these shape properties are identified as unary abstraction
predicates that denote sets of nodes in the abstracted program stores. In the follow-
ing, we are going to propose a symbolic abstract domain that is parameterized by
unary abstraction predicates. We call these abstraction predicates node predicates.

Definition 3.1.1 (Node Predicates). A node predicate p(v) is an FOTC formula with
a single dedicated free variable v.

Figure 3.1 shows some typical node predicates in the context of singly-linked
lists.

Definition 3.1.2. Let Pred be a finite set of node predicates. A literal over Pred is a node
predicate in Pred or its negation. A conjunction P of literals over Pred is called complete
or a monomial, if for every node predicate p ∈ Pred , exactly one of its literals is a conjunct
in P . The set FPred denotes the set of all Boolean combinations of node predicates in Pred .
Let ϕ(v) ∈ FPred . For a store S and a node u ∈ US we write S, u |= ϕ(v) as a short-
notation for S, [v 7→ u] |= ϕ(v).
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x(v) (v is pointed to by x)
null(v) (v is NULL)

rx(v)
def
= ∃ v′.x(v′)∧n∗(v′, v) (v is reachable from x)

r+x (v)
def
= ∃ v′.x(v′)∧n+(v′, v) (v is reachable in at least one step)

is(v)
def
= ∃ v′, v′′.n(v′, v)∧n(v′′, v)∧ v′ 6≈ v′′ (v is shared by at least two nodes)

Figure 3.1: Typical node predicates in the context of singly-linked lists.

3.1.2 Abstract Domain
For the rest of this chapter we fix a particular finite set of node predicates Pred . For
notational convenience we consider Pred to be closed under negation.

The idea behind the abstraction we are going to propose is that a formula in the
abstract domain is valid in a store, if it represents all nodes in the store. This leads
to the following definition of an abstract store.

Definition 3.1.3 (Abstract Store AbsStore[Pred]). An abstract store Ψ over Pred is
a formula Ψ of the form:

Ψ = ∀v.ψ(v)

where ψ(v) ∈ FPred is a Boolean combination of node predicates. With AbsStore[Pred ]
we denote the set of all abstract stores over Pred .

In order to treat joins in the control flow in an adequate way, the abstract do-
main should be closed under disjunctions. We take the disjunctive completion over
abstract stores as our abstract domain.

Definition 3.1.4 (Abstract Domain AbsDom[Pred]). The abstract domain over Pred

is given by the set AbsDom[Pred ] of all disjunctions of abstract stores:

AbsDom[Pred ]
def
= {

∨

i∈I

Ψi | ∀i ∈ I : Ψi ∈ AbsStore[Pred ] }.

The elements of AbsDom [Pred ] are partially ordered by the entailment relation |= on for-
mulas.

Since an abstract store can be represented as a Boolean function over Pred , the
abstract domain AbsDom[Pred ] is isomorphic to the power set of Boolean functions
over Pred . Thus, it is isomorphic to a finite domain.

We omit the set of node predicates Pred as the parameter for AbsStore and
AbsDom whenever it is clear which set of node predicates we refer to. We will
follow the same convention for all functions that we will define on these domains
in the following sections.

3.1.3 Best Abstraction
We need to give the best possible mapping of elements from the concrete domain
〈2Store ,⊆〉 to elements of the abstract domain 〈AbsDom , |=〉 and vice versa. More
precisely, following [8] we have to provide abstraction and meaning functions:

α ∈ 2Store → AbsDom
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γ ∈ AbsDom → 2Store

such that α and γ form a Galois connection. Since the concrete domain is given by
sets of program stores that are represented as logical structures, the meaning of a
formula Ψ in AbsDom is given by the set of all its models, restricted to program
stores.

Definition 3.1.5 (Meaning Function). The meaning function γ that maps formulas in
the abstract domain to sets of program stores is defined by:

γ ∈ AbsDom → 2Store

γ
def
= λΨ . {S ∈ Store | S |= Ψ }.

Proposition 3.1.6. The function γ is a complete meet-morphism and a complete join-
morphism.

For a pair of adjoint functions 〈α, γ〉, one adjoint determines the other. Given
the definition of γ, α maps a set of stores to its smallest over-approximation with
respect to γ.

Definition 3.1.7 (Abstraction Function). The abstraction function α that maps abstract
sets of program stores to abstract values is defined by:

α ∈ 2Store → AbsDom

α
def
= λM .

∧
{Ψ ∈ AbsDom | M ⊆ γ(Ψ) }.

We write α(S) instead of α({S}) whenever α is applied to a single store S.

Proposition 3.1.8. Abstraction function α and concretisation function γ form a Galois
connection between the posets 〈2Store ,⊆〉 and 〈AbsDom , |=〉.

Although we defined the abstraction function α in terms of γ, what we need is
a constructive characterization of α. We now give such a characterization.

If we consider a single store S, the abstraction function αmaps S to the smallest
abstract store that is valid in S. An abstract store is a universally quantified for-
mula in FPred . Hence, in order to construct α(S), we need to construct the smallest
formula in FPred that covers all nodes in the universe of S.

Given a node u in the universe of S, we can assign an abstract node PS,u to u
and S that is given by a conjunction of node predicates. The abstract node PS,u

represents the equivalence class of all nodes in the universe of S that satisfy the
same node predicates as u.

Definition 3.1.9 (Abstract Nodes). An abstract node is a conjunction P of literals over
Pred . Let S be a store and u ∈ US . The abstract node PS,u is the complete conjunction of
node predicates that are satisfied by u in S:

PS,u(v)
def
=

∧
{ p ∈ Pred | S, u |= p }.

As illustrated in Figure 3.2, a store S is abstracted by the smallest covering of
nodes in US by abstract nodes over Pred . The smallest covering is given by the
disjunction of all abstract nodes PS,u for nodes u ∈ US . Formally, we obtain the
following characterization of α.

Theorem 3.1.10 (Characterization of Best Abstraction). Let M be a set of program
stores. The image of M under α is characterized as follows:

α(M) |=|
∨

S∈M

∀v.
∨

u∈US

PS,u(v).
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u

PS,u

US

α(S)

Figure 3.2: The universe US of a store S covered by abstract nodes over Pred .

Let us now illustrate the abstraction by an example.

Example. Consider again the list data type given in Figure 2.2. The set of abstrac-
tion predicates is given by literals over the node predicates

x(v),null(v), rx(v)

that are defined in Figure 3.1. Figure 3.3 shows the abstraction of a store S contain-
ing a singly-linked list with three elements whose head is pointed to by program
variable x.

Applying γ again to the abstraction of S does not only result in S itself, but in
the set of all stores containing a singly-linked list with at least one element. The
abstraction α(S) entails that NULL is reachable from program variable x. Since we
deal with lists, this information is sufficient to guarantee that all lists in γ(α(S))
are acyclic.

3.1.4 Expressiveness
Now when the decision for a particular abstract domain has been made, we briefly
consider some aspects with respect to expressiveness. The goal of this section is
not to give an exhaustive formal comparison to graph-based abstract domains for
shape analysis, we focus on the aspect of how presence or absence of edges be-
tween abstract nodes are expressible.

In the following, we refer to the framework of parametric shape analysis via
3-valued logic [27]; see Section 6.1 for a detailed discussion. This approach uses
three-value logical structures as a generalization of shape graphs.

In [30] three-valued logical structures are translated into two-valued first-order
formulas that represent the same set of concrete stores. Given two nodes in a three-
valued logical structure that correspond to abstract nodes P and P ′, an n-edge
between P and P ′ is translated to the constraint:

∀v, v′.P (v)∧P ′(v′) → n(v, v′). (1)

The absence of an n-edge is translated accordingly:

∀v, v′.P (v)∧P ′(v′) → ¬n(v, v′). (2)

The decision to use only unary node predicates in formulas of our abstract do-
main seems to be rather restrictive at first sight, because we cannot talk about
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S u1 u2 u3 u4

null

x
n n n

α

α(S) = ∀v.PS,u1
(v) ∨ PS,u2

(v) ∨ PS,u3
(v) ∨ PS,u4

(v)

= ∀v.[x(v)∧¬null(v)∧ rx(v)]︸ ︷︷ ︸
PS,u1

∨ [¬x(v)∧¬null(v)∧ rx(v)]︸ ︷︷ ︸
PS,u2

,PS,u3

∨ [¬x(v)∧ null(v)∧ rx(v)]︸ ︷︷ ︸
PS,u4

γ

γ(α(S))
null

x
n

null

x
n n

null

x
n n n

. . .

Figure 3.3: Abstraction and concretisation of a store S containing a singly-linked
list.
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edges between abstract nodes explicitly using the binary predicate symbols. Nev-
ertheless, since we allow unary node predicates to be arbitrary FOTC formulas, it is
possible to express the presence or absence of an edge by adding additional unary
node predicates to the set Pred . We illustrate this with the constraints given above.
Consider the following equivalence transformations:

∀v, v′.P (v)∧P ′(v′) → n(v, v′) |=| ∀v.¬P (v)∨ ∀v′.P ′(v′) → n(v, v′)︸ ︷︷ ︸
p1(v)

∀v, v′.P (v)∧P ′(v′) → ¬n(v, v′) |=| ∀v.¬P (v)∨¬∃ v′.P ′(v′)∧n(v, v′)︸ ︷︷ ︸
p2(v)

.

The right-hand sides are already in the right format with respect to our syntactic
class of formulas, i.e. both are abstract stores, if we add the two additional abstrac-
tion predicates p1 and p2.

The abstract store α(S) for any store S that satisfies constraint (1) is guaranteed
to imply constraint (1), because α(S) is the smallest abstract store that is valid in S.
Hence, the abstraction preserves the information of an n-edge between the abstract
nodes. The same holds for constraint (2) and the absence of the n-edge.

Thus, it is possible to express absence or presence of edges between abstract
nodes by adding additional node predicates. However, it turns out that, at least
for the analysis of properties like reachability, it is possible to obtain precise results
without expressing edges in the way explained above. In Chapter 4 we will discuss
a class of node predicates that seems to be better suited for this purpose.

3.2 Abstract Transformer
An integral part of an abstract interpretation based analysis is the abstract trans-
former function. In the case of a forward analysis, it is given by an abstraction of
the operator post. In this section, we develop an abstraction of the concrete post
operator that can be easily implemented.

3.2.1 Best Abstract Transformer
For the rest of this chapter, let c be some fixed atomic command and let post be the
post operator for command c. Remember that c is deterministic yet not necessarily
total. However, by adding appropriate guards to c, it is always possible to restrict
the domain of the transition relation c

−→ such that post becomes a total function
on the restricted domain. For this reason, we consider post(S) to be well-defined
whenever post is applied to a single store S.

Given a Galois connection 〈α, γ〉 between concrete domain and abstract do-
main, as explained in Section 2.1.3, the best abstraction F# of a function F on the
concrete domain is given by the composition of α, F , and γ:

F# ∈ AbsDom → AbsDom

F# = α ◦ F ◦ γ.

If we apply the characterization of α that we gave in Theorem 3.1.10, the best ab-
stract post operator post# is given by:

post# ∈ AbsDom → AbsDom

post#(Ψ) = α(post(γ(Ψ))) =
∨

S∈γ(Ψ)

∀v.
∨

u∈US

Ppost(S),u.
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This characterization is by no means constructive. It relies on enumerating all
concrete stores contained in the image of Ψ under γ, which is in general an infinite
set. We need an algorithmic characterization of the best abstract post operator.

The naı̈ve approach is to enumerate all abstract stores explicitly and check for
each one whether it is contained in post#(Ψ). Given that n is the number of (un-
signed) node predicates in Pred , considering all 22n

abstract stores explicitly, re-
sults in a doubly-exponential lower bound for the complexity of the computation
of post#. This is not feasible in practice. We need to restrict the number of possible
abstract stores that may occur as a disjunct in post#(Ψ).

For this reason, our goal is to develop an approximation of the best abstract
post operator that can be easily implemented. However, we require this operator
to be formally characterized in terms of an abstraction of post#, since we want to
know exactly where we lose precision.

3.2.2 Context-Sensitive Abstract Operators
In order to find an implementable abstraction of the best abstract post operator,
we will reduce the computation of the abstract post of an abstract store Ψ to the
computation of an abstract post on abstract nodes that occur in Ψ. We start with
some more general observations that will help us to accomplish this task. In the
following, we discuss how an abstract post on abstract nodes can be defined and
relate it to an appropriate abstract wlp operator.

As we have seen in Section 2.3.2, the weakest liberal precondition operator p̃re

can be extended from a function on sets of stores to a syntactic operation wlp on
arbitrary FOTC formulas. Thus, we are in particular able to compute the weakest
liberal precondition of any formula in FPred

1. However, since FPred is in general
not closed under the operator wlp, we are interested in the best abstraction of wlp.

The best abstraction wlp# of wlp in FPred with respect to the entailment relation
as the partial order on formulas is as expected:

wlp# def
= λϕ ∈ FPred .

∨
{ψ ∈ FPred | ψ |= wlp(ϕ) }.

Respectively, the corresponding best abstract post operator on FPred is given by:

post#
def
= λϕ ∈ FPred .

∧
{ψ ∈ FPred | ϕ |= wlp(ψ) }.

If we apply this abstraction in our setting, the result is more conservative than
necessary. We want to use the abstract post operator on a formula in FPred that
occurs as a sub-formula in an abstract store Ψ for the computation of the abstract
post of Ψ itself. In order to guarantee soundness of the resulting abstract post
operator on abstract stores, we only need to abstract post and wlp with respect to
stores that are actually models of Ψ. We say we abstract post and wlp in the context
of Ψ.

Formally, this can be accomplished by changing the partial order on the lattice
FPred . We replace entailment relation |= by a relaxed entailment relation |=Ψ which
is restricted to logical structures that are program stores and models of Ψ.

Definition 3.2.1. Let M be a set of structures over Σ. For two FOTC formulas ϕ and ψ,
we say ϕ entails ψ restricted to M, written ϕ |=M ψ, if

∀S ∈ M, β ∈ V → US : S, β |= ϕ⇒ S, β |= ψ

For a closed FOTC formula Γ, we write ϕ |=Γ ψ, instead of ϕ |=γ(Γ) ψ. That is, |=Γ is the
entailment relation restricted to stores that are models of Γ. We call Γ the context.

1This includes abstract nodes.
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Definition 3.2.2 (Context-sensitive Abstract Operators). Let Γ be a closed FOTC for-
mula. The context-sensitive abstract operators for Γ on FPred are given by the ab-
stractions of post and wlp in the context of Γ:

wlp
#
Γ

def
= λϕ ∈ FPred .

∨
{ψ ∈ FPred | ψ |=Γ wlp(ϕ) }

post
#
Γ

def
= λϕ ∈ FPred .

∧
{ψ ∈ FPred | ϕ |=Γ wlp(ψ) }.

The definition of the context-sensitive abstract operators and the general prop-
erties of Galois connections ensure that wlp

#
Γ and post

#
Γ form a Galois connection

between the posets 〈FPred , |=Γ〉 and 〈FPred , |=post(γ(Γ))〉.

Proposition 3.2.3. For a given context Γ, the context-sensitive abstract operators have
the following properties:

(i) post
#
Γ and wlp

#
Γ form a Galois connection between the two posets 〈FPred , |=Γ〉 and

〈FPred , |=post(γ(Γ))〉, formally:

∀ϕ, ψ ∈ FPred : post
#
Γ (ϕ) |=post(γ(Γ)) ψ ⇐⇒ ϕ |=Γ wlp

#
Γ (ψ),

(ii) post
#
Γ and wlp

#
Γ are monotone,

(iii) post
#
Γ ◦wlp

#
Γ is reductive,

(iv) wlp
#
Γ ◦ post

#
Γ is extensive,

(v) post
#
Γ distributes over disjunctions,

(vi) wlp
#
Γ distributes over conjunctions.

3.2.3 Cartesian Abstraction and Cartesian Post
In predicate abstraction [12], elements of the abstract domain are given by dis-
junctions of conjunctions of abstraction predicates that are isomorphic to sets of
bit-vectors. For the computation of the precise abstract post operator on sets of bit-
vectors one has to check exhaustively for each possible bit-vector whether it occurs
in the post or not. This results in an exponential lower bound for the complexity
of the best abstract post. Hence, there is an analogous problem to the one we have
to solve in our setting.

In predicate abstraction the problem of an exponential lower bound for the
complexity of post# is addressed by applying an additional Cartesian abstraction
[1]. This approach is effectively used in predicate abstraction based software model
checkers such as SLAM [3] and BLAST [13].

Cartesian abstraction is an abstraction for vector domains. Given a vector do-
main D with

D = D1 × · · · ×Dn

it over-approximates a set of vectors V ⊆ D by ignoring the dependencies be-
tween the components of each vector in V , i.e. the Cartesian approximation of V
is described by the Cartesian product:

γCart(αCart(V )) = Π1(V ) × · · · × Πn(V )

where the projections Πi(V ) are given by:

Πi(V ) = { vi ∈ Di | (v1, . . . , vi, . . . , vn) ∈ V }.
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Figure 3.4: Application of post# to a single abstract store Ψ and the approximation
under αCart1 .

For a set of bit-vectors represented by a formulaψ, its Cartesian abstraction αCart(ψ)
is given by the smallest conjunct over abstraction predicates that is implied by ψ.
The operator that results from composing Cartesian abstraction with post# corre-
sponds to a Boolean program over the abstraction predicates. This abstract post
operator can be computed efficiently in practice.

In our setting, elements of the abstract domain are disjunctions of abstract
stores, where abstract stores are Boolean combinations of node predicates. In other
words, we are dealing with sets of sets of bit-vectors. We use a two-step Cartesian
abstraction for the approximation of post#. One abstraction step for each set hier-
archy.

