Field Constraint Analysis

Thomas Wies, Viktor Kuncalé,
Patrick Lan?, Andreas Podelskj and Martin Rinard

1 Max-Planck-Institut fur Informatik, Saarbriicken, Gemy
{wies,podelski }@mpi-inf.mpg.de
2 MIT Computer Science and Atrtificial Intelligence Lab, Caidge, USA
{vkuncak,plam,rinard }@csail.mit.edu

Abstract. We introducefield constraint analysisa new technique for verifying data struc-
ture invariants. A field constraint for a field is a formula sif)gng a set of objects to which
the field can point. Field constraints enable the applicaticdecidable logics to data struc-
tures which were originally beyond the scope of these lodigsverifying the backbone
of the data structure and then verifying constraints ondi¢hat cross-cut the backbone in
arbitrary ways. Previously, such cross-cutting fields danly be verified when they were
uniquely determined by the backbone, which significanttyits the range of analyzable
data structures.

Field constraint analysis permit®n-deterministidield constraints on cross-cutting fields,
which allows the verificiation of invariants for data struets such as skip lists. Non-
deterministic field constraints also enable the verificatibinvariants between data struc-
tures, yielding an expressive generalization of statie tyeclarations.

The generality of our field constraints requires new teahesg which are orthogonal to the
traditional use of structure simulation. We present onéd sechnique and prove its sound-
ness. We have implemented this technique as part of a syendiwdipe analysis deployed
in the context of the Hob system for verifying data structtmasistency. Using this imple-
mentation we were able to verify data structures that wesegipusly beyond the reach of
similar techniques.

1 Introduction

The goal of shape analysis [27, Chapter 4], [2,4-6, 22, 2532)6is to verify com-
plex consistency properties of linked data structures. vidrdication of such proper-
ties is important in itself, because the correct executiothe program often requires
data structure consistency. In addition, the informatiomputed by shape analysis is
important for verifying other program properties in pragiawith dynamic memory
allocation.

Shape analyses based on expressive decidable logics [2B]Bte interesting for
several reasons. First, the correctness of such analysesisr to establish than for
approaches based on ad-hoc representations; the use dtlalidedogic separates the
problem of generating constraints that imply program prioge from the problem of
solving these constraints. Next, such analyses can be ndbe icontext of assume-
guarantee reasoning because logics provide a languagedoifysng the behaviors of
code fragments. Finally, the decidability of logics leagl€dmpleteness properties for
these analyses, eliminating false alarms and making tHgsasseasier to interact with.
We were able to confirm these observations in the context @f $ystem [16, 21] for
analyzing data structure consistency, where we have megdjone such tool [26] with
other analyses, allowing us to use shape analysis in thextooit larger programs: in
particular, Hob enabled us to leverage the power of shapgsasavhile avoiding the

associated performance penalty, by applying shape asandy to those parts of the
program where its extreme precision is necessary.

Our experience with such analyses has also taught us tha gbthe techniques
that make these analyses predictable also make them inablgito many useful data
structures. Among the most striking examples is the re&tnon pointer fields in the
Pointer Assertion Logic Engine [26]. This restriction stthat all fields of the data
structure that are not part of the data structure’s tree liaok must be functionally
determined by the backbone; that is, such fields must befggbby a formula that
uniquely determines where they point to. Formally, we have

Vry. f(z)=y < F(z,y) 1)

wheref is a function representing the field, afds the defining formula fof. The re-
striction thatZ is functional means that, although data structures sucbwaslyllinked
lists with backward pointers can be verified, many other datactures remain beyond
the scope of the analysis. This includes data structuresathe exact value of pointer
fields depends on the history of data structure operationsdata structures that use
randomness to achieve good average-case performancesakip lists [30]. In such
cases, the invariant on the pointer field does not uniquetgraene where the field
points to, but merely gives a constraint on the field, of threnfo

Vry. f(z)=y — F(z,y) 2)

This constraint is equivalent téz. F(x, f(x)), which states that the functiofiis a
solution of a given binary predicate. The motivation fosthaper is to find a technique
that supports reasoning about constraints of this, morergérform. In a search for
existing approaches, we have considered structure siml&, 11], which, intuitively,
allows richer logics to be embedded into existing logics #ra known to be decidable,
and of which [26] can be viewed as a specific instance. Unfiattely, even the general
structure simulation requires definitions of the fovm y. r(z,y) < F(z,y) where
r(x,y) is the relation being simulated. When the relatidm, y) is a function, which
is the case with most reference fields in programming langsiagfructure simulation
implies the same restriction on the functionality of the wiefj relation. To handle the
general case, an alternative approach therefore appdeaegtecessary.

