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Abstract. We show that for special types of extensions of a base theory,
which we call local, efficient hierarchic reasoning is possible. We identify
situations in which it is possible, for an extension T1 of a theory T0, to
express the decidability and complexity of the universal theory of T1 in
terms of the decidability resp. complexity of suitable fragments of the
theory T0 (universal or ∀∃). These results apply to theories related to
data types, but also to certain theories of functions from mathematics.

1 Introduction

Many problems in mathematics and computer science and, in particular, prob-
lems involving reasoning in and about complex systems, can be reduced to prov-
ing the satisfiability of conjunctions of literals modulo some background theory.
This theory may be quite complex: it can for instance be the extension of a base
theory with additional functions (free, monotone, or recursively defined) or a
combination of theories. It is therefore extremely important to find methods for
efficient reasoning in extensions and combinations of theories.

In this paper we address the problem of reasoning in extensions of theories.
We show that for special types of theory extensions, which we call local, hierar-
chic reasoning in which a theorem prover for the base theory is used as a “black
box” is possible. Many theories important for computer science or mathematics
are local extensions of a base theory. Examples are theories of data structures,
e.g. theories of lists (or arrays cf. [6]); but also theories of monotone functions or
of functions satisfying the Lipschitz conditions at a given point. We identify sit-
uations where the decidability of the universal theory of an extension of a theory
is a consequence of the decidability of a certain fragment of the base theory.

The notion of local extension of a theory which we introduce in this paper
generalizes the notion of locality of a theory introduced by Givan and McAllester
[7,8], and of locality of equational theories studied by Ganzinger [4]. For local
theories, validity of ground Horn clauses can be checked in polynomial time.
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Similar ideas also occurred in algebra. To prove that the uniform word problem
for lattices is decidable in polynomial time, Skolem (1920) used the following
idea: replace the lattice operations ∨ and ∧ by ternary relations r∨ and r∧,
required to be functional, but not necessarily total. The lattice axioms were
translated to a relational form, by flattening them and then replacing every
atom of the form x ∨ y ≈ z with r∨(x, y, z) (similarly for ∧-terms). Additional
axioms were added, stating that equality is an equivalence and that the relations
are compatible with equality and functional. This new presentation, consisting
only of Horn, function-free clauses, can be used for deciding in polynomial time
the uniform word problem for lattices. The correctness and completeness of
the method relies on the fact that every partially-ordered set (where ∨ and
∧ are partially defined) embeds into a lattice. The idea described above was
extended by Burris [2] to quasi-varieties of algebras. He proved that if a quasi-
variety axiomatized by a set K of Horn clauses has the property that every finite
partial algebra which is a partial model of the axioms in K can be extended to
a total algebra model of K then the uniform word problem for K is decidable in
polynomial time.

In [4], Ganzinger established a link between proof theoretic and semantic
concepts for polynomial time decidability of uniform word problems. He defined
two notions of locality for equational Horn theories, and established relation-
ships between these notions of locality and corresponding semantic conditions,
referring to embeddability of partial algebras into total algebras.

Our paper continues this line of research. Its main contributions are the fol-
lowing. First, we generalize in several ways the notion of locality of an equational
theory:

– We consider local extensions T0 ⊆ T1, where the base theory T0 can be
arbitrary. If T0 is the empty theory the original notion of locality is recovered.

– In defining locality of a theory extension T0 ⊆ T1 by a set K of formulae we
allow K to be an arbitrary set of clauses (not necessarily Horn).

Second, we relate the extended notions of locality we consider with semantic
properties, involving embeddability of partial algebras into total algebras.

Third, we use these results for hierarchic reasoning in local theory extensions,
and identify situations in which this allows us to express the complexity of the
universal theory of the extension as a function of the complexity of appropriate
fragments of the base theory. We also sketch a possibility of extending the results
beyond universally quantified formulae.

Structure of the Paper: Section 2 contains basic notions and notations. In Sec-
tion 3, embeddability conditions are introduced and illustrated by examples; in
Section 4 notions of locality of an extension are defined. The main contributions
of the paper are contained in Sections 5 and 6: In Section 5 we establish links
between various notions of locality of a theory extension and semantic proper-
ties, involving embeddability of partial algebras into total algebras. This helps
to identify cases in which suitable locality conditions for theory extensions hold.
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In Section 6 we establish parameterized complexity results of the universal the-
ory of the extension in terms of the complexity of fragments of the base theory.
Section 7 sketches a possibility of going beyond the universal fragment.

1.1 Idea

We illustrate the idea of our approach. Let R ∪ Lλ1
f ∪ Lλ2

g be the extension of the
theory R of reals with function symbols f, g satisfying the following axioms:

(Lλ1
f ) |f(x) − f(c0)| ≤ λ1 · |x − c0| (Lλ2

g ) |g(x) − g(c0)| ≤ λ2 · |x − c0|

where c0, λ1, and λ2 are constants and the free variable x is, in both cases,
implicitly universally quantified. We want to prove:

R ∪ (Lλ1
f ) ∪ (Lλ2

g ) |= ∀x(|f(x) + g(x) − (f(c0) + g(c0))| ≤ (λ1 + λ2) · |x − c0|).