The best abstract post operator post# is a join-morphism2, i.e. distributes over
disjunctions. Hence, computing post# for a disjunction of abstract stores can be
accomplished by computing post# for each abstract store individually. Thus, we
just need to consider the case, where post# is applied to a single abstract store Ψ:

Ψ = ∀v.ψ.

Even if we apply post# to a single abstract store Ψ, its image under post# will
in general be a disjunction of abstract stores rather then a single abstract store. The
first step is to abstract a disjunction of abstract stores by a single abstract store.
Formally, this corresponds to the application of the abstraction function αCart1 .

Definition 3.2.4 (First Cartesian Abstraction αCart1 ). The first Cartesian abstraction
αCart1 that approximates a disjunction of abstract stores by a single abstract store is defined
by:

αCart1 ∈ AbsDom → AbsStore

αCart1

def
= λΨ . ∀v.

∧
{ψ ∈ FPred | Ψ |= ∀v.ψ }.

The additional abstraction function αCart1 is applied to the image of Ψ under
post#. As illustrated in Figure 3.4, the abstraction merges all abstract stores in the
image into one single abstract store. The composition of αCart1 and post# gives us
our first approximation of the best abstract post operator.

2The functions α, post and γ are all join-morphisms. Hence, their composition is one, too.
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Definition 3.2.5. The operator post
#
Cart1

is given by the composition of αCart1 and post#:

post
#
Cart1

∈ AbsStore → AbsStore

post
#
Cart1

= αCart1 ◦ post# .

The operator post
#
Cart can be characterized without referring to post# explicitly.

Applying the first Cartesian abstraction can be seen as a kind of localization of
the abstract post operator. We construct the abstract store that results from the
abstraction of all disjuncts in the image of Ψ under post# by computing post locally
for each abstract node in Ψ. That means, for each abstract node P in Ψ, we compute
all abstract nodes in disjuncts of post#(Ψ) that cover concrete nodes represented
by P . This operation exactly corresponds to the context-sensitive abstract post for
Ψ applied to the abstract nodes in Ψ.

Proposition 3.2.6. Let Ψ = ∀v.ψ be an abstract store. The image of Ψ under post
#
Cart1

is
obtained by applying the context-sensitive post operator for Ψ to ψ:

post
#
Cart1

(Ψ) |=| ∀v. post
#
Ψ(ψ).

Now we express the image of an abstract store under post
#
Cart1

in terms of a post
operator applied to the abstract nodes in the abstract store. However, this localized
post operator still depends on its context Ψ. The information available in a single
abstract node is not always sufficient to compute its covering in the post of Ψ pre-
cisely. Though, we will see later that the context information we actually need is of
a very restricted kind. Usually, it is possible to express the additional constraints
on the global state in terms of an abstract store over the node predicates that are
already used to obtain the abstraction.

Let Ψ be given as a disjunction of conjunctions of node predicates in Pred :

Ψ = ∀v.
∨

i

Pi.

According to Proposition 3.2.3, the context-sensitive abstract post distributes over
disjunctions of formulas in FPred . Hence, the first Cartesian abstraction of post# is
obtained by applying the context-sensitive post for Ψ to each abstract node Pi.

post
#
Cart1

(Ψ) = ∀v.
∨

i

post
#
Ψ(Pi).

However, computing post
#
Cart1

is still an expensive operation. The result of the
context-sensitive post operator applied to an abstract node will in general be a dis-
junction of abstract nodes. We face the same problem as before. We would have to
look at all 2n monomials over node predicates, in order to compute the precise im-
age of an abstract node Pi under the context-sensitive post operator post

#
Ψ . There-

fore, we introduce a second Cartesian abstraction that we compose with post
#
Ψ .

Definition 3.2.7 (Second Cartesian Abstraction αCart2 ). The second Cartesian ab-
straction αCart2 that approximates a disjunction of abstract nodes by a single abstract node
is defined by:

αCart2 ∈ FPred → FPred

αCart2

def
= λϕ .

∧
{ p ∈ Pred | ϕ |=post(γ(Ψ)) p }.
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Figure 3.5: Application of post
#
Ψ to a single abstract node P and the approximation

under αCart2 .

As illustrated in Figure 3.5, the function αCart2 approximates a disjunction of ab-
stract nodes by one single abstract node. This second Cartesian abstraction allows
us to define the final abstraction of post#.

Definition 3.2.8 (Cartesian Post). Let Ψ = ∀v.
∨

i Pi(v) be an abstract store. The
Cartesian post of Ψ is defined as follows:

post
#
Cart(Ψ)

def
= ∀v.

∨

i

αCart2 ◦ post
#
Ψ(Pi).

We extend the Cartesian post to a function on AbsDom in the canonical way by pushing
it over disjunctions of abstract stores.

Theorem 3.2.9 (Soundness of Cartesian Post). The operator post
#
Cart is an approxi-

mation of post#:
∀Ψ ∈ AbsStore : post#(Ψ) |= post

#
Cart(Ψ).

Finally, the only remaining issue is the occurrence of the context-sensitive ab-
stract post in the characterization of post

#
Cart. Since the concrete post operator can

be characterized in terms of predicate-update formulas, i.e. weakest liberal precon-
ditions of predicate symbols, it is convenient to describe post

#
Cart using the context-

sensitive abstract wlp. We use that post
#
Ψ and wlp

#
Ψ form a Galois connection, which

gives us the final characterization of post
#
Cart.

Theorem 3.2.10 (Characterization of Cartesian Post). Let Ψ = ∀v.
∨

i Pi be an ab-
stract store. The Cartesian post of Ψ is characterized as follows:

post
#
Cart(Ψ) = ∀v.

∨

i

∧
{ p ∈ Pred | Pi |=Ψ wlp

#
Ψ(p) }.

The image of an abstract store Ψ under post
#
Cart is constructed by collecting, for

each abstract node Pi in Ψ, those node predicates that are satisfied in the post of
Ψ for the nodes covered by Pi. That means, if n is the number of unsigned node
predicates in Pred then for each abstract node Pi, we have to check 2n entailments
of the form:

Pi |=Ψ wlp
#
Ψ(p).

Since the number of abstract nodes in Ψ is at most exponential in the number of
node predicates, we need 2n · O(2n) entailment checks for the computation of
post

#
Cart. The complexity of computing the image of post

#
Cart for a single abstract

store is therefore only at most exponential in the number of node predicates. This
will be reasonably efficient, if one uses appropriate symbolic data structures for
implementation.

Summarizing the above result, we have to provide a set of node predicates
Pred and the context-sensitive abstract wlp for each node predicates and atomic
command, in order to instantiate the framework.
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3.2.4 Boolean Heap Programs
In analogy to predicate abstraction, we can give a source-to-source transformation
of the concrete program into a Boolean program, such that the post operator asso-
ciated with this Boolean program corresponds to the Cartesian post. We call the
resulting program a Boolean heap program.

The state of a Boolean heap program is given by an abstract store Ψ and a
program location. Abstract stores are isomorphic to sets of bit-vectors, i.e. an
abstract store Ψ with

Ψ = ∀v.
∨

i

Pi

can be represented as a set of bit-vectors VΨ, where each of the bit-vectors vi ∈ VΨ

corresponds to an abstract node Pi in Ψ.
The Boolean heap program is obtained from the concrete program by replacing

each atomic command c with the predicate-updates of the components of all bit-
vectors in VΨ:

c ;

for each bit-vector v in VΨ do
for each p in Pred do
if v |=Ψ wlp

#
c,Ψ(p) then

v.p := true
else if v |=Ψ wlp

#
c,Ψ(¬p) then

v.p := false
else
v.p := *

Since a single state of a Boolean heap program is given by a set of bit-vectors,
corresponding to our abstract domain, we need data structures that canonically
represent sets of sets of bit-vectors for implementation. A possible choice for such
a data structure are nondeterministic BDDs [10], a generalization of BDDs [4].

3.2.5 Precision of Cartesian Post
In this section we characterize under which conditions the Cartesian post opera-
tor post

#
Cart does not lose precision with respect to the best abstract post operator

post#. This means, we want to analyze under which conditions the two operators
coincide. Cartesian abstraction affects precision whenever a single abstract node
is mapped to a set of more than one abstract node under the operator post

#
Ψ . Con-

versely, if any monomial over node predicates is again mapped to a single mono-
mial, Cartesian abstraction does not introduce an additional loss of precision. In
such a case we call post# deterministic.

Definition 3.2.11. Let Ψ = ∀v.
∨

i Pi be an abstract store, where the Pi are monomials.
The operator post# is called deterministic with respect to Ψ if every monomial Pi is
mapped to one monomial in the post of Ψ, i.e.:

post#(∀v.
∨

i

Pi) |=| ∀v.
∨

i

post
#
Ψ(Pi) where for all i : post

#
Ψ(Pi) is a monomial.

We call post# deterministic if for all stores S, post# is deterministic with respect to
α(S).

Note that the general notion of a deterministic post# only requires post# to
be deterministic with respect to abstract stores that actually occur as the image of
some concrete store under α and not with respect to arbitrary abstract stores.
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Proposition 3.2.12. Let Ψ be an abstract store. If post# is deterministic with respect to
Ψ then post

#
Cart does not lose precision with respect to post#, i.e.

post#(Ψ) |=| post
#
Cart(Ψ).

Whether post# is deterministic with respect to some abstract store α(S) de-
pends on the node predicates that induce the abstraction. If the operator wlp is
again precisely expressible in terms of the chosen node predicates, the determinis-
tic behavior of the concrete transition system is preserved in its abstraction.

A fundamental observation is that post# and post
#
Cart coincide on abstract store

α(S) if the context-sensitive abstract wlp and the precise wlp coincide with respect
to the weakened entailment relation |=α(S).

Proposition 3.2.13. Let S be a store. The operator post# is deterministic with respect to
α(S) if and only if for all node predicates p in Pred we have:

wlp(p) |=α(S) wlp
#
α(S)(p).

Definition 3.2.14 (Closeness under Weakest Liberal Preconditions). A set of node
predicates P is said to be closed under wlp if for every node predicate p in P there is some
finite subset Pred of P such that:

∀S ∈ Store : wlp(p) |=α(S) wlp
#
α(S)(p).

Proposition 3.2.15. post# is deterministic if and only if the set of node predicates Pred

is closed under wlp.

Corollary 3.2.16. If the set of node predicates Pred is closed under wlp then post# and
post

#
Cart coincide.

As we will see in Chapter 4, despite of trivial cases, finite sets of node pred-
icates are not closed under wlp for all atomic commands. That means, for most
finite sets of node predicates Pred , there will always be some command such that
the Cartesian post will lose precision with respect to post#. Nevertheless, the
closeness property can be seen as a quality measure. Having some infinite class
of node predicates with this property is a prerequisite for automated abstraction
refinement, because it can guide the search for node predicates that increase the
precision of the Cartesian post with respect to post#.

3.2.6 Nondeterminism and Splitting Operators
As we have seen, Cartesian abstraction works well for commands with determinis-
tic post#. Unfortunately, for particular commands, post# is inherent nondetermin-
istcal. The additional loss of precision caused by the Cartesian post with respect
to a nondeterministic post# cannot always be tolerated. Each of the two Cartesian
abstraction steps in the Cartesian post operator has its own potential loss of pre-
cision. In order to get a better understanding of this problem, we illustrate this at
the following two examples.

Example. Recall the abstract store given by:

Ψ1 = ∀v. [x(v)∧¬null(v)∧ rx(v)] ∨ [¬px(v)∧¬null(v)∧ rx(v)]
∨ [¬x(v)∧ null(v)∧ rx(v)].

As explained earlier, Ψ1 represents the set of all stores containing an acyclic singly-
linked list with at least one element and whose head is pointed to by program
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variable x. Now consider command c : x = x->n setting program variable x to
the n-successor of the node that x points to. Since we know the concretisation of
Ψ1, we can compute its image under the best abstract post manually, which gives
us the following disjunction of abstract stores:

Ψ′
1

def
= post#c (Ψ1)

= ∀v. [¬x(v) ∧ ¬null(v) ∧ ¬rx(v)] ∨ [x(v) ∧ null(v) ∧ rx(v)] (1)
∨ ∀v. [¬x(v) ∧ ¬null(v) ∧ ¬rx(v)] ∨ [x(v) ∧ ¬null(v) ∧ rx(v)] (2)

∨ [¬x(v) ∧ null(v) ∧ rx(v)]
∨ ∀v. [¬x(v) ∧ ¬null(v) ∧ ¬rx(v)] ∨ [x(v) ∧ ¬null(v) ∧ rx(v)] (3)

∨ [¬x(v) ∧ ¬null(v) ∧ rx(v)] ∨ [¬x(v) ∧ null(v) ∧ rx(v)].

Abstract store (1) results from a store with a one element list, abstract store (2)
from a store with a list of exactly two elements, and abstract store (3) from all
stores containing lists with more than two elements. In contrast, the image of Ψ1

under the Cartesian post is as follows:

Ψ′′
1

def
= post

#
c,Cart(Ψ1)

= ∀v.[¬x(v)∧¬null(v)∧¬rx(v)] ∨ [¬null(v)∧ rx(v)] ∨ [null(v)∧ rx(v)].

The first Cartesian abstraction of the Cartesian post merges all abstract stores that
occur in Ψ′

1 into a single abstract store Ψ′′
1 . The main problem with this approx-

imation is that Ψ′′
1 now contains more than one monomial in which x(v) occurs

positively, namely the monomials:

x(v)∧¬null(v)∧ rx(v) and x(v)∧ null(v)∧ rx(v).

In order to get reasonable precise results of the analysis, we need at least precise
information about the nodes the program variables point to. This means in par-
ticular that each abstract store should only contain one monomial in which x(v)
occurs positively.

A slightly different problem is caused by the second step of Cartesian abstrac-
tion. In this step, the disjunction of all complete abstract nodes that precisely cover
the post of a single abstract node are merged into just one abstract node.
Example. Consider the modified abstract store Ψ2 where the node predicate rx is
replaced by the node predicate r+x , expressing that a node is reachable from x in at
least one step:

Ψ2 = ∀v. [x(v)∧¬null(v)∧¬r+x (v)] ∨ [¬x(v)∧¬null(v)∧ r+x (v)]
∨ [¬x(v)∧ null(v)∧ r+x (v)].

Applying post
#
Cart for command c to Ψ2 results in the following abstract store:

Ψ′
2

def
= post

#
c,Cart(Ψ2) = ∀v.[¬x(v)∧¬null(v)∧¬r+x (v)] ∨ ¬null(v) ∨ null(v)

|=| true.

The node predicate r+x does not hold for nodes pointed to by program variable x.
For the second and third disjunct in Ψ2 there are nodes for which x(v) may hold
and others for which x(v) may not hold in the post of stores satisfying Ψ. Since
Cartesian abstraction approximates the disjunction of the corresponding abstract
nodes by a single conjunction, we lose the precise information about whether r+x
holds or not.

In the above example the image of the precise context-sensitive abstract post
for a single abstract node is a disjunction of abstract nodes. In the context of shape
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graphs this corresponds to the result of splitting a summary node in the shape
graph into separated nodes. In [26] this splitting is also referred to as node materi-
alization.

In both cases above, the loss of precision of the Cartesian post with respect to
the best abstract post is connected to nondeterminism in the abstract transition sys-
tem. In order to respect this nondeterminism, we want to relax Cartesian abstrac-
tion and allow splitting of abstract nodes and abstract stores in certain situations.

As we have seen in Proposition 3.2.13, determinism in the abstract system is
closely connected to the precision of the context-sensitive abstract wlp. Whenever
for some node predicate p the precise weakest liberal precondition wlpc(p) is not
expressible in the abstraction, a splitting may take place in the image under the best
abstract post. In order to allow splitting on some node predicate p, we proceed as
follows:

(1) temporarily add wlpc(p) to the set of abstraction predicates Pred ,

(2) translate Ψ from the original abstract domain to the abstract domain over the
extended set of node predicates,

(3) compute the Cartesian post on the extended abstract domain,

(4) and translate the result back to the original abstract domain without node
predicate wlpc(p).

By translating Ψ from the original abstract domain to the extended abstract
domain, it is guaranteed that each abstract node in the resulting abstract stores
either entails wlpc(p) or wlpc(¬p). Thus, the splitting of abstract nodes3 according
to the truth value of p in the successor stores already takes place before we actually
compute the image under the Cartesian post.

The fact that wlpc(p) is explicitly added to the set of abstraction predicates en-
sures that the context-sensitive abstract wlp exactly corresponds to wlpc(p). Con-
sequently, the splitting of abstract stores and abstract nodes is preserved under the
Cartesian post on the extended abstract domain.

The splitting operation and the resulting abstract post operator that respects
this splitting are formally captured by the following two definitions.

Definition 3.2.17 (Splitting Operators). A splitting operator splitc[P ] for an atomic
command c and node predicates P ⊆ Pred is an operator satisfying the following condi-
tions:

• splitc[P ] ∈ AbsStore[Pred ] → AbsDom[Pred ∪ wlpc(P)]

• ∀Ψ ∈ AbsStore[Pred ] : splitc[P ] Ψ |= Ψ,

• ∀Ψ ∈ AbsStore[Pred ] : α[Pred ∪ (wlpc P)](γ Ψ) |= splitc[P ] Ψ,

where: wlpc(P) = {wlpc(p) | p ∈ P }.

We call the splitting operator split#c [P ] satisfying:

split#c [P ] = α[Pred ∪ wlpc(P)] ◦ γ

the most precise splitting operator for c and P .