Field constraint analysis. This paper presents field constraint analysis, our approach
for analyzing fields with general constraints of the form @@gld constraint analysis is

a proper generalization of the existing approach and regitecé when the constraint
formula F' is functional. It is based on approximating the occurrerafeg with F,
taking into account the polarity of, and is always sound. It is expressive enough to
verify constraints on pointers in data structures such asléwel skip lists. The appli-
cability of our field constraint analysis to non-determiicigield constraints is impor-
tant because many complex properties have useful nonrdigistic approximations.
Yet despite this fundamentally approximate nature of fieidstraints, we were able to
prove its completeness for some important special caselsl ¢onstraint analysis natu-
rally combines with structure simulation, as well as wittymbolic approach to shape
analysis [29, 33]. Our presentation and current implentemtare in the context of the

monadic second-order logic (MSOL) of trees [13], but ountessextend to other log-
ics. We therefore view field constraint analysis as a usefigonent of shape analysis
approaches that makes shape analysis applicable to a w&rtge of data structures.

Contributions. This paper makes the following contributions:

— We introduce aralgorithm (Figure 9) that uses field constraints to eliminate de-
rived fields from verification conditions.

— We prove that the algorithm is bodound(Theorem 1) and, in certain casesm-
plete. The completeness applies not only to deterministic fieldeorem 2), but
also to the preservation of field constraints themselves loop-free code (Theo-
rem 3). Theorem 3 implies a complete technique for checkiagfteld constraints
hold, if the programmer adheres to a discipline of maintejrthem, for instance at
the beginning of each loop.

— We describe how to combine our algorithm with symbolic shapalysis [33] to
infer loop invariants.

— We describe aimplementation and experience in the context of the Hob sys-
tem for verifying data structure consistency. The impletagon of field constraint
analysis as part of the Hob system [16, 21] allows us to apm@yanalysis to mod-
ules of larger applications, with other modules analyzethbye scalable analyses,
such as typestate analysis [20].

Additional details on field constraint analysis (includimgofs of theorems) are avail-
able in the technical report [34].

2 Examples

We next explain our field constraint analysis with a set ofnegkes. Note that our
analysis handles, as a special case, data structures tleabaek pointers constrained
by deterministic constraints. Such data structures (fstiaimce, doubly linked lists and
trees with parent pointers [34]) have also been analyzed®yiqus approaches [26].
To illustrate the additional power of our analysis, we firggent an example illustrating
inter-data-structure constraints, which are simple ardul$or high-level application
properties, but are highly nondeterministic. We then preaeskip list example, which
shows how non-deterministic field constraints arise witthdtta structures, and illus-
trates how our analysis can synthesize loop invariants.

2.1 Students and Schools

Our first example illustrates the power of non-determiniéld constraints. The data
structure in this example contains two linked lists: onetaiming students and one
containing schools (Figure 2). Eaéliem object may represent either a student or
a school; students have a pointer to the school which thep@ttBoth students and
schools use theext backbone pointer to indicate the next student or schoolén th
relevant linked list. An invariant of the data structurehatt if an object is in the list of
students, then itattends field points to an object in the schools list; that is, it canno
be null and it cannot point to an object outside the list ofosds. This invariant is an
example of a non-deterministic field constraint: titeends field has a non-trivial
constraint, but the target of the field is not uniquely defiimetérms of existing fields;

impl module Students {
format Elem {
attends : Elem;
next : Elem;

var students : Elem;
var schools : Elem;

proc addStudent(st:Elem; sc:Elem) {
st.attends = sc;
st.next = students;
students = st;
}
}

Fig. 1. Implementation for students example students schools
Fig. 2. Students data structure instance

next ™\ next M\ next

spec module Students {
format Elem;
specvar ST : Elem set;
specvar SC : Elem set;

proc addStudent(st:Elem; sc:Elem)
requires card(st)=1 & card(sc)=1 & (sc in SC) &
(not (st in ST)) & (not (st in SC))
modifies ST
ensures ST = ST + st;