Standard theorem provers for first order logic cannot always be used in such
situations, as these can usually handle only approximations of the theory of real
numbers. Provers for reals do not know about additional functions. The Nelson-
Oppen method for reasoning in combinations of theories cannot be used either.
The method we propose reduces the task of proving the formula above to the
problem of checking the satisfiability of a set of constraints over R as follows:

Negate. Let K = (Lλ1
f ) ∪ (Lλ2

g ). Note that R ∪ K |= ∀xC(x) (where C(x) is
(|f(x) + g(x) − (f(c0) + g(c0))| ≤ (λ1 + λ2) · |x − c0|)) if and only if R ∪ K ∪ G
is unsatisfiable, where G = |f(c) + g(c) − (f(c0) + g(c0))| �≤ (λ1 + λ2) · |c − c0| is
the set of ground clauses obtained from ¬∀xC(x) by Skolemization.

Take Ground Instances of Extension Axioms. We will show that R∪K∪G
is satisfiable if and only if R∪K[G]∪G has a partial model in which all terms in
the set st(K, G) consisting of all ground subterms in K or in G are defined (and
hence f(c0), g(c0), f(c), g(c) are defined). (K[G] denotes the set of all instances of
K in which the terms starting with f or g are in st(K, G).) We compute K[G]∪G
and flatten replacing the ground terms starting with f or g with new constants:

(K[G] ∪ G)flat := f(c) ≈ d ∧ f(c0) ≈ d0 ∧ g(c) ≈ e ∧ g(c0) ≈ e0 ∧
|d − d0| ≤ λ1 · |c − c0| ∧ |d0 − d0| ≤ λ1 · |c0 − c0| ∧
|e − e0| ≤ λ2 · |c − c0| ∧ |e0 − e0| ≤ λ2 · |c0 − c0| ∧
|(d + e) − (d0 + e0)| ≤ (λ1 + λ2) · |c − c0|

Relational Translation. We compute the relational translation of the clauses
above, using instead of f and g the functional binary predicates rf and rg:

(K[G] ∪ G)∗ := rf (c, d) ∧ rf (c0, d0) ∧ rg(c, e) ∧ rg(c0, e0) ∧
|d − d0| ≤ λ1 · |c − c0| ∧ |d0 − d0| ≤ λ1 · |c0 − c0| ∧
|e − e0| ≤ λ2 · |c − c0| ∧ |e0 − e0| ≤ λ2 · |c0 − c0| ∧
|(d + e) − (d0 + e0)| ≤ (λ1 + λ2) · |c − c0|

Fun := x1 ≈ x2 ∧ R(x1, y1) ∧ R(x2, y2) → y1 ≈ y2 for R = rf or R = rg

We will show that we only need to consider those instances Fun∗ of Fun in which
the rf resp. rg literals are the ground literals already occurring in (K[G] ∪ G)∗,
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and that R ∪ (K[G] ∪ G)∗ ∪ Fun∗ has a (relational) model if and only if the
following set of constraints in R is satisfiable:

{λ1>0, λ2>0, (c≈c0 → d≈d0), (c≈c0 → e≈e0), (|d − d0| ≤ λ1 · |c − c0|),
(|e − e0| ≤ λ2 · |d − c0|), |(d + e) − (d0 + e0)| �≤ (λ1 + λ2) · |c − c0|}.

We proved the unsatisfiability of this set of non-linear constraints using the
redlog demo [3] (we considered the disjunction over the cases c ≤ c0 and
c > c0 and used quantifier elimination).

2 Basic Notions and Notations

Local Theories. The notion of local theory was introduced in [7,8] by Givan
and McAllester. A local theory is a set of Horn clauses K such that, for any
ground Horn clause C, K |= C only if already K[C] |= C (where K[C] is the set of
instances of K in which all terms are subterms of ground terms in either K or C).
In [4], Ganzinger defined locality and stable locality of equational Horn theories,
and established relationships between these notions of locality and embeddability
of partial algebras into total algebras.

Total and Partial Algebras. We now present some generalities on partial
algebras. Further details on partial algebras can be found in [1].

A partial Σ-algebra is a structure (A, {fA}f∈Σ), where A is a non-empty set
and for every f ∈ Σ with arity n, fA is a partial function from An to A. A (total)
Σ-algebra is a partial Σ-algebra where all functions fA are total. In what follows
we usually denote with the same symbol both an algebra and its support.

The notion of evaluating a term t with respect to a variable assignment
β : X → A for its variables in a partial algebra A is the same as for total
algebras, except that this evaluation is undefined if t = f(t1, . . . , tn) and either
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fA.

A total map h : A → B between partial Σ-algebras A and B is called a
weak Σ-homomorphism if whenever fA(a1, . . . , an) is defined in A, then also
fB(h(a1), . . . , h(an)) isdefinedinB andh(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).
Apartial algebraAweaklyembeds intoa (total)algebraB if there exists an injective
weak Σ-homomorphism from A to B.

In what follows we will consider structures (A, {fA}f∈Σ, {PA}P∈Pred), where
Pred is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra. We
will refer to this type of structures as Π-algebras (or Π-models), where Π =
(Σ, Pred). We say that a partial Π-algebra A weakly embeds into a (total) Π-
algebra B if there exists i : A → B which is an injective weak Σ-homomorphism
from A to B, and an embedding with respect to Pred.