3and the splitting of the abstract store itself
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Definition 3.2.18 (Cartesian Post with Splitting). The Cartesian post operator
with splitting for splitting operator splitc[P ] is defined by:

post
#
c,splitc[P] ∈ AbsStore[Pred ] → AbsDom[Pred ]

post
#
c,splitc[P] = α[Pred ] ◦ γ ◦ post

#
c,Cart[Pred ∪ wlpc(P)] ◦ splitc[P ].

Note that in contrast to the most precise splitting operator split#c [P ] it is always
simple to compute the function

α[Pred ] ◦ γ ∈ AbsDom[Pred ∪ wlpc(P)] → AbsDom [Pred ]

symbolically. Given some abstract value Ψ in AbsDom[Pred ∪ wlpc(P)], we just
have to project the added node predicates in wlpc(P), in order to obtain the image
of Ψ under α[Pred ] ◦ γ.

Definition 3.2.17 gives rise to a whole spectrum of possible splitting operators
with different levels of precision. This spectrum ranges from the identity function,
i.e. no splitting at all, to the most precise splitting operator. The possibility to
choose among all these operators gives us the freedom to fine-tune the ratio be-
tween efficiency and precision of the resulting analysis. However, for any splitting
operator soundness of the corresponding Cartesian post with splitting is guaran-
teed.

Proposition 3.2.19 (Soundness of Cartesian Post with Splitting). Let splitc[P ] be
a splitting operator for P and command c. The Cartesian post operator with splitting
post

#
c,splitc[P] is an approximation of post#c on AbsDom[Pred ]:

∀Ψ ∈ AbsStore[Pred ] : post#c (Ψ) |= post
#
c,splitc[P](Ψ).

In the following, we want to point out two observations about the two border
cases of the spectrum of possible splitting operators. At first, consider the most
precise splitting operator split#c [Pred ] that splits on the whole set of abstraction
predicates Pred . It is not hard to see that this operator implements the best ab-
stract post operator post#c [Pred ]. This is simply due to the fact that the image of an
abstract store Ψ under split#c [Pred ] represents at the same time both Ψ itself and its
image under post#c [Pred ]. Consequently, in this case the Cartesian post operator
with splitting and the best abstract post operator coincide.

Proposition 3.2.20. The Cartesian post with splitting for the most precise splitting op-
erator split#c [Pred ] coincides with the best abstract post operator on the abstract domain
AbsDom[Pred ].

On the other hand, if post#c is deterministic then for every possible splitting
operator the corresponding Cartesian post with splitting will be most precise. This
observation is a consequence of Proposition 3.2.12 and holds in particular, if the
used splitting operator is just the identity function.

Proposition 3.2.21. Let splitc[P ] be a splitting operator. If post#c is deterministic then
post#c and the Cartesian post with splitting for splitc[P ] coincide.

A concrete example for a splitting operator can be found in the case study that
we discuss in Chapter 5.
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Chapter 4

Modal Node Predicates

The construction of Boolean heap programs requires the identification of a suitable
class of node predicates that induces the abstraction. There are some requirements
that such a class of node predicates should ideally fulfil:

(1) It should be expressible enough to specify properties we are interested in:
reachability, sharing, etc.

(2) It should not be too expressive, i.e. the satisfiability problem should be de-
cidable.

(3) It should be closed under weakest liberal preconditions.

Requirements (2) and (3) are main prerequisites for automation. In Section 3.2.5
we already argued that (3) is needed for automated abstraction refinement. Re-
quirement (2) allows checking entailments, which is needed for the computation of
context-sensitive abstract weakest liberal preconditions and, hence, the construc-
tion of Boolean heap programs.

If we for instance consider all node predicates that are expressible in FOTC then
this class satisfies (1) and (3), but as an extension of first-order logic, is undecidable.
In the following, we restrict to node predicates that are sufficiently expressive to
describe reachability properties for linked data structures. We propose modal node
predicates and give first results regarding decidability and closeness under weakest
liberal preconditions.

4.1 Motivation

For motivation, we consider again the reachability property rx expressing that a
node is reachable from program variable x by following any number of n pointer
fields:

rx
def
= x(v)∨∃ v′.x(v′)∧n+(v′, v).

Now consider the command c : z->n = y that destructively updates the n-pointer
field of the node pointed to by z. Assume that rx did hold for some node u before
c is executed. In order to check whether rx still holds for u after executing c, we
particularly need the information whether the node pointed to by z was lying on
the n-path from x to the node u. If z was not lying on that path then surely rx will
still hold for u after c is executed.

Thus, when we deal with reachability, it is not sufficient to be able to express
the existence of a path between two nodes in terms of the given node predicates. It
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p.〈R〉(v)
def
= ∃ v′.p(v)∧ r(v′, v)

〈R〉.p(v)
def
= ∃ v′.p(v)∧ r(v, v′)

p.U〈R〉.q(v)
def
= ∃ v′.q(v′)∧ r∗[p(v)](v, v′)

p.S〈R〉.q(v)
def
= ∃ v′.q(v′)∧ r∗[p(v′)](v′, v)

p.U[R].q(v)
def
= ∀v′. r∗[¬q(v)](v, v′) →

q(v′)∨ p(v′)∧¬r+[¬q(v)](v′, v′)∧∃ v′′.r+(v′, v′′)∧ q(v′′)

p.S[R].q(v)
def
= ∀v′. r∗[¬q(v)](v′, v) →

q(v′)∨ p(v′)∧¬r+[¬q(v)](v′, v′)∧∃ v′′.r+(v′′, v′)∧ q(v′′)

where

r(v, v′)
def
=

∨

n∈R

n(v, v′)

r+[ϕ(v)](v, v′)
def
= (TC v, v′.r(v, v′)∧ϕ(v))(v, v′)

r+[ϕ(v′)](v, v′)
def
= (TC v, v′.r(v, v′)∧ϕ(v′))(v, v′)

r∗[ϕ](v, v′)
def
= r+[ϕ](v, v′) ∨ v≈ v′

Figure 4.1: Semantics of modal node predicates.

should also be possible to express that additional constraints are satisfied on that
particular path.

If we think of a store as a Kripke structure, we can express the missing prop-
erties in terms of modal operators. In particular, the fact that a node is reachable
from x without passing a node pointed to by z can be expressed using the since
operator from temporal logics with past. Because we construct our node predicate
language using operators that have semantics corresponding to modal operators,
we call them modal node predicates.

4.2 Syntax and Semantics
Definition 4.2.1 (Syntax of Modal Node Predicates). Let Var be the set of program
variables and let R be a nonempty subset of binary predicate symbols in Σ. The language
MNP[R] of modal node predicates over R is defined by the following grammar:

x ∈ Var p(v), q(v) ∈ MNP[R] ::= null(v) | x(v) | ¬p(v) | p(v)∧ q(v)
| 〈R〉.p(v) | p.〈R〉(v)
| p.U〈R〉.q(v) | p.S〈R〉.q(v)
| p.U[R].q(v) | p.S[R].q(v)

The modal operators have highest precedence and we skip the variable v whenever this
causes no confusion. If R is a singleton containing just one binary predicate symbol n we
write MNP[n] instead of MNP[{n}] and similarly 〈n〉.p instead of 〈{n}〉.p, etc. for the
modalities.

The formal semantics of modal node predicates is inductively defined over
their structure, as shown in Figure 4.1. Node predicates built from Boolean con-
nectives, as well as atomic node predicates such as x and null , are omitted since
their semantics is clear.
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uS :

null

l r

l r l r

l

r
l

r l
r r

l

S, u |= true.U[{l,r}].null

uS′ :

null

l r

l r l r

r
l

r l
r r

l
l

S′, u 6|= true.U[{l,r}].null

Figure 4.2: Two stores S and S ′, the first containing an acyclic, the second a cyclic
binary tree. The two trees can be distinguished using modal node predicates.

Intuitively one can explain the semantics of modal node predicates in the fol-
lowing way. If we think of a store as a Kripke structure, where the underlying
transition relation is induced by the union of interpretations of the binary predi-
cate symbols inR then the semantics of 〈R〉.p, p.U〈R〉.q, and p.U[R].q is equivalent to
the CTLoperators EX, EU, and AU. Respectively, the modal node predicates p.〈R〉,
p.S[R].q, and p.S〈R〉.q correspond to appropriate past operators.

We want to make the above observation that there is a correspondence between
modal node predicates and CTL more precise. In the following, we give a path-
based characterization of the semantics of MNP[R] modalities.

Definition 4.2.2. Let R be nonempty subset of binary predicate symbols in Σ and let
S = 〈U, ι〉 be a structure over Σ. A sequence π ∈ � → U of nodes in U is called an R-
path in S, if every two succeeding nodes in the sequence are either connected via a pointer
field in R, or they correspond and have no R-successors. Formally, for all 1 ≤ i:

there exists n ∈ R such that (ι n)(π(i), π(i+ 1)) = 1
or π(i) = π(i+ 1) and for all n ∈ R, u ∈ U : (ι n)(π(i), u) = 0.

Respectively, π is called an R−1-path in S, if for all 1 ≤ i:

there exists n ∈ R such that (ι n)(π(i+ 1), π(i)) = 1
or π(i) = π(i+ 1) and for all n ∈ R, u ∈ U : (ι n)(u, π(i)) = 0.

We say an R-path (R−1-path) π starts in u ∈ U if π(1) = u.

Proposition 4.2.3. Let S be a finite structure over Σ and u ∈ US . The modal node
predicates p.U〈R〉.q, p.S〈R〉.q, p.U[R].q, and p.S[R].q are characterized as follows:

• S, u |= p.U〈R〉.q(v) ⇐⇒ there is an R-path π in S starting in u such that:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.S〈R〉.q(v) ⇐⇒ there is an R−1-path π in S starting in u such that:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.U[R].q(v) ⇐⇒ for all R-paths π in S starting in u:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.S[R].q(v) ⇐⇒ for all R−1-paths π in S starting in u:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)
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[R].p
def
= ¬〈R〉.(¬p)

〈R∗〉.p
def
= true.U〈R〉.p

[R∗].p
def
= true.U[R].p

〈R+〉.p
def
= 〈R〉.(〈R∗〉.p)

[R+].p
def
= [R].([R∗].p)

p.[R]
def
= ¬(¬p).〈R〉

p.〈R∗〉
def
= true.S〈R〉.p

p.[R∗]
def
= true.S[R].p

p.〈R+〉
def
= (p.〈R∗〉).〈R〉

p.[R+]
def
= (p.[R∗]).[R]

Figure 4.3: Syntactic abbreviations for modal node predicates.

The following example shows how modal node predicates can be used to ex-
press properties of linked data-structures that are related to reachability.
Example. Figure 4.2 shows two stores S and S ′ containing binary trees. The tree
in S is acyclic, whereas the tree in S ′ contains a cycle. We can express acyclicity
of linked data structures in terms of modal node predicates. The root node u in S
satisfies the modal node predicate true.U[{l,r}].null , because all outgoing paths that
follow r and l pointers eventually reach null . However, the root node in S ′ does
not satisfy true.U[{l,r}].null , because there is a cyclic path that does not reach null .

In addition to the given modal node predicates we define some syntactic ab-
breviations. Figure 4.3 shows the complete list. For instance the abbreviation
p.〈n∗〉 expresses that a node is reachable from some node satisfying p following
0 or more n-fields. Thus, the node predicate rx that we used in previous examples
corresponds to the modal node predicate x.〈n∗〉. For convenience we will also use
Boolean connectives such as disjunction, implication, etc. as abbreviations in the
syntax of modal node predicates.

We extend modal node predicates with guarded quantification. This extension
allows us to express the context information that we need, in order to precisely
characterize weakest liberal preconditions of modal node predicates.

Definition 4.2.4 (Modal Node Predicates with Guarded Quantification). Let R be
a nonempty subset of binary predicate symbols in Π. The set of modal node predicates
with guarded quantification GMNP[R] is defined as follows:

x ∈ Var p(v), q(v) ∈ GMNP[R] ::= x(v) | null(v) | ¬p(v) | p(v)∧ q(v)
| 〈R〉.p(v) | p.〈R〉(v)
| p.U〈R〉.q(v) | p.S〈R〉.q(v)
| p.U[R].q(v) | p.S[R].q(v)
| ∀v.x(v) → p(v)

Note that guards in quantified formulas are restricted to program variables.

4.3 Decidability
For the automatic construction of Boolean heap programs, we need to compute
context-sensitive abstract wlps for the chosen abstraction predicates. This requires
that it is possible to check validity of the context-dependent entailment relation
|=Ψ. Checking validity of |=Ψ can be reduced to the problem whether for a given
node predicate p there is a program store S and a node u ∈ US , such that p is sat-
isfied by u in S. Consequently, a decision procedure for the restricted satisfiability
problem can be used to automate the construction of Boolean heap programs.
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In the following, we give a first result concerning decidability of the satisfi-
ability problem for GMNP[R] and thus MNP[R]. We show that GMNP[R] can be
translated into guarded fixed point logic µGF. The general satisfiability problem
for µGF, i.e. the problem whether a given µGF formula has an arbitrary first-order
model, is decidable [11].

Definition 4.3.1 (Guarded Fixed Point Logic µGF). The guarded fragment of first-
order logic with fixed points µGF is defined by the grammar:

ϕ, ψ ∈ µGF ::= a | ¬ϕ | ϕ∧ψ | ϕ∨ψ

| ∀v.g → ϕ | ∃ v.g∧ϕ

| [µWv. ϕ(W, v)](v) | [νWv. ϕ(W, v)](v)

where v = v1, . . . , vk is a k-tuple of first-order variables, a, g are atoms, g contains all free
variables of ϕ. W is a k-ary relation variable that occurs only positive in ϕ(W, v) and not
in guards and moreover all free variables of ϕ(W, v) belong to v.

The semantics of formulas is standard. For fixed point formulas the interpreta-
tion of ϕ(W, v) in a logical structure defines an operator on k-ary relations over the
structure’s universe. The fact that all uses of the variable W are positive ensures
monotonicity of this operator and thereby the existence of its least and greatest
fixed points. The formal semantics of fixed point formulas can be found in [11].

Theorem 4.3.2 (Grädel, Walukiewicz). The satisfiability problem for µGF is decidable.

The translation from GMNP[R] to guarded fixed point logic is straightforward.
Since the modalities semantically correspond to CTL operators we make use of the
standard translation of CTL formulas to the modal mu-calculus.

Definition 4.3.3 (Translation of GMNP to µGF). The function t mapping modal node
predicates in GMNP[R] to µGF is inductively defined as follows:

t ∈ GMNP[R] → µGF

t(a) = a, if a is an atom
t(¬p) = ¬t(p)

t(p∧ q) = t(p)∧ t(q)

t(〈R〉.p) =
∨

n∈R

∃ v′.n(v, v′)∧ t(p)(v′)

t(p.〈R〉) =
∨

n∈R

∃ v′.n(v′, v)∧ t(p)(v′)

t(p.U〈R〉.q) = [µWv. t(q)∨ t(p)∧(
∨

n∈R

∃ v′.n(v, v′)∧Wv′)](v)

t(p.S〈R〉.q) = [µWv. t(q)∨ t(p)∧(
∨

n∈R

∃ v′.n(v′, v)∧Wv′)](v)

t(p.U[R].q) = [µWv. t(q)∨ t(p)∧(
∨

n∈R

∃ v′.n(v, v′))∧(
∧

n∈R

∀v′.n(v, v′) →Wv′)](v)

t(p.S[R].q) = [µWv. t(q)∨ t(p)∧(
∨

n∈R

∃ v′.n(v, v′))∧(
∧

n∈R

∀v′.n(v′, v) →Wv′)](v)

t(∀v.x(v) → p(v)) = ∀v.x(v) → t(p)(v).

Proposition 4.3.4 (Correctness of Translation). Let p ∈ GMNP[R] then p and t(p)
are equivalent on finite structures, i.e. for every finite structure S and u ∈ US :

S, u |= p ⇐⇒ S, u |= t(p).
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Theorem 4.3.2 establishes decidability of the satisfiability problem for µGF with
respect to arbitrary first-order structures. However, we are interested in the satisfi-
ability problem restricted to program stores, i.e. finite structures that satisfy certain
integrity constraints. Hence, a decision procedure for µGF cannot directly be used
for our needs. However, we have the conjecture that the fragment of µGF that re-
sults from the translation of GMNP[R] has the finite modal property1. As a first
step, this would allow us to use a decision procedure for the general satisfiability
problem as a decision procedure for the satisfiability problem restricted to finite
first-order structures.

Unfortunately, the restriction from finite structures to program stores is more
sophisticated. We need to translate the integrity constraints that define the set of
stores to the logic µGF. It is not obvious whether this is possible for the constraints
we are interested in. In particular functionality constraints for binary predicates,
as they occur for instance in the integrity formula given in Section 2.3.1, cannot
be expressed directly in µGF. Simply adding functionality constraints even to the
guarded fragment GF of first-order logic without fixed points results in an unde-
cidable logic. We leave these problems open for future work.

4.4 Closeness under Weakest Liberal Preconditions

In Section 3.2.5 we argued that being closed under weakest liberal preconditions
is a prerequisite for the development of automated abstraction refinement proce-
dures for a class of node predicates.

We now show that according to Definition 3.2.14 the class of modal node pred-
icates MNP[n] for a single binary predicate symbol n is closed under weakest lib-
eral preconditions. That means, for every command c and modal node predicate
p, we can find a subset Pred of modal node predicates in MNP[n] such that the
context-sensitive abstract wlp for p and Pred does not lose precision with respect
to wlpc(p). This guarantees that even if the set Pred does not contain wlpc(p) ex-
plicitly, the Cartesian post is as precise as if wlpc(p) would be contained in the set
of abstraction predicates.