Fig. 3. Specification for students example

abst module Students {
use plugin "Bohne decaf";

X : Elem | "rtrancl (% v1 v2. next vl = v2) students X" };
x : Elem | "rtrancl (% v1 v2. next vl = v2) schools x" };

invariant "ALL x y. (attends x = vy) -->
x = null -->
(C(rtrancl (% v1 v2. next vl = v2) students x) --> y = null) &
((rtrancl (% v1 v2. next vl = v2) students x) -->
(rtrancl (% v1 v2. next vl = v2) schools y))))"

invariant "ALL Xx.
(x "= null & (rtrancl (lambda v1 v2. next vl = v2) schools x) -->
“(rtrancl (lambda vl v2. next vl = v2) students x))";

invariant "ALL x.

(x "= null & (rtrancl (lambda vl v2. next vl = v2) students x) -- >
“(rtrancl (lambda v1 v2. next vl = v2) schools x))"

Fig. 4. Abstraction for students example

instead, this field carries important new information aktbetschool that each student
attends.

We implement our example as a module in the Hob system [21ihwddlows us
to specify and, using field constraint analysis, verify tlesiced data structure invari-
ants and interfaces of data structure operations. In geemadule in Hob consists of
three sections: 1) an implementation section (Figure 1jainimg declarations of mem-
ory cell formats (in this casElem) and executable code for data structure operations
(such asaddStudent); 2) a specification section (Figure 3) containing declaret of
abstract sets of objects (such%iEfor the set of students ar®Cfor the set of schools
in the data structure) and interfaces of data structureatipeis expressed in terms of
these abstract sets; and 3) the abstraction section, whiek the abstraction function
specifying the definition of setSCandST) and specifies the representation invariants
of the data structure, including field constraints (in thase, on the fieldttends).

The implementation in Figure 1 states that #adStudent procedure adds a
studentt to the student list and associates it (via#ittiends field) with an existing
schoolsc , which is expected to be already in the list of schools. Fe@presents the set
interface for theaddStudents procedure, consisting of a preconditioruires
clause), frame conditionr{odifies clause), and postconditioerfsures clause).
The precondition states that must not already be in the list of studer83, and
thatsc must be in the list of schools. We represent parameters a®seardinality
at most one (the null object is represented as an empty detyefore, the conjuncts
card(st)=1 andcard(sc)=1 in the precondition indicate that the parametdrs
andsc are not null. The modifies clause indicates that only the sstumentsST
and not the set of schoo8C is modified. The postcondition describes the effect of
the procedure: it states that the set of stud&its after procedure execution is equal
to the union (denoted) of the setST of student objects before procedure execution,
combined with the given student objestt.

Our analysis automatically verifies that the data struotyperationaddStudent
conforms to its interface expressed in terms of abstrast Bebving the conformance
of a procedure to such a set interface is useful for seveasbres. First, the set inter-
face’s preconditions indicate to data structure clienésdbnditions under which it is
possible to invokeddStudent . These preconditions are necessary to prove that the
field constraint is maintained: if it was not the case thatdtigool parametesc be-
longed to the seBCof schools, the insertion would violate the representatigariant.
Similarly, if it was the case that the student objstt was a member of student list
sc, insertion would introduce cycles in the list and violate implicit acyclicity in-
variant of the data structure. Also, the postconditioaddStudents communicates
the fact thatst is in the list after the insertion, preventing clients froreeuting du-
plicate calls toaddStudents with the same student object. Finally, the set interface
expresses an important partial correctness propertyé@dtStudent procedure, so
that the verification of the set interface indicates thapttoeedure is correctly inserting
an object into the set of students. Note that the interfacbeprocedure does not re-
veal the details of procedure implementation, thanks tasieeof abstract set variables.
Since the set variables in the specification are abstragtyaunification of a concrete
implementation’s conformance to the set interface reguimncrete definitions for the
abstract variables. The abstraction section in Figure 4aiosithis information. First,

the abstraction section indicates which analysis (in tase@Bohne decaf , which
implements field constraint analysis) is to be used to aealyz module. Next, the ab-
straction section contains definitions for abstract vdeistmamelyST is defined as the
set ofElem objects reachable from the ragitidents reference throughext fields,
andSCis the set oElem objects reachable froschools . (The functionrtrancl
is a higher-order function that accepts a binary predicat®lgects and returns the
reflexive transitive closure of the predicate.) The absitvacsection also specifies data
structure invariants, including field constraints. Fiedahstraints are invariants with syn-
tactic formALL x y. (f x = y) --> ---. Afield f for which there is no field
constraint invariant in the abstraction section is congid¢o be part of the data struc-
ture backbonewhich has an implicit invariant that it is a union of treeqmafly, the
abstraction section may contain additional invariants;example contains invariants
stating disjointness of the lists rootedstiidents andschools