We define Evans validity in structures (A, {fA}f∈Σ, {PA}P∈Pred), where Pred
is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra. In what
follows the symbol ≈ standing for formal equality will be considered to be sym-
metric also syntactically, so s ≈ t denotes at the same time also t ≈ s. Let
β : X → A.
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(1) (A, β) |= t ≈ s if and only if (a) β(t) and β(s) are both defined and equal; or
(b) β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one
of the direct subterms of t; or (c) both β(s) and β(t) are undefined.

(2) (A, β) |= t �≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |= P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β) |= ¬P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn)) �∈ PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(A, β) satisfies a clause C (notation: (A, β) |= C) if (A, β) |= L for at least one
literal L in C. A satisfies C (notation: A |= C) if (A, β) |= C for all assignments
β. A satisfies a set of clauses K (notation: A |= K) if A |= C for all C ∈ K.

The notion of weak validity is obtained from Evans validity by replacing con-
ditions (1)(b) and (c) in the definition of truth of equality atoms with condition

(b’) at least one of β(s), β(t) is undefined.

Validity of non-equality literals is the same. The notion of weak validity extends
to clauses and sets of clauses in the usual way. We use the notation: (A, β) |=w L
for a literal L; (A, β) |=w C; A |=w C for a clause C, etc.

Example 1. Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then A �|= car(nil) ≈ nil (since
carA(nil) is undefined in A, but nil is defined in A); and A |= car(nil) �≈ nil,
A |=w car(nil) ≈ nil, A |=w car(nil) �≈ nil (because one term is not defined in A).

Theory Extensions. In this paper we consider extensions of theories, in which
the signature is extended by new function symbols. For the sake of simplicity we
assume that the set of predicate symbols remains unchanged in the extension.
A theory can be regarded as a set of formulae. Then extension with a set of
formulae is set union. In what follows we regard theories as sets of formulae. 1

Let T0 be an arbitrary theory with signature Π0 = (Σ0, Pred), where the
set of function symbols is Σ0. We consider extensions T1 of T0 with signature
Π = (Σ, Pred), where the set of function symbols is Σ = Σ0 ∪ Σ1. We assume
that T1 is obtained from T0 by adding a set K of (universally quantified) clauses.

A partial model of T1 with totally defined Σ0 function symbols is a partial
Π-algebra A where (i) the reduct A|Π0 of A to the signature Π0 is a model of
T0 (in the classical sense, i.e. all operations in Σ0 are total); (ii) A satisfies (in
the Evans sense) all clauses in K.

A partial Π-algebra A is a weak partial model of T1 with totally defined Σ0
function symbols if (i) A|Π0 is a (classical) model of T0 and (ii’) A weakly satisfies
all clauses in K.
1 If a theory T0 is regarded as a collection of models, then its extension with a set K

of formulae consists of all structures (in the extended signature) which are models
of K and whose reduct to the signature of T0 is in T0. All the notions defined in this
paper can easily be reformulated to a setting in which T0 is a collection of models.
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In what follows, if the base theory T0 and its signature are clear from the
context, we will refer to partial models of T1, resp. weak partial models of T1.
We will denote by PMod(Σ1, T1) the class of all partial models of T1 in which
the functions in Σ1 are partial, and all other function symbols are total; and
by PModw(Σ1, T1) the class of all weak partial models of T1 in which the Σ1
functions are partial and all the other function symbols are total. We denote by
PModf(Σ1, T1), resp. PModf

w(Σ1, T1) the class of all finite partial models (resp.
weak partial models) of T1, with total Σ0 functions, and partial Σ1 functions.
Mod(T1) denotes the class of all models of T1 in which all functions in Σ0 ∪ Σ1
are totally defined. Note that Mod(T1) ⊆ PMod(Σ1, T1) ⊆ PModw(Σ1, T1).

3 Embeddability

For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of clauses, and for the
classes of partial algebras mentioned above we consider the following conditions:

(Emb) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model of T1.
(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.

Weaker conditions, which only refer to embeddability of finite partial models can
also be defined. These will be denoted by (Embf), resp. (Embf

w). We also define
stronger notions of embeddability, which we call completability:

(Comp) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model B of T1
such that A|Π0 and B|Π0 are isomorphic
(or, more generally: elementarily equivalent).

(Compf), (Compw) and (Compf
w) are defined analogously.

Example 1. We present several examples of theory extensions for which em-
bedding conditions among those mentioned above hold.

(1) Shallow extensions: Suppose that T0 ⊆ T1 is a shallow theory extension,
i.e. T1 = T0 ∪ K, where K is a set consisting only of clauses in which partial
function symbols occur only in equality atoms, only positively and only at
the root of terms. Assume that all extension functions are declared partial.
Then the extension T0 ⊆ T1 satisfies the embeddability condition (Comp) [6].
Extensions with functions defined by tail recursions are shallow [6].

(2) Extensions with free functions: Any extension of a theory T0 with a set
of free function symbols satisfies condition (Compw).