We have to consider every atomic command c that we discussed in Section
2.3.2. These commands can be divided into two groups:

• commands that update the values of program variables: x = t,

• commands that update the values of pointer fields: x->n = t.

We start with the first group of commands. Recall from Section 2.3.2 that the
weakest liberal precondition operator wlpc on formulas is defined as a syntactic
substitution. This substitution replaces each predicate symbol p by its predicate
update formula p′c.

For all atomic commands that change the value of a program variable, only the
update formula of the unary predicate symbol that corresponds to the updated
program variable differs from the predicate symbol itself. Fortunately, as shown in
Table 4.1, for those commands the predicate-update formulas correspond syntac-
tically to modal node predicates. Thus, the result of the substitution is guaranteed
to be a modal node predicate, too.

Proposition 4.4.1. For commands c of the form x = y, x = NULL, and x = y->n,
the class MNP[n] is closed under wlpc. Formally, for any modal node predicate p there is a

1The full logic µGF does not have finite modal property; see also [11].
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c p(v) p′c(v)

x = NULL x(v) null(v)
x = y x(v) y(v)
x = y->n x(v) y.〈n〉(v)

Table 4.1: Predicate-update formulas expressed in terms of modal node predicates.

finite subset of modal node predicates Pred such that:

∀S ∈ Store : wlp
#
c,α(S)(p) |=| wlpc(p).

Things get more complicated for the second class of commands. Consider again
our example with command c: z->n = y and node predicate x.〈n∗〉. The problem
of expressing wlpc(x.〈n

∗〉) is that the underlying relation n is changed by the com-
mand c. The operator wlpc replaces the predicate symbol n by its predicate-update
formula. Thus, if we compute the weakest liberal precondition according to wlpc

the result does not conform to the syntactic restrictions of modal node predicates,
i.e. wlpc(x.〈n

∗〉) is not contained in MNP[n]. However, we can give an equivalent
representation in the class of modal node predicates with guarded quantification
GMNP[n].

The command c may effect the validity of x.〈n∗〉 for some node u in two differ-
ent ways:

• it may destroy an outgoing n-path from u that passed z and made x.〈n∗〉
valid in the previous store, but false after executing c, or

• it may create a new outgoing n-path from u that passes z and was not present
in the previous store, but makes x.〈n∗〉 valid after executing c.

Thus, x.〈n∗〉 may be valid for some node after executing c if and only if there
already was an n-path from x not passing z and hence this path is not effected by
c, or c constructs a new path that starts from x and passes both z and y. These two
cases can be expressed in terms of GMNP[n]. The context information about the
node pointed to by z that is needed to express the second case precisely is covered
by a guarded universal constraint:

wlpc(x.〈n
∗〉) |=| (¬z).S〈n〉.(x∧¬z)(v) ∨ z ∧x.〈n∗〉 ∨

(¬z).S〈n〉.(y ∧¬z)(v) ∧ ∀v′.z(v′) → x.〈n∗〉(v′).

We generalize the above example. In a first step we use the extended class
GMNP[n] of modal node predicates with guarded quantification to express the pre-
cise wlp for each MNP[n] predicate. In a second step we eliminate the quantified
formulas, in order to obtain again pure modal node predicates. Finally, this will
allow us to show that MNP[n] is closed under wlpc according to Definition 3.2.14.

We introduce a function fc mapping modal node predicates to their weakest
liberal precondition expressed in GMNP[n].

Definition 4.4.2. Let c be a command of the form x->n = y. The function fc is induc-
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tively defined on the structure of modal node predicates as follows:

fc ∈ MNP[n] → GMNP[n]
fc(null) = null

fc(x) = x
fc(¬p) = ¬(fc p)

fc(p∧ q) = fc p ∧ fc q
fc(〈n〉.p) = ¬x ∧〈n〉.(fc p)

∨ x ∧∀v′.y(v′) → (fc p)(v
′)

fc(p.〈n〉) = (fc p∧¬x).〈n〉
∨ y ∧∀v′.x(v′) → (fc p)(v

′)
fc(p.U〈n〉.q) = (fc p∧¬x).U〈n〉.(fc q)

∨ (fc p).U〈n〉.(fc p∧x) ∧ ∀v′.y(v′) → (fc p∧¬x).U〈n〉.(fc q)(v
′)

fc(p.S〈n〉.q) = (fc p∧¬x).S〈n〉.(fc q ∧¬x)
∨ x∧(fc p).S〈n〉.(fc q)
∨ (fc p∧¬x).S〈n〉.(fc p∧ y ∧¬x)

∧ ∀v′.x(v′) → (fc p).S〈n〉.(fc q)(v
′)

fc(p.U[n].q) = (fc p∧¬x).U[n].(fc q)
∨ (fc p∧¬x).U[n].(fc p∧x∨ fc q)

∧ ∀v′.y(v′) → (fc p∧¬x).U[n].(fc q)(v
′)

fc(p.S[n].q) = ¬(¬fc q).S〈n〉.(¬fc q ∧¬y ∧x.[n])

∧




x ∧ (fc p∧¬y).S[n].(fc q)
∨ ¬x ∧ (fc p∧¬y).S[n].(fc q ∨ x)
∨ ¬x ∧ (fc p).S[n].(fc p∧ y ∧ false.[n]∨ fc q ∨x)

∧ ∀v′.x(v′) → (fc p∧¬y).S[n].(fc q)(v
′)

∧¬(¬fc q).S〈n〉.(¬fc q ∧x.[n])(v′)




Lemma 4.4.3. For any program variable x and any FOTC formula ϕ(v):

∀S ∈ Store : S |= ∃ v.x(v)∧ϕ(v) ⇐⇒ S |= ∀v.x(v) → ϕ(v).

Proposition 4.4.4. For commands c of the form x->n = y and any modal node predicate
p, fc(p) and wlpc(p) are equivalent on program stores, i.e.

∀S ∈ Store, u ∈ U : S, u |= fc(p) ⇐⇒ S, u |= wlpc(p).

From a GMNP[n] predicate p we can get back to a pure modal node predicate
by evaluating the quantified sub-formulas that occur in p. This means, given a
context Γ, for every quantified formula F occurring in p, we replace F by true or
false depending on whether Γ entails F .

The GMNP[n] predicates that we evaluate express weakest liberal precondi-
tions. In order to guarantee soundness, it is essential that the result of the eval-
uation is an under-approximation of the original predicate.

The process of evaluation is formalized by the function eval. The function eval

respects the polarity of quantified formulas, in order to ensure that the evaluation
indeed results in an under-approximation.

Definition 4.4.5. The function eval that evaluates quantified sub-formulas in GMNP[n]
predicates under a given context is defined on the structure of GMNP[n] as follows:

eval ∈ {true, false} → FOTC → GMNP[n] → MNP[n]

eval t Γ a = a, if a is an atom
eval t Γ (¬p) = ¬(eval (¬t) Γ p)

eval t Γ (p∧ q) = (eval t Γ p) ∧ (eval t Γ q)

. . .
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eval t Γ (∀v.x(v) → p(v)) =

{
t, if Γ |= ∀v.x(v) → (t ↔ (eval t Γ p))
¬t, otherwise

Proposition 4.4.6. Let p be a GMNP[n] predicate and let Γ be a closed FOTC formula. The
evaluation of p under true and Γ results in an under-approximation of p, i.e.

eval true Γ p |=Γ p.

Although the evaluation of quantified sub-formulas in general results in an
under-approximation of the original predicate, we can characterize sufficient con-
ditions such that the evaluation does not lose precision.

First of all we are not interested in the evaluation under arbitrary contexts. Ac-
cording to Definition 3.2.14, we only consider contexts Γ which are abstract stores
that result from the application of the abstraction function α to a single store S.

If the set of abstraction predicates Pred contains enough node predicates, there
will be no loss of precision, because for quantified sub-formulas F , as they occur in
GMNP[n], either all stores satisfying α(S) will also satisfy F , or all those stores will
satisfy the negation of F . In the following, we make more precise what is meant
by the term “enough”.

Lemma 4.4.7. Let S be some store and let Pred be the finite set of abstraction node predi-
cates. For any program variable x with x(v) ∈ Pred and formula ϕ(v) ∈ FPred :

either α(S) |= ∀v.x(v) → ϕ(v)

or α(S) |= ∀v.x(v) → ¬ϕ(v).

We now show that for a given GMNP[n] predicate, we can construct a set of ab-
straction predicates Pred such that the evaluation under abstract stores over Pred

does not lose precision. This allows us to prove closeness of MNP[n] under weakest
liberal preconditions.

We construct the set Pred using a closure operator that collects all MNP[n] pred-
icates that possibly occur as a sub-formula during the process of evaluation. This
guarantees that Lemma 4.4.7 is always applicable when a quantified sub-formula
is evaluated and ensures that we do not lose precision.

Definition 4.4.8. The closure cl maps a GMNP[n] predicate to a set of modal node predi-
cates as follows:

cl ∈ GMNP[n] → 2MNP[n]

cl(p) = cl1(p) ∪ cl2(p)

where cl1 and cl2 are inductively defined on the structure of p by:

cl1(a) = {a}, if a is an atom
cl1(¬p1) = {¬p′1 | p′1 ∈ cl1(p1) }

cl1(p1 ∧ p2) = { p′1 ∧ p
′
2 | p′1 ∈ cl1(p1) and p′2 ∈ cl1(p2) }

. . .

cl1(∀v.x(v) → p1(v)) = {true, false}

cl2(a) = ∅, if a is an atom
cl2(¬p1) = cl2(p1)

cl2(p1 ∧ p2) = cl2(p1) ∪ cl2(p2)

. . .

cl2(∀v.x(v) → p1(v)) = {x(v)} ∪ cl2(p1) ∪ cl1(p1).
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Lemma 4.4.9. Let p be a GMNP[n] predicate. The closure of p contains all possible modal
node predicates that may occur in the image of eval, i.e. for every closed FOTC formula Γ
and truth value t we have:

eval t Γ p ∈ cl1(p) and eval t Γ p ∈ cl(p).

Lemma 4.4.10. Let p be a GMNP[n] predicate and let

∀v.x(v) → q(v)

be some sub-formula of p then x(v) ∈ cl(p) and for every closed FOTC formula Γ and truth
value t:

eval t Γ q ∈ cl(p).

Proposition 4.4.11. Let p be a GMNP[n] predicate. If cl(p) ⊆ Pred then:

∀S ∈ Store : p |=|α(S) eval true (α S) p.

Corollary 4.4.12. Let c be a command of the form x->n = y and let p be an MNP[n]
predicate. If cl(fc p) ⊆ Pred then:

∀S ∈ Store : wlpc(p) |=|α(S) eval true (α S) (fc p).

Proposition 4.4.13. For commands c of the form x->n = y and any MNP[n] predicate
p there is a finite subset Pred of MNP[n] predicates such that:

∀S ∈ Store : wlp
#
c,α(S)(p) |=|α(S) wlpc(p).

From Propositions 4.4.1 and 4.4.13 we can finally conclude that MNP[n] is closed
under weakest liberal preconditions.

Theorem 4.4.14. For any atomic command c, the class of modal node predicates MNP[n]
is closed under wlpc.

The above result is a first step towards the development of an automated ab-
straction refinement procedure for modal node predicates. These procedures are
essential components of modern tools for automated formal verification. If the ab-
stract domain is not precise enough to verify a given property, it is refined by gen-
erating new abstraction predicates from spurious counterexamples in the abstract
system. The refinement continuous until the analysis succeeds in either proving
or disproving the property that is verified. In the case of a forward analysis, the
generation of new predicates typically relies on the computation of weakest liberal
preconditions.

Due to undecidability of the verification problem, termination of the refine-
ment loop is not guaranteed in general. However, we can give at least a termina-
tion argument for a restricted class of programs. If we compute weakest liberal
preconditions according to the algorithm given above, it is easy to see that only for
commands of the form:

c : x = y->n.

the function fc may introduce unbounded nesting of modal operators. Hence, if
we consider programs built up from atomic commands that are not of this form
then we only need a finite set of modal node predicates, in order to ensure that the
Cartesian post is precise with respect to the best abstract post. This is due to the
fact that for the remaining atomic commands the number of modal node predicates
that is needed to express wlpc is bounded by the number of program variables.
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Chapter 5

Case Study: Reversing
Singly-linked Lists

In this chapter we apply the techniques developed in the previous chapters to a
standard example in shape analysis: a program reversing a singly-linked list.

5.1 The Program Reverse

The program REVERSE is declared in Figure 5.1. We assume that initially the pro-
gram store contains one singly-linked list whose head is pointed to by program
variable x. The program reverses the list by following its n-pointer fields starting
from x and reversing each of them one by one. After the program has terminated
program variable y points to the head of the reversed list.

Our goal is to show that under the assumption that the input list is acyclic the
resulting reversed list will be acyclic, too. Although the acyclicity of the input
list is never violated during the program execution, for automated methods this
is a nontrivial property to check. The presence of destructive updates like cl51 in
program REVERSE makes it difficult to reason about reachability properties such as
acyclicity.

1We make the notational convention that for some program location l we write cl for the command
that is associated with l.

List x,y,t;

l0: y = NULL;
l1: while(x != NULL){
l2: t = y;
l3: y = x;
l4: x = x->n;
l5: y->n = t;

}
l6:

Figure 5.1: Program REVERSE
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5.2 Choosing Abstraction Predicates

For a singly-linked list pointed to by program variable y we express acyclicity in
terms of modal node predicates as follows:

acyclicy
def
= ∀v.y(v) → 〈n∗〉.null(v).

The formula expresses that there is a path from the node pointed to by program
variable y that ends in NULL. Since we are dealing with lists, we can use the modal
node predicate 〈n∗〉.null(v) instead of [n∗].null(v) to express acyclicity.

In order to come up with a suitable set of abstraction predicates, we compute
weakest liberal preconditions of the node predicates that occur in the formula
acyclicy. Starting from program location l6 we compute wlpc for the modal node
predicates y(v) and 〈n∗〉.null following the commands in the program backwards.
Thereby, we make use of the fact that wlpc can be expressed in terms of modal node
predicates, as it is shown in Section 4.4. Every newly observed node predicate that
is needed to express wlpc is added to the set of abstraction predicates.

If we compute weakest liberal preconditions for one iteration on the commands
in the body of the while-loop, we generate the following modal node predicates:

x, y, t, null , (¬y).U〈n〉.null , (¬x).U〈n〉.null , 〈n∗〉.y, 〈n∗〉.x, 〈n∗〉.null .

If we continued naı̈vely refining the above set of node predicates, the command
cl4 would cause trouble. The operator wlpcl4 causes every occurrence of x in one of
the node predicates to be replaced by x.〈n〉. This would generate modal node pred-
icates with unbounded nested modal operators and result in a non-terminating
refinement loop. In order to circumvent this problem, we add the node predicate
x.〈n∗〉 as a widening of x.〈n〉. We will use a splitting operator (cf. Section 3.2.6) in
order to handle nondeterminism caused by imprecise abstract wlps.

Computing wlpcl5 of the node predicate x.〈n∗〉 generates two additional modal
node predicates:

(¬y).S〈n〉.(x∧¬y) and (¬y).S〈n〉.x.

Our experiments showed that if we omit the node predicates 〈n∗〉.y, 〈n∗〉.x, and
(¬y).S〈n〉.x, the remaining set of node predicates still gives us a sufficiently precise
abstraction for proving our target property. Since we want to focus on the essen-
tial aspects of the example, we keep the set of abstraction predicates as tight as
possible. Thus, our choice of abstraction predicates is as follows:

Pred
def
= { x, y, t, null , (¬y).U〈n〉.null , (¬x).U〈n〉.null , x.〈n∗〉,

(¬y).S〈n〉.(x∧¬y), 〈n∗〉.null }.

5.3 Splitting Operator

In this section we discuss the splitting operator that we will use to handle the non-
determinism in the abstract transition system that is caused by command cl4.

We want to ensure that each abstract store that occurs during the analysis has
precise information about the nodes on which the program variables point to.
More precisely, we want to ensure that for each program variable x all abstract
stores contain exactly one monomial in which the node predicate x occurs posi-
tively.
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splitSingletonc[p] (Ψ as ∀v.ψ(v): AbsStore[Pred ]): AbsDom[Pred ∪ {wlpc(p)}]
Ψ′:= false

for each monomial P over Pred with P |= ψ do
if P 6|=Ψ wlp

#
c,Ψ[Pred ](¬p) then

if P |=Ψ wlp
#
c,Ψ[Pred ](p) or isSingleton(P ) then

Ψ′ := Ψ′ ∨ ∀v.(P ∧wlpc(p)) ∨ (ψ ∧¬P ∧¬wlpc(p))
else

Ψ′ := Ψ′ ∨ ∀v.(P ∧wlpc(p)) ∨ (ψ ∧¬wlpc(p))
return Ψ′

Figure 5.2: A simple splitting operator for splitting on node predicates denoting
singleton sets.

The weakest liberal precondition for command cl4 and node predicate x is
given by:

wlpcl4(x) = x.〈n〉.

Unfortunately, x.〈n〉 can not be precisely expressed in terms of node predicates in
Pred . Thus, computing the Cartesian post for command cl4 will result in abstract
stores that do not possess precise information about program variable x. In order
to address this problem, we introduce a splitting operator for command cl4 that
splits on node predicate x.

The pseudo code describing the splitting operator is given in Figure 5.2. It
can be applied for splitting on node predicates p that are guaranteed to denote
singleton sets. This is in particular the case for node predicates corresponding to
program variables.

The splitting operator splitSingletonc[p] takes as argument an abstract store Ψ
over Pred . It looks at each abstract node P in Ψ and checks whether some concrete
node represented by P may satisfy p after execution of c. If there are both nodes
in P that satisfy p and nodes that do not satisfy p after c is executed then P is split
into two separate abstract nodes, one entailing wlpc(p) and one entailing wlpc(¬p).