Our Bohne analysis verifies the conformance of a proceduits pecification as
follows. It first desugars the modifies clauses into a frammtda and conjoins it with
the ensures clause, then replaces abstract sets in préens@ind postconditions with
their definitions from the abstraction section, obtainiq@@cedure contract in terms of
the concrete state variableext andattends . Itthen conjoins representation invari-
ants of the data structure to preconditions and postcamditi-or a loop-free procedure
such asaddStudents , the analysis can then generate a verification conditiors&ho
validity implies that the procedure conforms to its inteda

The generated verification condition for our example camliretctly be solved us-
ing decision procedures such as MONA.: it contains the fomctymbolkttends that
violates the tree invariant required by MONA. Section 3 diéss how our analysis
uses field constraints in the verification condition to wetiife validity of such verifica-
tion conditions. Our analysis can successfully verify thepgrty that for any student,
attends points to some (undetermined) element of 8@set of schools. Note that
this goes beyond the power of previous analyses, which medjtihat the identity of
the school pointed to by the student be functionally deteetiiby the identity of the
student. The example therefore illustrates how our armlgiminates a key restric-
tion of previous approaches—certain data structures égritiperties that the logics in
previous approaches were not expressive enough to capture.

2.2 Skip List

We next present the analysis of a two-level skip list. Skdfsl{30] support logarithmic
average-time access to elements by augmenting a linkegitissublists that skip over
some of the elements in the list. The two-level skip list ilgpdified implementation of
a skip list with only two levels: the list containing all elemts, and a sublist of this list.
Figure 5 presents an example two-level skip list. Our im@etation uses thaext
field to represent the main list, which forms the backbonéeflata structure, and uses
the derivechextSub field to represent a sublist of the main list. We focus onatie
procedure, which inserts an element into an appropriaié@os the skip list. Figure 6
presents the implementation afld, which first searches througtextSub links to
get an estimate of the position of the entry, then finds theydnt searching through
next links, and inserts the element into the maiext -linked list. Optionally, the
procedure also inserts the element inextSub list, which is modelled using a non-

deterministic choice in our language and is an abstractidgheoinsertion with certain
probability in the original implementation. Figure 7 pretea specification foadd,
which indicates thaaddd always inserts the element into the set of elements stored in
the list. Figure 8 presents the abstraction section forioel&vel skip list. This section
defines the abstract sétas the set of nodes reachable fromot.next , indicating
thatroot is used as a header node. The abstraction section contegesitivariants.
The first invariant is the field constraint on the figldxtSub , which defines it as a
derived field.

Note that the constraint for this derived field is non-deiarstic, because it only
states that ik.nextSub==y , then there exists a path of length at least one fxotm
y alongnext fields, without indicating whereextSub points. Indeed, the simplicity
of the skip list implementation stems from the fact that tlsifion of nextSub is
not uniquely given bynext ; it depends not only on the history of invocations, but
also on the random number generator used to decide whenadirte newnextSub
links. The ability to support such non-deterministic coaistts is what distinguishes
our approach from approaches that can only handle detestigifields.

The last two invariants indicate thettot is never null (assuming, for simplicity of
the example, that the state is initialized), and that aleotg not reachable fronoot
are isolated: they have no incoming or outgoitext pointers. These two invariants
allow the analysis to conclude that the object referenced toyadd(e) is not refer-
enced by any node, which, together with the preconditiotte in S) , allows our
analysis to prove that objects remain in an acyclic list glthenext field .3

Our analysis successfully verifies thredd preserves all invariants, including the
non-deterministic field constraint arextSub . While doing so, the analysis takes ad-
vantage of these invariants as well, as is usual in assurm@giee reasoning. In this
example, the analysis is able to infer the loop invarianggid. The analysis constructs
these loop invariants as disjunctions of universally gifiedtboolean combinations of
unary predicates over heap objects, using symbolic shapgsss[29,33]. These unary
predicates correspond to the sets that are supplied in sBteaation section using the
proc keyword.