(3) Extensions with selector functions: Let T0 be a theory with signature
Π0 = (Σ0, Pred), let c ∈ Σ0 with arity n, and let Σ1 = {s1, . . . , sn} consist
of n unary function symbols. Let T1 = T0 ∪ Sel (a theory with signature
Π = (Σ0 ∪Σ1, Pred)) be the extension of T0 with the set Sel of clauses below.
Then the extension T0 ⊆ T1 satisfies condition (Comp).
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If in addition T0 satisfies the (universally quantified) formula Inj(c) (i.e.
c is injective in T0) then the extension T0 ⊆ T1 satisfies condition (Compw).

(Sel) s1(c(x1, . . . , xn)) ≈ x1

· · ·
sn(c(x1, . . . , xn)) ≈ xn

x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Inj(c)) c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (
n∧

i=1

xi ≈ yi)

(4) Extensions with monotone functions: Let T0 be one of the following
theories: (1) P (posets), (2) T (totally-ordered sets), (3) DO (dense totally-
ordered sets), (4) S (semilattices), (5) L (lattices), (6) DL (distributive lat-
tices), (7) B (Boolean algebras), (8) R (theory of reals).

Let Monf be the monotonicity axiom:

(Monf )
n∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The extension T0 ⊆ T0∪Monf satisfies condition (Embw) in the cases (1)–(5);
satisfies condition (Compf

w) in the cases (6) and (7); and satisfies condition
(Compw) in case (8).

(5) Lipschitz functions: The extension R ⊆ R∪(Lλ
f ) of R with a unary function

which is λ-Lipschitz in a point x0 (for λ > 0) satisfies condition (Compw).

(Lλ
f ) ∀x |f(x) − f(x0)| ≤ λ · |x − x0|

4 Local Theory Extensions

We now define two notions of locality of a theory extension which generalize the
notion of local equational theory studied by Ganzinger in [4] and of locality of
a theory in general [7,8].

Let K be a set of clauses in the signature Π = (Σ0 ∪ Σ1, Pred). In what
follows, when we refer to sets G of ground clauses we assume that they are in
the signature Πc = (Σ ∪ Σc, Pred), where Σ = Σ0 ∪ Σ1, and Σc is a set of new
constants.

If Ψ is a set of ground Σ0∪Σ1∪Σc-terms, where Σc is a set of (new) constants,
we denote by KΨ the set of all instances of K in which all terms starting with
a Σ1-function symbol are ground terms in Ψ . We denote by KΨ the set of all
instances of K in which all variables occurring below a Σ1-function symbol are
instantiated with ground terms in the set TΣ0(Ψ) of Σ0-terms generated by Ψ .

If G is a set of ground clauses and Ψ = st(K, G) is the set of ground subterms
occurring in either K or G then we write K[G] := KΨ , and K[G] := KΨ .

We identify the following types of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:



226 V. Sofronie-Stokkermans

(Loc) For every set G of ground clauses T1 ∪ G |=⊥ iff T0 ∪ K[G] ∪ G has
no weak partial model in which all terms in st(K, G) are defined.

(SLoc) For every set G of ground clauses T1 ∪ G |=⊥ iff T0 ∪ K[G] ∪ G has
no partial model in which all terms in st(K, G) are defined.

Weaker notions (Locf), resp. (SLocf) can be defined if we require that the re-
spective conditions hold only for finite sets G of ground clauses. An extension
T0 ⊆ T1 is local (stably local) if it satisfies condition (Locf) (resp. (SLocf)). A local
(stably local) theory [4] is a local (stably local) extension of the empty theory.

5 Locality and Embeddability

We establish links between the notions of locality and embeddability. This ex-
tends the results established for local equational theories in [4].

Let T0 be an arbitrary theory with signature Π0 = (Σ0, Pred). Let T1 be
an extension of T0 by a set K of clauses in signature Π = (Σ0 ∪ Σ1, Pred).
Under appropriate assumptions, locality implies embeddability. The converse,
which is proved in this section, will be used to provide examples of local theory
extensions.

5.1 Flattening of Goals

We first show that in the locality condition we can assume, w.l.o.g., that G
consists only of flat and linear (resp. purified) clauses.

We say that a ground clause is Σ1-flat if only constants appear as arguments
of function symbols in Σ1. A Σ1-flat ground clause is Σ1-linear if whenever a
constant occurs in two terms in the clause starting with function symbols in Σ1,
the two terms are identical, and if no term starting with a function symbol in
Σ1 contains two occurrences of the same constant.

Any set G of ground clauses in a signature Σ containing Σ1 can be trans-
formed into a set Gflin(Σ1) of ground clauses in which subterms starting with
function symbols in Σ1 are flat and linear. This can be done by introducing, in
a bottom-up manner, new constants for subterms occurring below functions in
Σ1, and adding the corresponding definitions to the set of clauses. A set G of
ground clauses can be transformed into a purified set of clauses Gsep(Σ1) (i.e. the
function symbols in Σ1 are separated from the other symbols) by introducing,
in a bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn) with
f ∈ Σ1, gi ground Σ0 ∪ Σc-terms (where Σc is a set of constants which contains
the constants introduced by flattening), together with corresponding definitions
ct ≈ t. These transformations preserves satisfiability and unsatisfiability with
respect to total algebras, and also with respect to partial algebras in which all
ground subterms which are flattened are defined.