If there is more than one abstract node P in Ψ that represents nodes satisfying
p after c, we use the fact that p denotes a singleton and split the complete abstract
store. Each of the resulting abstract stores contains exactly one of the correspond-
ing abstract nodes.

The function isSingleton checks whether some other node predicate denoting a
singleton occurs in P . If this is the case, it indicates that P need not be split. In our
example node predicates denoting singletons are: x, y, t, and null .

It is not hard to see that splitSingletonc[p] is indeed a splitting operator according
to Definition 3.2.17. However, it is not the most precise splitting operator. This is
due to the fact that we do not check consistency of the remaining abstract nodes in
Ψ with respect to abstract nodes that result from splitting.

In order to instantiate splitSingletonc[p] for command cl4, we only need to pro-
vide the context-sensitive abstract wlps for cl4 and x. This is done in the following
section.
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c p wlp#
c [Pred ](p) wlp#

c [Pred ](¬p)

cl0 y null ¬null

(¬y).U〈n〉.null 〈n∗〉.null ¬〈n∗〉.null

(¬y).S〈n〉.(x∧¬y) x.〈n∗〉 ∧¬(null ∧x) ¬x.〈n∗〉
∨ null ∧x

cl2 t y ¬y

cl3 y x ¬x
(¬y).U〈n〉.null (¬x).U〈n〉.null ¬(¬x).U〈n〉.null

(¬y).S〈n〉.(x∧¬y) false true

cl4 x false ¬x.〈n∗〉
∨ x∧〈n∗〉.null

cl5 x.〈n∗〉 x
∨ (¬y).S〈n〉.(x∧¬y)

¬x.〈n∗〉 ∧ y
∨ ∀v.y → ¬x.〈n∗〉

(¬y).S〈n〉.(x∧¬y) (¬y).S〈n〉.(x∧¬y) ¬x.〈n∗〉
〈n∗〉.null null

∨ (¬y).U〈n〉.null

∨ y∧∀v.t→ (¬y).U〈n〉.null

y∧ t
∨ ∀v.y → t

(¬y).U〈n〉.null (¬y).U〈n〉.null ¬wlp#
c (p)

(¬x).U〈n〉.null (¬x).U〈n〉.null ∧(¬y).U〈n〉.null

∨ y∧¬x∧∀v.t → (¬x).U〈n〉.null

x∧¬null

Table 5.1: Abstract context-sensitive wlps of node predicates in Pred for atomic
commands in REVERSE.

5.4 Context-sensitive Abstract Weakest Liberal Precon-
ditions

We need to give the context-sensitive abstract wlp for each of the chosen abstrac-
tion predicates. In order to obtain a representation that is independent of the con-
text, we express them in terms of GMNP[n]. Evaluating the quantified formulas
under a given context, as it is formalized in Section 4.4, results in the appropriate
context-sensitive version.

Table 5.1 lists the context-sensitive abstract wlps for node predicates in Pred .
Node predicates that are not explicitly listed in the table do not change under the
appropriate command. Since for command cl4 we split on the node predicate x,
we only give the context-sensitive abstract wlp for x itself. This is the only one that
is needed in order to compute the operator splitSingletoncl4 [x].

For the computation of the Cartesian post with splitting that is used for com-
mand cl4, we extend Pred by node predicate x.〈n〉. The context-sensitive abstract
wlps over the refined set of abstraction predicates are given in Table 5.2.

5.5 Computing the Least Fixed Point
Before we can eventually compute the least fixed point of program REVERSE, we
first need to model the data flow equations and give the abstraction of the initial
set of stores under Pred .

The abstract domain AbsDom[Pred ] only describes the abstraction of the pro-
gram stores, but contains no information regarding the program locations. We
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c p wlp#
c [Pred ∪ {x.〈n〉}](p) wlp#

c [Pred ∪ {x.〈n〉}](¬p)

cl4 x x.〈n〉 ¬x.〈n〉
x.〈n〉 x∧x.〈n〉 ¬x.〈n∗〉

∨ x.〈n〉 ∧〈n∗〉.null

∨ x∧¬x.〈n〉
x.〈n∗〉 x.〈n〉

∨ x.〈n∗〉 ∧¬x
∨ x.〈n∗〉 ∧¬〈n∗〉.null

¬x.〈n∗〉
∨ x∧¬〈n∗〉.null

(¬y).S〈n〉.(x∧¬y) x.〈n〉 ∧ ¬y
∨ x.〈n∗〉 ∧¬x
∧∀v.y → (x∧¬x.〈n〉)

∨ x.〈n∗〉 ∧¬〈n∗〉.null

∧∀v.y → (x∧¬x.〈n〉)

y
∨ ¬x.〈n∗〉
∨ x∧¬〈n∗〉.null

(¬x).U〈n〉.null null

∨ ¬x.〈n〉 ∧(¬x).U〈n〉.null

¬wlp#
c (p)

Table 5.2: Abstract context-sensitive wlps for command cl4 over the refined set of
node predicates.

represent abstract states as tuples over AbsDom[Pred ], where the i-th component
corresponds to the abstract stores at the i-th program location. The partial order on
those tuples as well, as meat and join operations can be defined as the point-wise
extensions of the corresponding operations on AbsDom[Pred ].

The following abstract post operator on tuples over AbsDom[Pred ] models the
data flow equations in program REVERSE and gives us our final abstract post oper-
ator that we will use for the analysis:

post# ∈ (AbsDom[Pred ])7 → (AbsDom[Pred ])7

post#〈Ψ0, . . . ,Ψ6〉 = 〈l0 : false,

l1 : post
#
cl0,Cart(Ψ0) ∨ post

#
cl5,Cart(Ψ5),

l2 : (∀v.x(v) → ¬null(v)) ∧ Ψ1,

l3 : post
#
cl2,Cart(Ψ2),

l4 : post
#
cl3,Cart(Ψ3),

l5 : post
#
cl4,splitSingletoncl4

[x](Ψ4),

l6 : (∀v.x(v) → null(v)) ∧ Ψ1〉.

The initial abstract state init# is given by the tuple:

init#
def
= 〈Ψinit, false, false, false, false, false, false〉

where Ψinit is the abstraction of the initial set of stores init. The set init contains
all singly-linked lists that have at least one element and whose head is pointed
to by program variable x. The abstraction of init under Pred , is described by the
following table:

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null

1 ∗ ∗ 0 1 ∗ ∗ 0 1
Ψinit 0 ∗ ∗ 0 1 ∗ ∗ 1 1

0 ∗ ∗ 1 1 ∗ 1 1 1

Each row in the table represents an abstract node in Ψinit. If a cell in a row contains
the value 1, the corresponding predicate occurs positively in the abstract node, the
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value 0 means it occurs negated, and ∗ means it does not occur at all. The first row
represents the head of the list pointed to by x, the third row represents NULL, and
the second row represents all remaining nodes in the list.

In order to provide a better intuition for the set of concrete stores that is repre-
sented by some abstract store, we use the graph notation from [27] which they use
for the representation of three-valued logical structures.

This graph notation is similar to the one we introduced in Section 2.3.1, in or-
der to represent two-valued logical structures. The nodes in such a graph give
the partitioning of the universe of the represented logical structures into disjoint
nonempty subsets. Singly-lined nodes represent singleton sets, whereas doubly-
lined summary nodes may represent arbitrary large subsets of concrete nodes.

Predicate symbols over the nodes in the graph may be interpreted indefinitely,
denoted by a dashed line between the corresponding nodes. The meaning of such
a dashed line is that each logical structure represented by the graph can interpret
the corresponding predicate symbol arbitrarily on nodes that are represented by
the appropriate abstract nodes.

For each abstract store Ψ, we give a set of such graphs that represents the same
set of concrete stores as Ψ. The initial abstract store Ψinit represents the same set of
concrete stores as the following two graphs:

y, t null

x
n

n

n

nully, t

x
n

We are now ready to compute the least fixed point of post# under init#. The
individual steps of the fixed point iteration are given in Appendix B. If we project
lfp(post#(init#)) on the 7th component, i.e. the one corresponding to program
location l6, we get the following abstract stores:

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null

0 1 0 0 0 0 0 1 1

l6 : 0 0 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1

null , t, x

y

0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1

null , x

y

t
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0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1

null , x

y

t

One can see that each of the abstract stores contains an abstract node which
is inconsistent with respect to the other abstract nodes. The corresponding rows
in the table are marked gray. An abstract node P is inconsistent in some abstract
store Ψ, if for all concrete stores represented by Ψ there is no node satisfying P .
In the concrete stores represented by the abstract stores above it is always the case
that program variable x points to NULL. Thus, NULL is the only possible node that
is reachable by program variable x. This makes the marked abstract nodes incon-
sistent, because they are supposed to be reachable by x but are not NULL.

The inconsistent abstract nodes appear due to the use of the splitting operator
splitSingletoncl4 [x]. Replacing this splitting operator with the most precise splitting
operator for command cl4 and node predicate x would eliminate all inconsisten-
cies.

It may appear disturbing that the information regarding the n predicate for the
nodes pointed to by program variables y and t is rather imprecise. This is due to
the fact that the appropriate reachability information is not expressible in terms of
abstraction predicates in Pred .

However, the set of abstraction predicates was chosen in order to synthesize a
specific invariant, namely that the output list of program REVERSE is always acyclic.
This invariant is indeed entailed by the least fixed point. All abstract nodes in
which the node predicate y occurs positively entail the node predicate 〈n∗〉.null .
Thus, in all represented concrete stores it is possible to reach NULL from program
variable y. This implies that all corresponding output lists are indeed acyclic.
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Chapter 6

Related Work

There is a lot of recent work on shape analysis. In the following we compare some
of these works to our own results.

6.1 Abstract Domains for Shape Analysis

Abstract domains designed for shape analysis [17, 5, 29, 26] are based on several
variants of shape graphs. The use of three-valued logical structures as abstract do-
main is a generalization of this idea. In the following, we discuss this particular
approach more thoroughly.

A shape analysis algorithm based on three-valued logic is given in [27]. The
TVLA tool [21] implements this algorithm. The abstract domain used in this ap-
proach is given by sets of three-valued logical structures. Three-valued logical
structures are used to finitely abstract infinite sets of two-valued logical structures
that correspond to sets of program stores.

Their notion of canonical abstraction relates sets of two-valued logical structures
with finite sets of three-valued logical structure. The abstraction is parameterized
by a finite set of unary abstraction predicates on nodes. It collapses all subsets
of nodes in an abstracted structure whose elements are indistinguishable under
the abstraction predicates to single abstract nodes in the universe of the resulting
three-valued logical structure.

The interpretation of a predicate symbol in the three-valued logical structure is
given by a conservative abstraction of its interpretation on the represented nodes
in the abstracted two-valued structures. This is accomplished by using the indef-
inite truth value in the three-valued logic. The interpretation of some predicate
symbol p on abstract nodes has the indefinite value, if the interpretation of p on the
represented nodes in the abstracted two-valued structure is ambiguous.

The computation of the abstract post operator is based on predicate-update
formulas, i.e. abstract weakest liberal preconditions of abstraction predicates. The
precision of the abstract post operator can be improved by adding instrumenta-
tion predicates. Instrumentation predicates preserve certain information about the
concrete structures in the abstraction, e.g. acyclicity or sharing. The additional
predicates can be used to increase the precision of predicate-update formulas. So
called focus and coerce operations are used to obtain more precise results in the
presence of nondeterminism in the abstract transition system.

We used several ideas from this work. In particular, we adapted the representa-
tion of concrete program stores as two-valued logical structures. However, we do
not need three-valued logic, because we symbolically abstract sets of stores using
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formulas. Canonical abstraction is the basis of our own node predicate abstraction.
Our framework does not provide the ability to define additional instrumentation
predicates. We want to use automated abstraction refinement instead. If the two
operations focus and coerce are combined into a single operation on formulas, the
result corresponds to a splitting operator as given in Section 3.2.6.

A translation from three-valued logical structures, as they arise in [27], into
an isomorphic representation in two-valued first-order logic is first given in [30].
Shape analysis constraints [19] generalize this result to a Boolean algebra of first-
order formulas that is isomorphic to the same class of three-valued logical struc-
tures. The translation of [30] relates each three-valued structure to a conjunction of
three constraints: a totality constraint expressing that every node is represented by
some abstract node; an existential constraint expressing the non-emptiness of each
abstract node; and a constraint expressing the values of binary predicate symbols
on abstract nodes.

Our notion of an abstract store exactly corresponds to the totality constraint
in the translation above. Consequently, for the same set of abstraction predicates
our abstract domain is weaker as the one used in TVLA. However, we indicated
in Section 3.1.4 that constraints for the values of binary predicate symbols can be
translated to additional unary abstraction predicates. It may also be possible to
strengthen our abstract stores by adding existential constraints, but existential con-
straints complicate the application of Cartesian abstraction.

6.2 Symbolic Methods in Shape Analysis
In [31] an algorithm for the symbolical computation of most precise operators for
shape analysis is given. The paper describes an algorithm implementing an as-
sume operation. The operator assume[ϕ](a) takes a closed formula ϕ and a set of
three-valued logical structures a and computes the best under-approximation of
a satisfying the formula ϕ, provided that a decision procedure for the underlying
logic exists. The assume operation allows inter-procedural shape analysis based
on assume-guarantee reasoning. Moreover, assume can be instantiated to compute
best abstraction functions, most-precise post operators, and the meet operation for
abstract domains of three-valued logical structures.

Although this algorithm is primarily designed to be applied in the context of
abstract domains of three-valued logical structures, a modified version could be
used to compute most precise splitting operators.

Dams and Namjoshi [9] use predicate abstraction and model checking for shape
analysis. They abstract pointer programs by Boolean programs using classical pred-
icate abstraction [12] based on state predicates. After the predicate abstraction step
they apply standard finite state model checking techniques to analyze the obtained
Boolean program. Their abstraction predicates describe properties of the shape of
the program stores, including reachability properties. They give a weakest precon-
dition calculus, in order to compute predicate-updates and provide heuristics for
abstraction refinement. The calculus makes use of generalized reachability pred-
icates. These predicates are parameterized by sets of addresses that have to be
avoided on a path. The calculus allows to express weakest preconditions of reach-
ability properties in a similar way as it is done in this work using modal node
predicates.

Although both their and our work use techniques from predicate abstraction,
our abstract domain is induced by unary node predicates instead of nullary state
predicates. The size of our abstract domain is triple exponential in the number of
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abstraction predicates, whereas the abstract domain in predicate abstraction is only
doubly exponential. Hence, in order to get equally precise abstract domains in both
frameworks, predicate abstraction needs 2n state predicates compared to n node
predicates in our framework. However, the lower bound for the complexity of the
abstract post operator is in both frameworks linear in the number of abstraction
predicates. Therefore, the use of unary abstraction predicates in our framework
gains a better ratio between precision and complexity.

6.3 Decidable Logics for Shape Analysis
Decidable logics that are expressive enough to be useful in shape analysis are rare.
Weak monadic second order logic over trees is an example for a logic that is decid-
able and used in this application domain [22]. In the following, we discuss some
more recent results on decidable logics that have been primarily studied for their
potential application in shape analysis.

In [15] the boundary between decidability and undecidability for transitive clo-
sure logics is explored. The authors introduce the logic ∃∀(DTC+[E]) and prove its
decidability. This logic is a fragment of first-order logic with transitive closure ad-
hering the following restrictions: the signature contains just one binary predicate
symbol E; formulas are in ∃∀-prenex form; and positive applications of transitive
closure are only allowed for deterministic paths of the relation E. They show that
weakening any of the above restrictions results in an undecidable logic.

Transitive closure logics can express reachability relations between pairs of
variables, while guarded fixed point logics – and thus modal node predicates –
can do so only for pairs of unary relations. On the other hand, guarded fixed point
logics remain decidable without being restricted in the number of binary predicate
symbols. This makes it easier to express properties of more complex data struc-
tures. However, [16] gives a way to handle data structures that are intractable due
to such limitations by simulating them on structures for decidable logics. The au-
thors show that many data structures appearing in practical application, such as
trees and doubly-linked lists, can be handled via simulation using just a single bi-
nary predicate symbol.

Role logic [18] is a variable free logic equivalent to first-order logic with tran-
sitive closure and designed as a specification and annotation language for shape
analysis. The authors identify the decidable fragment RL2 of role logic. RL2 is as
expressive as two-variable logic with counting. In [20] it is shown that the syn-
tax of RL2 can be extended by spatial conjunction from separation logic [25], while
remaining decidable. Spatial conjunction provides an elegant way to express con-
catenation of records.

Counting constraints – and thus RL2 – allow the specification of the precise alias
relationship between heap objects. This particularly includes the ability to express
information about sharing. Modal node predicates do not offer such expressive-
ness. On the other hand, RL2 cannot express reachability, which was our primary
intention to propose modal node predicates.
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Chapter 7

Conclusion

7.1 Summary

The goal of this work was to obtain a framework for symbolic shape analysis. We
proposed an appropriate symbolic abstract domain. Conforming to the abstraction
techniques that are used in state-of-the-art shape analysis algorithms such as [27],
this abstract domain is parameterized by node predicates.

We used techniques from predicate abstraction to symbolically abstract pro-
grams manipulating heap-allocated data structures by Boolean heap programs.
Boolean heap programs are characterized as a two-step Cartesian abstraction of
the best abstract post operator post# on the chosen abstract domain. If the abstract
transition system behaves deterministically, Boolean heap programs do not lose
precision with respect to post#.