Lemma 1. Let K be a set of clauses containing only Σ1-flat ground subterms.
Assume that for any set G of Σ1-flat and Σ1-linear (resp. purified, resp. flat,
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linear and purified) ground clauses, if T0 ∪ K ∪ G |=⊥ then T0 ∪ K[G] ∪ G has
no partial algebra model in which all terms in st(K, G) are defined. Then the
extension T0 ⊆ T0 ∪ K satisfies condition (Loc).

5.2 Embeddability of Weak Partial Models Implies Locality

We prove that for extensions which are Σ1-flat and Σ1-linear embeddability of
weak partial models into total models implies locality.

A non-ground clause is Σ1-flat if function symbols (including constants) do
not occur as arguments of function symbols in Σ1. A Σ1-flat non-ground clause
is called Σ1-linear if whenever a variable occurs in two terms in the clause which
start with function symbols in Σ1, the two terms are identical, and if no term
which starts with a function in Σ1 contains two occurrences of the same variable.

Theorem 2. Let K be a set of clauses which are Σ1-flat and Σ1-linear, and let
T1 = T0 ∪ K. Then the following hold:

(1) If the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf
w),

then T0 ⊆ T1 satisfies (Locf).

Proof : (1) Assume that T0 ∪ K is not a local extension of T0. Then there exists
a set G of ground clauses (with additional constants) such that T0 ∪ K ∪ G |=⊥
but T0 ∪ K[G] ∪ G has a weak partial model P in which all terms in st(K, G)
are defined. By Lemma 1 we can assume w.l.o.g. that G = G0 ∪ G1, where G0
contains no function symbols in Σ1 and G1 consists of ground unit clauses of the
form f(c1, . . . , cn) ≈ c, where c1, . . . , cn, c are constants in Σ0 ∪Σc and f ∈ Σ1.2

We construct another structure, A, having the same support as P , which
inherits all relations in Pred and all maps in Σ0 ∪ Σc from P , but on which the
domains of definition of the Σ1-functions are restricted as follows: for every f ∈
Σ1, fA(a1, . . . , an) is defined if and only if there exist constants c1, . . . , cn such
that f(c1, . . . , cn) is in st(K, G) and ai = ci

P for all i ∈ {1, . . . , n}. In this case
we define fA(a1, . . . , an) := fP (c1

P , . . . , cn
P ). The reduct of A to (Σ0 ∪ Σc, Pred)

coincides with that of P . Thus, A is a model of T0∪G0. By the way the operations
in Σ1 are defined in A it is clear that A satisfies G1, so A satisfies G.

To show that A |=w K we use the fact that if D is a clause in K and β : X → A
is an assignment in which β(t) is defined for every term t occurring in D, then
(by the way Σ1-functions are defined in A) we can construct a substitution σ
with σ(D) ∈ K[G] and β ◦ σ = β. As (P, β) |=w σ(D) we can infer (A, β) |=w D.

As A |=w K, A weakly embeds into a total algebra B satisfying T0 ∪ K. But
then B |= G, so B |= T0 ∪ K ∪ G, which is a contradiction.

2 All results below hold if only purified goals are considered; flattening and linearity
of goals is not absolutely necessary.
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(2) Proof similar to (1), with the difference that we start with a finite set G of
ground clauses, and as support for A we take {tP | t ∈ TΣ0(st(K, G))}; all opera-
tions and relations are defined as above. T0 is a universal theory, so A|Π0 (a Π0-
substructure of P|Π0) is also a model of T0. As st(K, G) is finite and T0 is locally
finite, A is finite, so (Embf

w) is sufficient to find a total model B of T0 ∪K∪G. �

Example 2. The following theory extensions T0 ⊆ T1 are local:

(1) Any extension T1 of a theory T0 with a set of free function symbols.
(2) Any extension T1 of a theory T0 with a set of selectors {s1, . . . , sn} for an

n-ary function c which is injective in T0.
(3) The extension of any of the theories T0 in Example 1(4) with monotone

functions: T1 = T0 ∪ Monf , where Monf is the monotonicity axiom of the
n-ary function f .

(4) The extension of the theory of reals with a λ-Lipschitz function at x0.

Proof : (Sketch) Locality follows from the embeddability properties in Example 1.
Ad (3): To prove condition (Locf) when T0 is DL or B it suffices to show that
(Embf

w) holds, because these theories are universal and locally finite. �

5.3 Embeddability of Evans Partial Models Implies Stable Locality

We now show that, for an extension T1 = T0 ∪ K of a universal theory T0,
embeddability of Evans partial models into total models implies stable locality.

Theorem 3. Let T0 be a universal theory and K be a set of clauses. Then:

(1) If the extension T0 ⊆ T1 satisfies (Emb) then it satisfies (SLoc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf),
then T0 ⊆ T1 satisfies (SLocf).