We identified the class of modal node predicates, a fragment of first-order logic
with transitive closure. Modal node predicates can be used for the analysis of
reachability properties for linked data structures. We gave a preliminary result
regarding decidability of the satisfiability problem for modal node predicates via
translation into guarded fixed point logic. Moreover, we showed that for list-like
structures, this class of node predicates is closed under weakest liberal precondi-
tions. Both results are useful for the development of an automated abstraction
refinement procedure for modal node predicates.

7.2 Future Work

The primary task for future work should be the development of a tool that imple-
ments the presented framework and allows a practical evaluation of the developed
techniques. However, there is a number of interesting theoretical questions open
for future work. We discuss some of them in the following.

7.2.1 Precision of the Abstract Domain

Our notion of an abstract store describes the covering of nodes in concrete stores
by abstract nodes, i.e. the equivalence classes of nodes induced by the chosen ab-
straction predicates. However, it is a bit disturbing that an abstract store does not
require each of its abstract nodes to be non-empty. The decision that we restrict
ourselves to universal constraints over abstract nodes was made, in order to sim-
plify the application of Cartesian abstraction. An interesting question is, whether
the abstract domain can be made more precise by allowing existential constraints
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over abstract nodes, while still using Cartesian abstraction for the construction of
Boolean heap programs.

7.2.2 Automated Abstraction Refinement
We gave preliminary results for the development of an automated abstraction re-
finement procedure for modal node predicates. However, there are open issues
that still have to be solved.

We did not yet answer the question, whether the satisfiability problem for
modal node predicates restricted to the class of program stores is decidable. The
main problem lies in the treatment of functionality constraints, as they appear in
the integrity formulas that define the set of program stores. However, a decision
procedure for this problem is a key tool for the automated derivation of context-
sensitive abstract weakest liberal preconditions. These are needed for the construc-
tion of Boolean heap programs. Hence, this is a main prerequisite to use modal
node predicates in a fully automated analysis.

A second open issue is that, so far, we only showed closeness under wlp for
the class of modal node predicates over a single binary predicate symbol. Hence,
the application of modal node predicates is restricted to list-like data structures.
In order to use them for the analysis of more complex data structures, we need to
extend this result to an arbitrary number of binary predicate symbols.

7.2.3 Beyond Safety
Temporal properties of transition systems can be divided into two classes: safety
properties and liveness properties. Roughly spoken: a safety property specifies
the absence of finite error traces, whereas a liveness property specifies the absence
of infinite error traces.

Our approach abstracts infinite state systems by finite state systems. The finite
state abstraction is used to synthesize state invariants, i.e over-approximations of
the reachable set of states of the analyzed system. However, state invariants cor-
respond to safety properties. The information needed for the analysis of liveness
properties gets lost during the finite state abstraction.

Transition invariants [24] capture both safety and liveness properties. A transi-
tion invariant is an over-approximation of the program’s transition relation. Transi-
tion predicate abstraction [23] is a framework for the automatic synthesis of transition
invariants. It solves the limitations of predicate abstraction by replacing the con-
struction of a fixed point operator on an abstract domain of sets of abstract states
with the construction of a fixed point operator on an abstract domain of binary
relations on abstract states.

In analogy to predicate abstraction the abstract domain is parameterized by
a set of transition predicates. Transition predicates are constraints denoting binary
relations over states. It is a challenging task to find a suitable class of transition
predicates for shape analysis that could be used to treat both safety and liveness
properties.
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Appendix A

Proofs

Proposition 2.1.4. For a transition system S the following is equivalent:

(i) R is total and deterministic,

(ii) p̃re is a homomorphism on the power set Boolean algebra of State.

Proof. “(i) ⇒ (ii)”. Let the transition relation R be total and deterministic. By
Proposition 2.3.7 (ii) we know that p̃re distributes over set union. Thus, in order
to prove that p̃re is a homomorphism on the power set Boolean algebra of State, it
suffices to show that p̃re commutes with set complementation. For S ⊂ State, let S
denote the complement of S. We have:

s ∈ p̃re(S′) ⇒ ∀s′ ∈ State : (s, s′) ∈ R ⇒ s′ ∈ S′

⇒ ∃s′ ∈ State : (s, s′) ∈ R and s′ ∈ S′ (R total)
⇒ ∃s′ ∈ State : (s, s′) ∈ R and s′ 6∈ S′

⇒ s 6∈ p̃re(S′)

⇒ s ∈ p̃re(S′)

s ∈ p̃re(S′) ⇒ ∃s′ ∈ State : (s, s′) ∈ R and s′ 6∈ S′

⇒ ∀s′ ∈ State : (s, s′) ∈ R ⇒ s′ 6∈ S′ (R deterministic)

⇒ ∀s′ ∈ State : (s, s′) ∈ R ⇒ s′ ∈ S′

⇒ s ∈ p̃re(S′)

Thus we have p̃re(S′) = p̃re(S′).

“(ii) ⇒ (i)”. Assume p̃re is a homomorphism on the power set Boolean alegra
of State. If State is the empty set then R is the empty relation and thus total and
deterministic. If otherwise State is non-empty, assume that R was not total. Then
there exists s ∈ State such that:

∀s′ ∈ State : (s, s′) 6∈ R

⇒ ∀S ⊆ State : s ∈ p̃re(S)

⇒ ∀S ⊆ State : s ∈ p̃re(S) and s ∈ p̃re(S)

⇒ ∀S ⊆ State : s 6∈ p̃re(S) and s ∈ p̃re(S)

⇒ ∀S ⊆ State : p̃re(S) 6= p̃re(S)
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which contradicts the fact that p̃re commutes with set complementation. Now as-
sume R was not deterministic then there are s, s1, s2 ∈ State such that

s1 6= s2 and (s, s1) ∈ R and (s, s2) ∈ R

⇒ s 6∈ p̃re({s1}) and s 6∈ p̃re({s1})

⇒ p̃re({s1}) 6= p̃re({s1})

which again gives us a contradiction.

Proposition 2.1.7. I ⊆ State is an inductive state invariant if and only if it is closed
under the operator F , i.e. F (I) ⊆ I .

Proof. Let I be an inductive state invariant. Since I is a state invariant, we have
reach ⊆ I and therefore init ⊆ I . Since I is inductive, we have post(I) ⊆ I . Hence,
we have:

F (I) = init ∪ post(I) ⊆ I.

Let I be closed under the operator F , i.e. F (I) ⊆ I . We have by monotonicity of F :

reach = lfp(F ) =
⋂

{S ⊆ State | F (S) ⊆ S }.

From this we can conclude reach ⊆ I . Moreover, by definition of F , we have
F (I) ⊆ I implies post(I) ⊆ I . Hence, I is an inductive state invariant.

Proposition 2.3.2. The operators ext-postc and ext-p̃rec form a Galois connection on the
power set lattice of extended stores.

Proof. Follows immediately from the definitions of ext-postc and ext-p̃rec on sets of
extended stores and the fact that postc and p̃rec form a Galois connection on the
power set lattice of stores.

Proposition 2.3.3. The relation c
−→ is total and deterministic if and only if ext-p̃rec is a

homomorphism on the power set Boolean algebra of extended stores.

Proof. Follows immediately from the definition of p̃rec on sets of extended stores
and Proposition 2.1.4.

Proposition 2.3.5. If the relation c
−→ is total and deterministic and if for every predicate

symbol p there exists a predicate-update formula p′c then the extended wlp of an FOTC for-
mula ϕ can be computed by substituting syntactically all occurrences of predicate symbols
in ϕ with their predicate-update formulas:

ext-p̃rec(JϕK) = Jϕ[p′c(v1, . . . , vn)/p(v1, . . . , vn)]K.

Proof. By structural induction on ϕ.
ϕ = p(v1, . . . , vn). By definition of predicate-update formulas we have:

ext-p̃rec(Jp(v1, . . . , vn)K) = Jp′c(v1, . . . , vn)K = Jϕ[p′c/p]K.

ϕ = ϕ1 ∨ϕ2. We have:

ext-p̃rec(Jϕ1 ∨ϕ2K) = ext-p̃rec(Jϕ1K ∪ Jϕ2K)
= ext-p̃rec(Jϕ1K) ∪ ext-p̃rec(Jϕ2K) (by Prop. 2.3.3)
= Jϕ1[p

′
c/p]K ∪ Jϕ2[p

′
c/p]K (Ind. hypothesis)

= Jϕ1[p
′
c/p]∨ϕ2[p

′
c/p]K

= Jϕ[p′c/p]K
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ϕ = (TC v1, v2.ϕ1(v1, v2))(v, v
′). Let S be some store and β an assignment. We

have:

(S, β) ∈ ext-p̃rec(JϕK)
⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v

′ = un and
∀1 ≤ i < n : postc(S), β[v1 7→ ui, v2 7→ ui+1] |= ϕ1(v1, v2)

( c
−→ total and deterministic)

⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v
′ = un and

∀1 ≤ i < n : (postc(S), β[v1 7→ ui, v2 7→ ui+1]) ∈ Jϕ1(v1, v2)K
⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v

′ = un and
∀1 ≤ i < n : ext-postc((S, β[v1 7→ ui, v2 7→ ui+1])) ∈ Jϕ1(v1, v2)K
(Def. of ext-postc)

⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v
′ = un and

∀1 ≤ i < n : (S, β[v1 7→ ui, v2 7→ ui+1]) ∈ ext-p̃rec(Jϕ1(v1, v2)K)
(by Prop. 2.3.2)

⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v
′ = un and

∀1 ≤ i < n : (S, β[v1 7→ ui, v2 7→ ui+1]) ∈ Jϕ1[p
′
c/p](v1, v2)K

(Ind. hypothesis)
⇐⇒ ∃u1, . . . , un ∈ U : β v = u1, β v

′ = un and
∀1 ≤ i < n : S, β[v1 7→ ui, v2 7→ ui+1] |= ϕ1[p

′
c/p](v1, v2)

⇐⇒ S, β |= ϕ[p′c/p]

⇐⇒ (S, β) ∈ Jϕ[p′c/p]K

All remaining cases follow similar argumentations.

Proposition 2.3.7. If c
−→ is total and deterministic then for a store S, FOTC formula ϕ

and assignment β, we have:

S, β |= wlpc(ϕ) ⇐⇒ postc(S), β |= ϕ.

Proof.

S, β |= wlpc(ϕ) ⇐⇒ (S, β) ∈ ext-p̃rec(JϕK) (Def. of wlpc and Prop. 2.3.5)

⇐⇒ ∀S′ : S
c

−→ S′ ⇒ (S′, β) ∈ JϕK (Def. of ext-p̃rec)

⇐⇒ (postc(S), β) ∈ JϕK ( c
−→ total and determinstic)

⇐⇒ postc(S), β |= ϕ

Proposition 3.1.6. The function γ is a complete meet-morphism and a complete join-
morphism.

Proof. Follows easily from the semantics of FOTC formulas.

Proposition 3.1.8. Abstraction function α and concretisation function γ form a Galois
connection between the posets 〈2Store ,⊆〉 and 〈AbsDom , |=〉.

Proof. By Proposition 3.1.6 we know that the function γ is a complete meet-mor-
phism. Thus, by definition of α and Proposition 2.1.9 we get that α and γ form a
Galois connection.
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Theorem 3.1.10 (Characterization of Best Abstraction). Let M be a set of program
stores. The image of M under α is characterized as follows:

α(M) |=|
∨

S∈M

∀v.
∨

u∈US

PS,u(v).

Proof. Since α and γ form a Galois connection, we know by Proposition 2.1.9 that
α distributes over set union on the concrete lattice, i.e. we have:

α(M) =
∨

S∈M

∧
{Ψ ∈ AbsDom | S |= Ψ }.

Thus, it suffices to consider the abstraction of a single store S ∈ M and it remains
to prove:

α(S) |=| ∀v.
∨

u∈US

PS,u(v).

From the definition of PS,u for u ∈ US it is clear that we have:

S |= ∀v.
∨

u∈US

PS,u(v).

Hence, we can immediately conclude:

α(S) |= ∀v.
∨

u∈US

PS,u(v).

It remains to prove the right-to-left direction of the congruence. The meet of all
formulas in AbsDom that are valid in S must be a single abstract store, rather then
a disjunction of abstract stores. If it was a disjunction of abstract stores then S
would already satisfy one of its disjuncts contradicting the fact that it is the meet.
Hence, there must be some formula over node predicates ψ(v) ∈ FPred such that:

∧
{Ψ ∈ AbsDom | S |= Ψ } |=| ∀v.ψ(v).

Let S′ ∈ Store such that
S′ |= ∀v.

∨

u∈US

PS,u(v).

Given some node u′ ∈ US′

, there must be some node u ∈ US such that S′, u′ |=
PS,u(v). Since PS,u(v) is a monomial over Pred satisfied for u in S, it must entail
any other Boolean combination of node predicates that is satisfied for u in S. In
particular we must have PS,u(v) |= ψ(v). From this we can infer that S ′, u′ |= ψ(v)

holds, too. Since u′ was chosen free in US′

, we have S′ |= ∀v.ψ(v) and thus S′ |=
α(S). Hence, we have:

∀v.
∨

u∈US

PS,u(v) |= α(S).

Proposition 3.2.3. For a given context Γ, the context-sensitive abstract operators have
the following properties:

(i) post
#
Γ and wlp

#
Γ form a Galois connection between the two posets 〈FPred , |=Γ〉 and

〈FPred , |=post(γ(Γ))〉, formally:

∀ϕ, ψ ∈ FPred : post
#
Γ (ϕ) |=post(γ(Γ)) ψ ⇐⇒ ϕ |=Γ wlp

#
Γ (ψ),
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(ii) post
#
Γ and wlp

#
Γ are monotone,

(iii) post
#
Γ ◦wlp

#
Γ is reductive,

(iv) wlp
#
Γ ◦ post

#
Γ is extensive,

(v) post
#
Γ distributes over disjunctions,

(vi) wlp
#
Γ distributes over conjunctions.

Proof. We prove properties (ii), (iii), and (iv). Properties (i), (v), and (vi) then follow
from the general properties of Galois connections given in Proposition 2.1.9.
Proof of (ii). Let ϕ1, ϕ2 ∈ FPred . In order to prove monotonicity of post

#
Γ , as-

sume ϕ1 |=Γ ϕ2. By definition of post
#
Γ (ϕ2) we have ϕ2 |=Γ wlp(post

#
Γ (ϕ2)). Thus,

by assumption, we can conclude ϕ1 |=Γ wlp(post
#
Γ (ϕ2)). However, post

#
Γ (ϕ1) is

the conjunction of all formulas ψ ∈ FPred satisfying ϕ1 |=Γ wlp(ψ), i.e. we have
post

#
Γ (ϕ1) |= post

#
Γ (ϕ2). This implies post

#
Γ (ϕ1) |=post(γ(Γ)) post

#
Γ (ϕ2). Hence,

post
#
Γ is monotone.

In order to prove monotonicity of wlp
#
Γ , assume ϕ1 |=post(γ(Γ)) ϕ2. Let S be

some store such that S |= Γ and β an assignment. We have:

S, β |= wlp(ϕ1)
⇔ post(S), β |= ϕ1 (by Prop. 2.3.7)
⇒ post(S), β |= ϕ2 (by assumption)
⇔ S, β |= wlp(ϕ2) (by Prop. 2.3.7)

Thus, we have
wlp(ϕ1) |=Γ wlp(ϕ2) (1)

By definition of wlp
#
Γ we have wlp

#
Γ (ϕ1) |= wlp(ϕ1). With (1) we can conclude

wlp
#
Γ (ϕ1) |=Γ wlp(ϕ2). However, by definition of wlp

#
Γ we know that wlp

#
Γ (ϕ2) is

the disjunction of all formulas ψ ∈ FPred satisfying ψ |= wlp(ϕ2), i.e. we have
wlp

#
Γ (ϕ1) |=Γ wlp

#
Γ (ϕ2). Therefore wlp

#
Γ is monotone.

Proof of (iii). Let ϕ ∈ FPred . By definition of post
#
Γ we know post

#
Γ (wlp

#
Γ (ϕ)) is the

conjunction of allψ ∈ FPred , such that wlp
#
Γ (ϕ) |=Γ wlp(ψ). Moreover, by definition

of wlp
#
Γ we have wlp

#
Γ (ϕ) |=Γ wlp(ϕ). Thus, we have post

#
Γ (wlp

#
Γ (ϕ)) |=post(γ(Γ)) ϕ,

i.e. post
#
Γ ◦wlp

#
Γ is reductive.

Proof of (iv). Let ϕ ∈ FPred . By definition of wlp
#
Γ we know wlp

#
Γ (post

#
Γ (ϕ)) is the

disjunction of all ψ ∈ FPred , such that ψ |=Γ wlp(post
#
Γ (ϕ)). Moreover, by defini-

tion of post
#
Γ we have ϕ |=Γ wlp(post

#
Γ (ϕ)). Thus, we have ϕ |=Γ wlp

#
Γ (post

#
Γ (ϕ)),

i.e. wlp
#
Γ ◦ post

#
Γ is extensive.

Proposition 3.2.6. Let Ψ = ∀v.ψ be an abstract store. The image of Ψ under post
#
Cart1

is
obtained by applying the context-sensitive post operator for Ψ to ψ:

post
#
Cart1

(Ψ) |=| ∀v. post
#
Ψ(ψ).

Proof. In the following, consider ϕ1 and ϕ2 to be defined as follows:

ϕ1
def
=

∧
{ϕ ∈ FPred | post#(Ψ) |= ∀v.ϕ }

ϕ2
def
=

∧
{ϕ ∈ FPred | ψ |=Ψ wlp(ϕ) }
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In order to prove the proposition, we have to show that ϕ1 and ϕ2 are equivalent.