Proof : The proof is similar to that of Theorem 2. The first difference is in
the construction of the partial model A of T0 ∪ K ∪ G. Let A = {tP | t ∈
TΣ0(st(K, G))}. Define the functions and relations in Π0 as in P . If f ∈ Σ1 is an
n-ary function and t1P , . . . , tnP ∈ A, then fA(t1P , . . . , tnP ) is defined and equal to
tP if and only if tP = f(t1, . . . , tn)P ∈ A. A|Π0 is a Π0-substructure of P|Π0 . As
T0 is a universal theory, A|Π0 is a total model of T0. As all terms in st(K, G) are
defined both in P and in A, and P |= G, A satisfies all clauses in G. To show
that A satisfies K note that every assignment β : X → A defines at least one
substitution σ : X → TΣ0(st(K, G)) such that (σ(t))P = β(t). Then σ(D) is an
instance of D in K[G], so P |= σ(D), hence (A, β) |= D. It follows that A satisfies
T0 ∪ K ∪ G. The existence of a total model of T0 ∪ K ∪ G follows from (Emb).

(2) If G is a finite set of clauses then the additional conditions guarantee
that A is finite, so only embeddability of finite partial models is necessary in the
proof. �
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Example 3. (1) A shallow extension of a universal theory is stably local.
(2) Let T0 be a universal theory with signature Π0 = (Σ0, Pred), and let c ∈
Σ0 be a function symbol with arity n. Let Π = (Σ0 ∪ Σ1, Pred), where Σ1 =
{s1, . . . , sn}. Let T1 = T0 ∪ Ksel be the extension of T0 with the selector axioms
for the unary functions s1, . . . , sn. Then T0 ⊆ T1 satisfies condition (SLoc).

6 Relational Encodings, Decidability and Complexity

The locality conditions we consider relate satisfiability in total models to satisfi-
ability of certain ground instances with respect to partial models. We can replace
reasoning about partially defined functions with reasoning about relations.

For the signature Π = (Σ0 ∪Σ1, Pred) let Π∗ denote the signature (Σ0, Σ
∗
1 ∪

Pred), where every n-ary function symbol f in Σ1 is replaced by an (n+1)-ary re-
lation symbol rf . If A is a Π-algebra, its relational variant is the Π∗-structure A∗

for which rf
A(a1, . . . , an, a) if and only if fA(a1, . . . , an) is defined and equal to a.

The idea of the relational translation is to replace each atom f(c1, . . . , cn) ≈ c
with the rf (c1, . . . , cn, c).

We use the relational translation to establish relationships between the de-
cidability resp. complexity of the universal clause theory of the extension and
the decidability resp. complexity of a suitable fragment of the base theory.

6.1 Flattening and Relational Encoding

The locality conditions defined in Section 4 require that T1 ∪ G is satisfiable
(where G is a set of ground clauses) if and only if T0 ∪ K∗[G] ∪ G has a (Evans,
weak, finite) partial model with additional properties, where, depending on the
notion of locality, K ∗ [G] is K[G] or K[G]. In these sets of clauses the function
symbols in Σ1 only occur at the root of ground terms. Therefore, they can be
flattened as explained in Section 5.1. They can also be purified (i.e. the func-
tion symbols in Σ1 are separated from the other symbols) by introducing, in a
bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1,
gi ground Σ0 ∪Σc-terms (where Σc is a set of constants which contains the con-
stants introduced by flattening, resp. purification), together with corresponding
definitions ct ≈ t. The set of clauses thus obtained has the form K0∪G0∪D, where
D is a set of ground unit clauses of the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c
is a constant, g1, . . . , gn are ground terms without function symbols in Σ1; and
K0 and G0 are clauses without function symbols in Σ1. (If we flatten and then
purify K ∗ [G] ∪ G we ensure that D consists of ground unit clauses of the form
f(c1, . . . , cn)≈c, where f ∈ Σ1, and c1, . . . , cn, c are constants.) These flattening
and purification transformations preserve both satisfiability and unsatisfiability
with respect to total algebras, and also with respect to partial algebras in which
all ground subterms which are flattened are defined.

For the sake of simplicity in what follows we will always flatten and then
purify G and K ∗ [G]. All results also hold if only purification is applied.
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Lemma 4. Let K be a set of clauses and G a ground clause, and let K0 ∪G0 ∪D
be obtained from K∗[G] ∪ G by flattening and purification, as explained above.
Then the following are equivalent:

(1) T0 ∪K∗[G]∪G has a partial model in which all terms in st(K, G) are defined.
(2) T0∪K0∪G0∪D has a partial model with all terms in st(K0, G0, D) defined.
(3) T0∪K0∪G0∪Fun(D∗)∪D∗ has a relational model, where D∗={rf (c1, . . . , cn, c) |

(f(c1, . . . , cn) ≈ c) ∈ D} and Fun(D∗) = {
∧n

i=1 ci ≈ di ∧ rf (c1, . . . , cn, c) ∧
rf (d1, . . . , dn, d) → c ≈ d | f ∈ Σ1, r

f (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.

(4) T0 ∪ K0 ∪ G0 ∪ N0 has a (total) model, where N0 = {
∧n

i=1 ci ≈ di → c = d |
rf (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.

6.2 Decidability and Complexity

Let T0 be an arbitrary Π0-theory, where Π0 = (Σ0, Pred) and let T1 = T0 ∪ K,
where K is a finite set of clauses in a signature Π = (Σ0 ∪ Σ1, Pred).

Theorem 5. Assume that the theory extension T0 ⊆ T1 either (1) satisfies con-
dition (Locf), or else (2) satisfies condition (SLocf) and T0 is locally finite. Then:

(a) If all variables in the clauses in K occur below some function symbol from
Σ1 and if the universal theory of T0 is decidable, then the universal theory
of T1 is decidable.

(b) If the ∀∃ theory of T0 is decidable then the universal theory of T1 is decidable.

Proof : It is sufficient to show that the universal clause theory of T1 is decidable.
We present the proofs under hypotheses (1) and (2) in parallel.

Let C be a clause in the signature Π with variables x1, . . . , xn. Obviously,
T0 ∪ K |= ∀x1 . . . xnC if and only if T0 ∪ K ∪ G is unsatisfiable, where G is the
set of ground unit clauses obtained from ∃x1 . . . xn¬C by Skolemization. By the
locality assumption, the last statement is equivalent to saying that T0∪K∗[G]∪G
has no (weak) partial model in which all terms in st(K, G) are defined (where
K∗[G] is K[G] in the case of local extensions and K[G] for stably local extensions).
Let K0 ∪G0 ∪D be the flattened form of K∗ [G]∪G. By Lemma 4 we know that
T0 ∪ K ∗ [G] ∪ G has no (weak) partial model in which all terms in st(K, G) are
defined if and only if T0 ∪K0∪G0 ∪N0 has a total model, where N0 = {

∧n
i=1 ci ≈

di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.
Flattening and purification increase the size (i.e. the total number of symbols)

of clauses only by a linear factor. So the size of K0 is linear in the size of K ∗ [G]
and the size of G0 ∪ D is linear in the size of G ∪ K. N0 contains at most |D|2
clauses, so the number of clauses in N0 is quadratic in the number of Σ1 ground
terms occurring in K and G. The maximal length of the clauses in N0 is m + 1,
where m is the maximal arity of a function symbol in Σ1. The only difference
between (1) and (2) is the number of clauses in K ∗ [G].

(1) For a local extension, K ∗ [G] = K[G]. If K is finite then K[G] has at most
nc · nt · |st(K, G)| clauses, where nc is the number of clauses in K and nt the
maximal number of distinct Σ1 terms in a clause in K. Then K0 ∪ G0 ∪ N0 is
finite, of size polynomial in the size of K ∪ G.
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(2) For a stably local extension, K∗ [G] = K[G]. If K is finite and T0 is locally
finite then there are only finitely many equivalence classes in TΣ0(st(K, G)) with
respect to equality modulo T0 (say nK,G). If we only choose the representatives
for instantiation in K[G], the resulting set of clauses is finite, of size polynomial
in nK,G and in the size of K ∪ G. Then K0 ∪ G0 ∪ N0 is finite.

The proof now continues for both local and stably local extensions:

(a) Assume that for every clause in K, every variable occurs below a Σ1 function.
Then K[G] (and K0) consists only of ground clauses. If checking the satisfiability
of (existentially quantified) conjunctions of clauses w.r.t. T0 is decidable, then
the universal clause theory of T1 is decidable, and its complexity is determined
by the complexity of satisfiability checking for sets of clauses in T0 and the size
of K0 ∪ G0 ∪ N0. The problem of checking the satisfiability of conjunctions of
clauses is decidable iff the universal theory of T0 is decidable: if {k1, . . . , km} is
the set of all constants that occur in K0 ∪ G0 ∪ N0 the following are equivalent:

(i) T0 ∪
∧

C∈K0∪G0∪N0
C(k1, . . . , km) |=⊥.

(ii) T0 ∪ ∃x1, · · ·xm(
∧

C∈K0∪G0∪N0
C(x1, . . . , xm)) |=⊥.

(iii) T0 |= ∀x1, · · · xm(
∨

C∈K0∪G0∪N0
¬C(x1, . . . , xm)).

(b) If some variables in clauses in K do not occur below Σ1-function symbols then
the clauses in K0 are not necessarily ground: they contain variables {y1, . . . , yk},
and constants in {c1, . . . , cn}. The following statements are equivalent:

(i) T0∪
(∧

C∈K0
∀y1 . . . ∀yk C(c1, . . . , cn, y1, . . . , yk) ∧

∧
C∈G0∪N0

C(c1, . . . , cn)
)

|=⊥ .

(ii) T0 ∪∃x1 . . . xn

(∧
C∈K0

∀y1 . . . ykC(x1 . . . xn, y1 . . . yk)∧
∧

C∈G0∪N0
C(x1. . . xn)

)
|=⊥

.

(iii) T0 |=∀x1 . . . xn

(∨
C∈K0

∃y1 . . . yk¬C(x1 . . . xn, y1 . . . yk) ∨
∨

C∈G0∪N0
¬C(x1 . . . xn)

)
.

If the ∀∃ fragment of T0 is decidable then we can use this and the equivalence
of (i) and (iii) to check whether T0 ∪ K0 ∪ G0 ∪ N0 is satisfiable. The size of
K0 ∪ G0 ∪ N0 and the complexity of the ∀∃ fragment of T0 then determine the
complexity of the universal fragment of T1. �

Corollary 6. Let T0 be a theory for which the satisfiability of a set of ground
clauses of size n can be checked in time at most g(n), and let T0 ⊆ T0 ∪ K be
a local theory extension where in every clause in K each variable occurs below
some extension function. The validity of a set of clauses in the extension can be
checked in time g(c · n2), where c is a constant. This holds for:

(1) Extensions with free function symbols (alternative proof of results in [5,10]).
(2) Extensions with monotone functions (see also Example 4)
– If T0 is the theory DL (of distributive lattices) or B (of Boolean algebras) the

complexity of the universal clause theory of an extension of T0 with monotone
functions is in co-NP.