“ϕ2 |= ϕ1”: Let S be some store such that S is a model of Ψ, i.e. for all nodes u we
have S, u |= ψ. Now assume there was some node u such that S, u 6|= wlp(ϕ1). We
have:

S, u 6|= wlp(ϕ1) ⇒ post(S), u 6|= ϕ1 (by Prop. 2.3.7)

⇒ post(S) 6|= ∀v.ϕ1

⇒ post#(Ψ) 6|= ∀v.ϕ1 (S |= Ψ implies post(S) |= post#(Ψ))

This contradicts the definition of ϕ1. Thus, for all nodes u we have S, u |= wlp(ϕ1)
and therefore ψ |=Ψ wlp(ϕ1). Since ϕ2 is the greatest lower bound of all those for-
mulas, we have ϕ2 |= ϕ1.

“ϕ1 |= ϕ2”: Let S be some store such that S |= post#(Ψ), but assume S 6|= ∀v.ϕ2.
Then there is some node u such that S, u 6|= ϕ2. If PS,u is the abstract node of u in
S then we must have PS,u |= ¬ϕ2.

Case 1: there is some store S ′ which is a model of Ψ and some node u′ such that
post(S′), u′ |= PS,u. We have:

post(S′), u′ |= PS,u ⇒ post(S′), u′ 6|= ϕ2 (PS,u |= ¬ϕ2)
⇒ S′, u′ 6|= wlp(ϕ2) (by Prop. 2.3.7)

which contradicts the definition of ϕ2, since S′, u′ |= ψ.

Case 2: for all stores S ′ either S′ 6|= Ψ or for all nodes u′ we have post(S′), u′ 6|= PS,u.
From this we can conclude:

∀S′ : S′ |= Ψ ⇒ ∀u′ ∈ U : post(S′), u′ |= ϕ2 ∧¬PS,u

and again by Prop. 2.3.7 we get:

ψ |=Ψ wlp(ϕ2 ∧¬PS,u)

which contradicts the definition of ϕ2.

Thus, altogether we can conclude:

post#(Ψ) |= ∀v.ϕ2

and we finally get ϕ1 |= ϕ2.

Theorem 3.2.9 (Soundness of Cartesian Post). The operator post
#
Cart is an approxi-

mation of post#:
∀Ψ ∈ AbsStore : post#(Ψ) |= post

#
Cart(Ψ).

Proof. Let Ψ be some abstract store of the form ∀v.
∨

i Pi. By definition of αCart1 it
is clear that αCart1 is reductive, i.e. we immediately observe:

post#(Ψ) |= αCart1 ◦ post#(Ψ) = post
#
Cart1

(Ψ).

By Proposition 3.2.6 and the fact that post
#
Ψ distributes over disjunctions we get:

post#(Ψ) |= post
#
Cart1

(Ψ) = ∀v.
∨

i

post
#
Ψ(Pi).

Again from its definition it is clear that αCart2 is reductive. Thus, we finally get:

post#(Ψ) |= ∀v.
∨

i

αCart2 ◦ post
#
Ψ(Pi) = post

#
Cart(Ψ).
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Theorem 3.2.10 (Characterization of Cartesian Post). Let Ψ = ∀v.
∨

i Pi be an ab-
stract store. The Cartesian post of Ψ is characterized as follows:

post
#
Cart(Ψ) = ∀v.

∨

i

∧
{ p ∈ Pred | Pi |=Ψ wlp

#
Ψ(p) }.

Proof. We have:

post
#
Cart(Ψ) = ∀v.

∨

i

αCart2 ◦ post
#
Ψ(Pi)

|=| ∀v.
∨

i

{ p ∈ Pred | post
#
Ψ(Pi) |=post(Ψ) p }

|=| ∀v.
∨

i

{ p ∈ Pred | Pi |=Ψ wlp
#
Ψ(p) } (by Prop. 3.2.3)

Proposition 3.2.12. Let Ψ be an abstract store. If post# is deterministic with respect to
Ψ then post

#
Cart does not lose precision with respect to post#, i.e.

post#(Ψ) |=| post
#
Cart(Ψ).

Proof. Let Ψ be some abstract store with Ψ = ∀v.
∨

i Pi, where each Pi is a mono-
mial. Assume post# is deterministic with respect to Ψ, then we have:

post#(∀v.
∨

i

Pi) = ∀v.
∨

i

P ′
i where for all i P ′

i = post
#
Ψ(Pi).

and each P ′
i is a monomial. By Definition of post

#
Cart we have:

post
#
Cart(Ψ) |=| ∀v.

∨

i

∧

i

{ p ∈ Pred | post
#
Ψ(Pi) |=post(Ψ) p }

|=| ∀v.
∨

i

∧

i

{ p ∈ Pred | P ′
i |=post(Ψ) p }

|=| ∀v.
∨

i

∧

i

P ′
i (P ′

i monomial)

|=| post#(Ψ)

Proposition 3.2.13. Let S be a store. The operator post# is deterministic with respect to
α(S) if and only if for all node predicates p in Pred we have:

wlp(p) |=α(S) wlp
#
α(S)(p).

Proof. For the only if direction, let S be some store with α(S) = ∀v.
∨

i Pi where
each Pi is a monomial. Assume there is some p ∈ Pred such that:

wlp(p) 6|=α(S) wlp
#
α(S)(p).

Thus, there is some store S ′ and node u′ such that S′ |= α(S) and S′, u′ |= wlp(p)

but S′, u′ 6|= wlp
#
α(S)(p). Since S′ |= α(S) there must be some i such that S ′, u′ |= Pi.

Then we have:

S′, u′ |= Pi and S′, u′ 6|= wlp
#
α(S)(p) ⇒ Pi 6|=α(S) wlp

#
α(S)(p)
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⇒ post
#
α(S)(Pi) 6|=post(α(S)) p

but we have in addition:

S′, u′ |= wlp(p) ⇒ post(S ′), u′ |= p

⇒ post
#
α(S)(Pi) 6|=post(α(S)) ¬p

Hence, post
#
α(S)(Pi) is not a monomial and post# is not deterministic with respect

to α(S). In order to prove the if direction, assume that for all node predicates p in
Pred we have:

wlp(p) |=Ψ wlp
#
Ψ(p).

We show that the following two properties hold:

(i) for all i : post
#
α(S)(Pi) is a monomial,

(ii) ∀v.
∨

i post
#
α(S)(Pi) |= α(post(S)).

From (ii) and the fact that α(post(S)) |= post#(α(S)) holds we can conclude:

∀v.
∨

i

post
#
α(S)(Pi) |= post#(α(S)).

Together with (i) this gives us that post# is deterministic with respect to α(S).
Proof of (i). Let Pi be some abstract node in α(S). We have for any node predicate
p:

either Pi |=α(S) wlp
#
α(S)(p)

or Pi |=α(S) ¬wlp
#
α(S)(p) (Pi monomial)

⇒ either Pi |=α(S) wlp
#
α(S)(p)

or Pi |=α(S) ¬wlp(p) (wlp(p) |=α(S) wlp
#
α(S)(p))

⇔ either Pi |=α(S) wlp
#
α(S)(p)

or Pi |=α(S) wlp(¬p)

⇒ either Pi |=α(S) wlp
#
α(S)(p)

or Pi |=α(S) wlp
#
α(S)(¬p) (wlp

#
α(S)(¬p) |=α(S) wlp(¬p))

⇔ either post
#
α(S)(Pi) |=α(S) p

or post
#
α(S)(Pi) |=α(S) ¬p

Thus, post
#
α(S)(Pi) is a monomial.

Proof of (ii). Let Pi be some abstract node in α(S). By definition of α we know
there is some node u such that S, u |= Pi. Moreover, we know that both:

post(S), u |= post
#
α(S)(Pi) and post(S), u |= Ppost(S),u

hold. Since both post
#
α(S)(Pi) andPpost(S),u are monomials over Pred we must have:

post
#
α(S)(Pi) |=| Ppost(S),u.

Thus, we can conclude:

∀v.
∨

i

post
#
α(S)(Pi) |= ∀v.

∨

u∈U

Ppost(S),u = α(post(S)).
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Proposition 3.2.15. post# is deterministic if and only if the set of node predicates Pred

is closed under wlp.

Proof. Follows directly from Definition 3.2.14 and Proposition 3.2.13.

Proposition 3.2.19 (Soundness of Cartesian Post with Splitting). Let splitc[P ] be
a splitting operator for P and command c. The Cartesian post operator with splitting
post

#
c,splitc[P] is an approximation of post#c on AbsDom[Pred ]:

∀Ψ ∈ AbsStore[Pred ] : post#c (Ψ) |= post
#
c,splitc[P](Ψ).

Proof. Let us first define the following abbreviation:

Pred
′ def

= Pred ∪ wlpc(P).

Let splitc[P ] be a splitting operator and let Ψ be some abstract store over Pred . We
have:

post#c (Ψ) = α[Pred ] ◦ postc ◦γ(Ψ)

|= α[Pred ] ◦ γ ◦ α[Pred ′] ◦ postc ◦γ ◦ α[Pred ′] ◦ γ(Ψ) (γ ◦ α extensive)

= α[Pred ] ◦ γ ◦ post#c [Pred ′] ◦ α[Pred ′] ◦ γ(Ψ)

|= α[Pred ] ◦ γ ◦ post
#
c,Cart[Pred

′] ◦ α[Pred
′] ◦ γ(Ψ) (by Thm. 3.2.9)

|= α[Pred ] ◦ γ ◦ post
#
c,Cart[Pred ′] ◦ splitc[P ](Ψ) (by def. of splitc[P ])

= post
#
c,splitc[P](Ψ).

Proposition 3.2.20. The Cartesian post with splitting for the most precise splitting op-
erator split#c [Pred ] coincides with the best abstract post operator on the abstract domain
AbsDom[Pred ].

Proof. By Proposition 3.2.19 it suffices to show:

∀Ψ ∈ AbsStore[Pred ] : post
#

c,split
#
c [Pred]

(Ψ) |= post#c (Ψ).

Let us first define the following abbreviation:

Pred
′ def

= Pred ∪ wlpc(Pred).

Now let Ψ be an abstract store over node predicates Pred . By definition of α and
post

#
c,Cart we have:

post
#
c,Cart[Pred

′] ◦ α[Pred
′] ◦ γ(Ψ)

|=|
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred

′ | PS,u |=α[Pred′](S) wlp
#
c,α[Pred′](S)(p) }

where each PS,u is the monomial over Pred ′ such that S, u |= PS,u. Now we have:
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred

′ | PS,u |=α[Pred′](S) wlp
#
c,α[Pred′](S)(p) }

|=
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred | PS,u |=α[Pred′](S) wlp

#
c,α[Pred′](S)(p) }

(Pred ⊆ Pred
′)
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|=
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred | PS,u |=α[Pred′](S) wlpc(p) }

|=|
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred | S, u |= wlpc(p) }

(PS,u monomial over Pred
′ and wlpc(p) ∈ Pred

′)

|=|
∨

S∈γ(Ψ)

∀v.
∨

u∈U

∧
{ p ∈ Pred | postc(S), u |= p }

(by Prop. 2.3.7)

|=| α[Pred ] ◦ postc ◦γ(Ψ)

= post#c (Ψ)

Thus, we have:

∀Ψ ∈ AbsStore[Pred ] : post
#
c,Cart[Pred

′] ◦ α[Pred
′] ◦ γ(Ψ) |= post#c (Ψ).

Since α[Pred ]◦γ is reductive with respect to |= on AbsDom[Pred ], as well as mono-
tone with respect to |= in general, we have for any FOTC formula Φ and abstract
value Ψ in AbsDom[Pred ]:

Φ |= Ψ implies α[Pred ] ◦ γ(Φ) |= α[Pred ] ◦ γ(Ψ) |= Ψ.

From this we can conclude:

∀Ψ ∈ AbsStore[Pred ] : α[Pred ] ◦ γ ◦ post
#
c,Cart[Pred

′] ◦ α[Pred
′] ◦ γ(Ψ) |= post#c (Ψ)

which proves the proposition.

Proposition 3.2.21. Let splitc[P ] be a splitting operator. If post#c is deterministic then
post#c and the Cartesian post with splitting for splitc[P ] coincide.

Proof. Follows immediately from Proposition 3.2.12 and the fact that the Cartesian
post on the extended abstract domain AbsDom[Pred∪(wlpc P)] is at least as precise
as the one on the original abstract domain AbsDom[Pred ].

Proposition 4.2.3. Let S be a finite structure over Σ and u ∈ US . The modal node
predicates p.U〈R〉.q, p.S〈R〉.q, p.U[R].q, and p.S[R].q are characterized as follows:

• S, u |= p.U〈R〉.q(v) ⇐⇒ there is an R-path π in S starting in u such that:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.S〈R〉.q(v) ⇐⇒ there is an R−1-path π in S starting in u such that:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.U[R].q(v) ⇐⇒ for all R-paths π in S starting in u:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

• S, u |= p.S[R].q(v) ⇐⇒ for all R−1-paths π in S starting in u:
∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v)

Proof. We give the proof for p.S[R].q explicitly. The proof for q.U[R].q is analogous,
p.U〈R〉.q and p.S〈R〉.q are simple.

Let S = 〈U, ι〉 be a finite structure over Σ and let u ∈ U .
“⇒” Assume S, u |= p.S[R].q(v). Let π be some R−1-path starting in u. Assume
that for all i ≥ 1 we have S, π(i) |= ¬q(v).
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Case 1: there is k ≥ 1 such that for all n ∈ R, u ∈ U : (ι n)(u, π(k)) = 0. Then we
have:

S, [v 7→ u, v′ 7→ π(k)] |= (TC v, v′.r(v, v′)∧¬q(v))(v′, v) ∨ v≈ v′

and S, π(k) |= ¬q(v) ∧ ∀v′.r+(v′, v)→ ¬q(v′)

From this we can conclude S, u 6|= p.S[R].q(v) which gives us a contradic-
tion.

Case 2: for all i ≥ 1 there is n ∈ R such that (ι n)(π(i + 1), π(i)) = 1. Since U is
finite, there must be a cycle in π, i.e. there are k1, k2 such that k1 < k2 and
π(k1) = π(k2). Then we have:

S, [v 7→ u, v′ 7→ π(k1)] |= (TC v, v′.r(v, v′)∧¬q(v))(v, v′) ∨ v≈ v′

and S, π(k1) |= ¬q(v)∧(TC v, v′.r(v, v′)∧¬q(v))(v, v)

this implies S, u 6|= p.S[R].q(v) which again gives us a contradiction.

Thus, we know there is at least one i ≥ 1 such that S, π(i) |= q(v). Let imin be the
smallest of all those i. Assume there is j < imin such that S, π(j) |= ¬p(v). Then
we have:

S, [v 7→ u, v′ 7→ π(j)] |= (TC v, v′.r(v, v′)∧¬q(v))(v, v′) ∨ v≈ v′

and S, π(j) |= ¬q(v)∧¬p(v)

This once more contradicts the fact that S, u |= p.S[R].q(v) holds. Hence, we have
S, π(imin) |= q(v) and for all j < imin : S, π(j) |= p(v).

“⇐” Assume that for all R−1-paths in S which start in u we have:

∃i ≥ 1 : S, π(i) |= q(v) and ∀j < i : S, π(j) |= p(v) (1)

Let u′ ∈ U such that

S, [v 7→ u, v′ 7→ u′] |= (TC v, v′.r(v, v′)∧¬q(v))(v, v′) ∨ v≈ v′ (2)

Case 1: S, u′ |= q(v). Done.

Case 2: S, u′ |= ¬q(v). From (2) we know there is an R−1-path π starting in u such
that for some k ≥ 1 : π(k) = u′. Since by assumption π satisfies (1), there is
some i ≥ k such that S, π(j) |= q(v) and for all j < i : S, π(j) |= p(v). Thus,
we have:

S, u′ |= p(v) ∧ ∃ v′.r+(v′, v)∧ q(v′)

Now assume
S, u′ |= (TC v, v′.r(v, v′)∧¬q(v))(v, v)

then there is m ≥ 1 and u0, . . . , um ∈ U such that

• u0 = um = u′ = π(k) and
• ∀1 ≤ j < m : S, [v 7→ uj , v

′ 7→ uj+1] |= r(v, v′)∧¬q(v)

Hence, we can construct an R−1-path π′ starting in u as follows:

π′(n) =

{
π(n) for n ≤ k

uj for n > k and j = (n− k) mod m

However, by construction, π′ does not satisfy (1) which contradicts the as-
sumption. Hence, we must have:

S, u′ |= ¬(TC v, v′.r(v, v′)∧¬q(v))(v, v)
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Since u′ was chosen free in U , we can conclude S, u |= p.S[R].q(v).

Proposition 4.3.4 (Correctness of Translation). Let p ∈ GMNP[R] then p and t(p)
are equivalent on finite structures, i.e. for every finite structure S and u ∈ US :

S, u |= p ⇐⇒ S, u |= t(p).

Proof. The proof goes by structural induction on p. The only interesting cases are
those involving fixed point operators. However, according to Proposition 4.2.3
these modal node predicates semantically correspond to CTL operators. The trans-
lation follows the standard translation of CTL to the modal mu-calculus.

Proposition 4.4.1. For commands c of the form x = y, x = NULL, and x = y->n,
the class MNP[n] is closed under wlpc. Formally, for any modal node predicate p there is a
finite subset of modal node predicates Pred such that:

∀S ∈ Store : wlp
#
c,α(S)(p) |=| wlpc(p).

Proof. For all those commands c and all modal node predicates p, we have that
wlpc(p) is contained in MNP[n]. Hence, choose Pred such that is contains wlpc(p).