– If T0 is the theory L (of lattices) or SL (of semilattices) then the complexity
of the universal clause theory of an extension of T0 with monotone functions
is in co-NP, and that of the universal Horn theory of T1 is in ptime.
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(3) Extensions of theories of injective constructors with selectors.
(4) Extensions of R with Lipschitz functions: the universal clause theory is in

exptime (an example was already presented in Section 1.1).

Example 4. Let T0 be a theory (with a binary predicate ≤), and T1 a local
extension of T0 with two monotone functions f and g. Consider the following
problem:

T0 ∪ Monf ∪ Mong |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v))

The problem reduces to the problem of checking whether T0∪Monf ∪Mong∪G |=⊥,
where G = c0 ≤ c1 ∧ f(c1 ∨ c2) ≤ g(c3 ∧ c4) ∧ f(c0) �≤ g(c4).

After flattening, using the locality of the extension T0 ⊆ T1, making the rela-
tional translation, and computing N0, we obtain the following set of clauses:

c0 ≤ c1 rf (d1, e1) d1 = c0 → e1 = e3 d1 ≤ c0 → e1 ≤ e3

d1 = c1 ∨ c2 rf (c0, e3) d2 = c4 → e2 = e4 c0 ≤ d1 → e3 ≤ e1

d2 = c3 ∧ c4 rg(c4, e4) d2 ≤ c4 → e2 ≤ e4

e1 ≤ e2 rg(d2, e2) d4 ≤ d2 → e4 ≤ e2

e3 �≤ e4

(1) Assume T0 is DL or B. The universal clause theory of DL (resp. B) is the
theory of the two element lattice (resp. two element Boolean algebra), so testing
Boolean satisfiability is sufficient. (This is in NP.) We proved unsatisfiability
using spass [11], but SAT solvers such as, e.g. Chaff [9], can be used as well.
(2) If T0 = L we can reduce the problem above to the problem of checking the
satisfiability of a set of ground Horn clauses (via the relational translation of
Skolem described in the introduction). This can be checked in ptime.
(3) If T0 = R we first need to explain what ∨ and ∧ are. For this, we replace
d1 = c1 ∨ c2 with (c1 ≤ c2 → d1 = c2) ∧ (c2 < c1 → d1 = c2) and similarly for
d2 = c3 ∧ c4. We proved unsatisfiability using the redlog demo [3].

We can therefore conclude that in all cases above:
T1 |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v)).

7 Beyond the Universal Fragment

Analyzing the proof of Theorems 2 and 3 we notice that the embeddability con-
ditions (Comp) and (Compw) imply, in fact, stronger locality conditions. Con-
sider a theory extension T0 ⊆ T0 ∪ K with a set K of formulae of the form
∀x1 . . . xn(Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π .

We can extend the notion of locality of an extension accordingly:

(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Π0-sentence and G is a
set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ ] ∪ Γ has no weak
partial model in which all terms in st(K, G) are defined.

A stable locality condition (ESLoc) can be defined similarly. The proofs of The-
orems 2 and 3 can be adapted with minimal changes to prove a stronger result:
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Theorem 7. (1) Assume all terms of K starting with a Σ1 function are flat and
linear. If the extension T0 ⊆ T1 satisfies (Compw) then it satisfies (ELoc).

(2) Assume that T0 is a universal theory. If the extension T0 ⊆ T1 satisfies
(Comp) then it satisfies (ESLoc).

Proof : (Idea) By (Comp), the partial model and its total completion have sup-
ports whose Π0-reducts are isomorphic, hence elementarily equivalent. Therefore
the (weak) embedding guaranteed by (Compw) resp. (Comp) preserves and re-
flects the truth of all first-order formulae in the base signature. �

Further generalizations are possible (concerning both the form of the set of
extension formulae, and the form of the goals). This is work in progress.

8 Conclusions

We introduced notions of locality for theory extensions and showed that for local
theory extensions we may regard w.l.o.g. the extension functions as functional
relations. Using a relational translation we identified situations where it is pos-
sible to express the decidability (complexity) of an extension T1 in terms of the
decidability (complexity) of a fragment of the base theory T0 (universal or ∀∃).
These results apply to theories of data types and to some theories of functions
from algebra or mathematical analysis.

There seem to exist relationships with results on combinations of non stably
infinite theories [10]. The result on extensions of an arbitrary theory with free
functions which we obtain as an example was discovered independently in a dif-
ferent context by Ganzinger [5] and Tinelli and Zarba [10]. However, here we go
beyond analyzing mere combinations of theories: we look at proper extensions,
in which the extension axioms contain functions from the base theory. In this
paper we restrict ourselves to one-sorted theories. Similar results can be obtained
in a many-sorted framework.

Acknowledgements. Many of the results presented here are the direct or indi-
rect result of discussions and joint work with Harald Ganzinger during the last
years. Some of the ideas on local extensions sketched in [6] are now presented
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