Lemma 4.4.3. For any program variable x and any FOTC formula ϕ(v):

∀S ∈ Store : S |= ∃ v.x(v)∧ϕ(v) ⇐⇒ S |= ∀v.x(v) → ϕ(v).

Proof. Follows immediately from the fact that all program stores S interpret x as a
singleton.

Proposition 4.4.4. For commands c of the form x->n = y and any modal node predicate
p, fc(p) and wlpc(p) are equivalent on program stores, i.e.

∀S ∈ Store, u ∈ U : S, u |= fc(p) ⇐⇒ S, u |= wlpc(p).

Proof. By induction on the structure of p. Let S be a store and u ∈ US some node.
The proof is quite tedious. We only sketch two of the possible cases, here. All re-
maining cases are either trivial or follow similar argumentation.

p = 〈n〉.q:

S, u |= wlpc(〈n〉.q)

⇐⇒ S, u |= wlpc(∃ v
′.q(v′)∧n(v, v′))

⇐⇒ S, u |= ∃ v′.wlpc(q)(v
′))∧(n(v, v′)∧¬x(v)∨ x(v)∧ y(v′)) (Def. of wlpc)

⇐⇒ S, u |= ∃ v′.fc(q)(v
′))∧(n(v, v′)∧¬x(v)∨ x(v)∧ y(v′)) (Ind. hypotheses)

⇐⇒ S, u |= ¬x(v)∧ ∃ v′.fc(q)(v
′)∧n(v, v′) ∨

x(v)∧∃ v′.fc(q)(v
′)∧ y(v′)

⇐⇒ S, u |= ¬x(v)∧ ∃ v′.fc(q)(v
′)∧n(v, v′) ∨

x(v)∧∀v′.y(v′) → fc(q)(v
′) (Lemma 4.4.3)

⇐⇒ S, u |= ¬x(v)∧〈n〉.fc(q) ∨ x(v)∧∀v′.y(v′) → fc(q)(v
′)

⇐⇒ S, u |= fc(〈n〉.q) (Def. of f )

p = p1.U〈n〉.p2:

S, u |= wlpc(p1.U〈n〉.p2)
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⇐⇒ S, u |= ∃ v′.wlpc(p2)(v
′)∧((TC v1, v2.wlpc(p1)(v1)∧wlpc(n))(v, v′)∨ v≈ v′)

(Def. of wlpc)
⇐⇒ S, u |= ∃ v′.fc(p2)(v

′)∧((TC v1, v2.fc(p1)(v1)∧wlpc(n))(v, v′)∨ v≈ v′)

(Ind. hyp.)
where

wlpc(n) = n(v1, v2)∧¬x(v1) ∨ x(v1)∧ y(v2)

Assume S, u |= wlpc(p) holds. If S, u |= fc(p2) then we have:

S, u |= (¬x∧ p1).U〈n〉.p2

and by definition of f we directly get S, u |= fc(p). Thus, assume that S, u 6|= fc(p2)
holds, then there exist u1, . . . , un such that:

• u = u1, and

• S, un |= fc(p2), and

• for all 1 ≤ i < n : S, [v1 7→ ui, v2 7→ ui+1] |= fc(p1)(v1)∧wlpc(n)(v1, v2).

Case 1: for all 1 ≤ k < n : S, uk |= ¬x(v). Then there are u1, . . . , un such that:

• u = u1, and
• S, un |= fc(p2), and
• for all 1 ≤ i < n :
S, [v1 7→ ui, v2 7→ ui+1] |= fc(p1)(v1)∧ n(v1, v2)∧¬x(v1).

Thus, we have S, u |= (p1 ∧¬x).U〈n〉.p2 and by definition of f we get S, u |=
fc(p).

Case 2: there is at least one k with 1 ≤ k < n such that S, uk |= x(v). Let kmin be
the smallest and kmax be the greatest of all those k. Then there are nodes
u1, . . . , un ∈ US such that:

• u = u1, and
• S, ukmin

|= fc(p1), and
• for all 1 ≤ i < kmin :
S, [v1 7→ ui, v2 7→ ui+1] |= fc(p1)(v1)∧ n(v1, v2)∧¬x(v1), and

• S, ukmax+1 |= y(v), and
• S, un |= fc(p2), and
• if kmax + 1 < n then for all kmax < i < n :
S, [v1 7→ ui, v2 7→ ui+1] |= fc(p1)(v1)∧ n(v1, v2)∧¬x(v1).

Thus, we get:

• S, u |= (p1 ∧¬x).U〈n〉.(p1 ∧x)(v), and
• S, ukmax+1

|= y(v)∧(p1 ∧¬x).U〈n〉.p2(v).

From this we can conclude:

S, u |= (p1 ∧¬x).U〈n〉.(p1 ∧x)(v)∧ ∃ v′.y(v′)∧(p1 ∧¬x).U〈n〉.p2(v
′)

which by Lemma 4.4.3 is equivalent to:

S, u |= (p1 ∧¬x).U〈n〉.(p1 ∧x)(v)∧∀v′.y(v′) → (p1 ∧¬x).U〈n〉.p2(v
′).
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Hence, we finally get that S, u |= fc(p) and therefore:

∀S ∈ Store, u ∈ U : S, u |= wlpc(p) ⇒ S, u |= fc(p).

The left-to-right direction follows the same argumentation backwards. Starting
from the fact that fc(p) is satisfied by u in S, we can construct a satisfying path for
the transitive closure operator that occurs in wlpc(p). This gives us soundness of
fc(p):

∀S ∈ Store, u ∈ U : S, u |= fc(p) ⇒ S, u |= wlpc(p).

Proposition 4.4.6. Let p be a GMNP[n] predicate and let Γ be a closed FOTC formula. The
evaluation of p under true and Γ results in an under-approximation of p, i.e.

eval true Γ p |=Γ p.

Proof. We show the following, more general statement:

eval true Γ p |=Γ p

and p |=Γ eval false Γ p

by structural induction on p. We only consider the two interesting cases for nega-
tion and universal constraints. All other cases follow from monotonicity of the
appropriate operators with respect to |=Γ.

Let p = ¬p′. By definition of eval we have:

eval t Γ p = ¬(eval (¬t) Γ p′)

If t = true then we have by induction hypothesis:

p′ |=Γ eval false Γ p′

and thus we get:

eval true Γ p = ¬(eval false Γ p′) |=Γ ¬p′ = p.

If on the other hand t = false then we dually have again by induction hypothesis:

eval true Γ p′ |=Γ p
′

and thus we get:

p = ¬p′ |=Γ ¬(eval true Γ p′) = eval false Γ p.

Let p = ∀v.x(v) → p′(v). By definition of eval we have:

eval t Γ (∀v′.x(v′) → p′(v′)) =

{
t, if Γ |= ∀v.x(v) → (t ↔ eval t Γ p′)

¬t, otherwise

Consider the first case where t = true. If

Γ |= ∀v.x(v) → eval true Γ p′

then by application of the induction hypothesis we get:

∀S ∈ Store : S |= Γ ⇒ S |= ∀v.x(v) → p′

74



APPENDIX A. Proofs

From this we can conclude:

eval true Γ p = true |=Γ p.

If on the other hand:
Γ 6|= ∀v.x(v) → eval true Γ p′

then we trivially get:
eval true Γ p = false |=Γ p.

Now consider the second case where t = false. If

Γ |= ∀v.x(v) → ¬(eval false Γ p′)

then by application of the induction hypothesis we get:

∀S ∈ Store : S |= Γ ⇒ S |= ∀v.x(v) → ¬p′

From this we can conclude:

∃ v.x(v)∧ eval false Γ p |=Γ false.

Making use of Lemma 4.4.3 we get:

p = ∀v.x(v) → eval false Γ p |=Γ false = eval false Γ p.

If on the other hand:
Γ 6|= ∀v.x(v) → ¬(eval true Γ p′)

then we trivially get:
p |=Γ true = eval false Γ p.

Lemma 4.4.7. Let S be some store and let Pred be the finite set of abstraction node predi-
cates. For any program variable x with x(v) ∈ Pred and formula ϕ(v) ∈ FPred :

either α(S) |= ∀v.x(v) → ϕ(v)

or α(S) |= ∀v.x(v) → ¬ϕ(v).

Proof. Let α(S) = ∀v.
∨

i Pi(v) where for all i : Pi(v) is a monomial over Pred . Since
x(v) is in Pred and since S is a store, there is exactly one monomial P (v) among
the Pi such that P (v) |= x(v) and P (v) is satisfiable. Since P (v) is a monomial over
Pred and ϕ(v) ∈ FPred , we have:

either P (v) |= ϕ(v)

or P (v) |= ¬ϕ(v).

Since P is unique, we have:

either
∨

i

Pi(v) |= x(v) → ϕ(v)

or
∨

i

Pi(v) |= x(v) → ¬ϕ(v).

From this we can conclude:

either ∀v.
∨

i

Pi(v) |= ∀v.x(v) → ϕ(v)

or ∀v.
∨

i

Pi(v) |= ∀v.x(v) → ¬ϕ(v).
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Lemma 4.4.9. Let p be a GMNP[n] predicate. The closure of p contains all possible modal
node predicates that may occur in the image of eval, i.e. for every closed FOTC formula Γ
and truth value t we have:

eval t Γ p ∈ cl1(p) and eval t Γ p ∈ cl(p).

Proof. The function eval replaces every quantified sub-formula occuring in p with
either true or false. So does cl1. A simple induction proof on the structure of p
shows:

eval t Γ p ∈ cl1(p)

By definition of cl we have cl1(p) ⊆ cl(p) and get:

eval t Γ p ∈ cl(p).

Lemma 4.4.10. Let p be a GMNP[n] predicate and let

∀v.x(v) → q(v)

be some sub-formula of p then x(v) ∈ cl(p) and for every closed FOTC formula Γ and truth
value t:

eval t Γ q ∈ cl(p).

Proof. From the definition of cl2 and Lemma 4.4.9 it follows immediately that:

x(v) ∈ cl2(p) and eval t Γ q ∈ cl2(p).

Hence, we have:
x(v) ∈ cl(p) and eval t Γ q ∈ cl(p).

Proposition 4.4.11. Let p be a GMNP[n] predicate. If cl(p) ⊆ Pred then:

∀S ∈ Store : p |=|α(S) eval true (α S) p.

Proof. The right-to-left direction follows already from Proposition 4.4.6. For the
left-to-right direction we prove the following more general statement:

∀S ∈ Store : p |=α(S) eval true (α S) p

and ∀S ∈ Store : eval false (α S) p |=α(S) p.

The proof goes by structural induction on p. We only consider the interesting case
where p is a guarded universal constraint. All other cases follow by simple ap-
plication of the induction hypothesis. So, let p be a guarded universal constraint
with:

p = ∀v.x(v) → p′(v).

If t is true then by definition of eval we have:

eval true (α S) p =

{
true, if α(S) |= ∀v.x(v) → eval true (α S) p′

false, otherwise

If α(S) |= ∀v.x(v) → eval true (α S) p′ holds then we trivially have:

p |=α(S) eval true (α S) p.
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Assume on the other hand that the entailment does not hold, i.e.

α(S) 6|= ∀v.x(v) → eval true (α S) p′.

By Lemma 4.4.10 we know that both x(v) and eval true (α S) p′ are in cl(p). Since
cl(p) is a subset of Pred , we can conclude by Lemma 4.4.7:

α(S) |= ∀v.x(v) → ¬(eval true (α S) p′)

=⇒ ∀S′ ∈ Store : S′ |= α(S) ⇒ S′ |= ∀v.x(v) → ¬p′ (by Proposition 4.4.6)

⇐⇒ ∀S′ ∈ Store : S′ |= α(S) ⇒ S′ |= ¬∃ v.x(v)∧ p′

⇐⇒ ∀S′ ∈ Store : S′ |= α(S) ⇒ S′ |= ¬∀v.x(v) → p′ (by Lemma 4.4.7)

⇐⇒ ∀S′ ∈ Store : S′ |= α(S) ⇒ S′ |= ¬p

From this we can finally conclude:

p |=α(S) eval true (α S) p.

The case where t is false is analogous.

Proposition 4.4.13. For commands c of the form x->n = y and any MNP[n] predicate
p there is a finite subset Pred of MNP[n] predicates such that:

∀S ∈ Store : wlp
#
c,α(S)(p) |=|α(S) wlpc(p).

Proof. The set cl(p) is finite. Hence, we can choose Pred
def
= cl(p). From Corollary

4.4.12 we know:

∀S ∈ Store : wlpc(p) |=|α(S) eval true (α S) f p.

By Lemma 4.4.9 and the definition of Pred we know:

eval true (α S) f p ∈ Pred .

By definition, wlp
#
c,α(S)(p) is the best under-approximation of wlpc(p) with respect

to |=α(S) and Pred . Hence, we must have:

∀S ∈ Store : wlp
#
c,α(S)(p) |=|α(S) eval true (α S) f p.

from which we can finally conclude:

∀S ∈ Store : wlp
#
c,α(S)(p) |=|α(S) wlpc(p).
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Least Fixed Point for Program
Reverse

The following table shows the iteration of the abstract post operator post# on the
initial abstract state init# according to the definitions given in Section 5.5. We use
the representation of abstract stores introduced in that section. For each of the
images under post# we only list those components which are different from false.

The least fixed point of post# under init# is given by a tuple over AbsDom[Pred ]
whose components correspond to the disjunction of all abstract stores that are
listed for the corresponding program locations in any of the iteration steps.

The least fixed point is reached after 22 iterations of post#. For program loca-
tion l6 it is already reached after 17 iterations. Since we are mainly interested in
the abstract stores emerging at program location l6 we show the computation of
lfp(post#(init#)) only up to the 17-th iteration.

post#0(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

1 ∗ ∗ 0 1 ∗ ∗ 0 1 ∗
l0 : 0 ∗ ∗ 0 1 ∗ ∗ 1 1 ∗

0 ∗ ∗ 1 1 ∗ 1 1 1 ∗

y, t null

x

nully, t

x

post#1(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

1 0 ∗ 0 1 1 1 0 1 ∗

l1 : 0 0 ∗ 0 1 1 1 1 1 ∗

0 1 ∗ 1 1 1 1 1 1 ∗

t null , y

x

null , yt

x
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post#2(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

1 0 ∗ 0 1 1 1 0 1 ∗

l2 : 0 0 ∗ 0 1 1 1 1 1 ∗

0 1 ∗ 1 1 1 1 1 1 ∗

t null , y

x

null , yt

x

post#3(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

1 0 0 0 1 1 1 0 1 ∗

l3 : 0 0 0 0 1 1 1 1 1 ∗

0 1 1 1 1 1 1 1 1 ∗

null , y, t

x

null , y, t

x

post#4(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

1 1 0 0 1 0 0 0 1 0

l4 : 0 0 0 0 1 0 1 1 1 ∗

0 0 1 1 1 0 1 1 1 ∗

null , t

x, y

null , t

x, y
n
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post#5(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 1 0 0 0 0 0 0 1 0

l5 : 1 0 0 0 1 1 1 0 1 0

0 0 0 0 1 1 1 1 1 ∗

0 0 1 1 1 1 1 1 1 ∗

null , t

y

x null , t

y

x

0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 1 1 1 1 ∗

1 0 1 1 1 1 1 1 1 0

null , t, x

y

post#6(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 1 0 0 0 0 0 1 1 ∗

l1 : 1 0 0 0 1 1 1 0 1 ∗

0 0 0 0 1 1 1 1 1 ∗

0 0 1 1 1 1 1 1 1 ∗

null , t

y

x null , t

y

x

0 1 0 0 0 0 0 1 1 ∗

0 0 0 0 1 1 1 1 1 ∗

1 0 1 1 1 1 1 1 1 ∗

null , t, x

y
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post#7(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 1 0 0 0 0 0 1 1 ∗

l6 : 0 0 0 0 1 1 1 1 1 ∗

1 0 1 1 1 1 1 1 1 ∗

null , t, x

y

0 1 0 0 0 0 0 1 1 ∗

l2 : 1 0 0 0 1 1 1 0 1 ∗

0 0 0 0 1 1 1 1 1 ∗

0 0 1 1 1 1 1 1 1 ∗

null , t

y

x null , t

y

x

...
post#12(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 0 1 0 0 0 1 1 1 ∗

l6 : 0 1 0 0 0 0 0 1 1 ∗

0 0 0 0 1 1 1 1 1 ∗

1 0 1 1 1 1 1 1 1 ∗

null , x

y

t

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 0 1 0 0 0 1 1 1 ∗

l2 : 0 1 0 0 0 0 0 1 1 ∗

1 0 0 0 1 1 1 0 1 ∗

0 0 0 0 1 1 1 1 1 ∗

0 0 0 1 1 1 1 1 1 ∗

null

y

t

x

null

y

t

x

...
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post#17(init#)

x y t null x.〈n∗〉 (¬y).S〈n〉.(x∧¬y) (¬y).U〈n〉.null (¬x).U〈n〉.null 〈n∗〉.null x.〈n〉

0 0 0 0 0 0 1 1 1 ∗

l6 : 0 0 1 0 0 0 1 1 1 ∗

0 1 0 0 0 0 0 1 1 ∗

0 0 0 0 1 1 1 1 1 ∗

1 0 1 1 1 1 1 1 1 ∗

null , x

y

t

0 0 0 0 0 0 1 1 1 ∗

l2 : 0 0 1 0 0 0 1 1 1 ∗

0 1 0 0 0 0 0 1 1 ∗

1 0 0 0 1 1 1 0 1 ∗

0 0 0 0 1 1 1 1 1 ∗

0 0 0 1 1 1 1 1 1 ∗

null

y

t
x

null

y

t
x

null

y

t

x

null

y

t

x
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