3 Field Constraint Analysis

This section presents the field constraint analysis algordand proves its soundness as
well as, for some important cases, completeness.

We consider a logi€ over a signature’ whereX' consists of unary function sym-
bols f € Fld corresponding to fields in data structures and constant sigmbe= Var
corresponding to program variables. We use monadic secofet-logic (MSOL) of
trees as our working example, but in general we only regfiit@ support conjunction,
implication, and equality reasoning.

A X -structureS is a first-order interpretation of symbols k. For a formulaZ” in
L, we denote b¥ields(F) C X the set of all fields occurring if'.

3 The analysis still needs to know thais not identical to the header node. In this example we hawd an
explicit (assume "e # root") statement to supply this information. Such assume statsnoam
be automatically generated if the developer specifies thefsepresentation objects of a data structure,
but this is orthogonal to field constraint analysis itself.

nextSub

nextSub

next) next) next next M)\ next
o/ N\ o/

N\

Fig. 5. An instance of a two-level skip list

impl module Skiplist {
format Entry {
vV oint;
next, nextSub : Entry;

var root : Entry;

proc add(e:Entry) {
assume "e "= root";
int v = e.;
Entry sprev = root, scurrent = root.nextSub;
while ((scurrent != null) && (scurrent.v < v)) {
sprev = scurrent; scurrent = scurrent.nextSub;
}

Entry prev = sprev, current = sprev.next;
while ((current != scurrent) && (current.v < v)) {
prev = current; current = current.next;

e.next = current; prev.next = e;
choice { sprev.nextSub = e; e.nextSub = scurrent; }
| { e.nextSub = null; }

Fig. 6. Skip list implementation

spec module Skiplist {
format Entry;
specvar S : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e}

Fig. 7. Skip list specification

abst module Skiplist {
use plugin "Bohne";

S = {x : Entry | "rtrancl (% vl v2. next vl = v2) (next root) x"};
invariant "ALL x y. (nextSub x = y) --> ((x = null --=> y = null) &
(x "= null --> rtrancl (% v1 v2. next vl = v2) (next x) y))"
invariant "root "= null";
invariant "ALL x. x "= null &
“(rtrancl (% v1 v2. next vl
“EX y.y "= null & nexty

Vv2) root x) -->
X) & (next x = null)";

proc add {
has_pred = {x : Entry | "EX y. next y = x'};
r_current = {x : Entry | "rtrancl (% v1 v2. next vl = v2) current X"}
r_scurrent = {x : Entry | "rtrancl (% v1 v2. next vl = v2) scurre nt x"};

r_sprev = {x : Entry | "rtrancl (% v1 v2. next vl = v2) sprev X"}
next_null = {x : Entry | "next x = null'};

sprev_nextSub = {x : Entry | "nextSub sprev = scurrent"};
prev_next = {x : Entry | "next prev = current"};

Fig. 8. Skip list abstraction (including invariants)

We assume thaf is decidable over some set of well-formed structures and we
assume that this set of structures is expressible by a fariin £. We call I the
simulation invarianf11]. For simplicity, we consider the simulation itself te lgiven
by the restriction of a structure to the fieldshilds(7), i.e. we assume that there exists
a decision procedure for checking validity of implicatiaishe form/ — F whereF’
is a formula such thefields(F') C Fields(I). In our running example, MSOL of trees,
the simulation invariant states that the fields ifields(7) span a forest.

We call a fieldf € Fields(I) abackbone fieldand call a fieldf € Fid \ Fields(T)
aderived field We refer to the decision procedure for formulas with fieldBields(7)
over the set of structures defined by the simulation invarlaasthe underlying de-
cision procedureField constraint analysis enables the use of the underigé@cision
procedure to reason about non-deterministically constchiderived fields. We state
invariants on the derived fields using field constraints.

Definition 1 (Field constraints on derived fields).A field constrainD for a simula-
tion invariant! and a derived field is a formula of the form

D = Vay. f(x) =y — FCs(x,y)

whereFC; is a formula with two free variables such that @iglds(FC;) C Fields(T),
and (2)FC; is total with respect td, i.e.] = Vz. 3y . FCs(x, y). We call the constraint
D deterministiaf FCy is deterministic with respect tb, i.e.

I =Voyz FCy(x,y) ANFCy(z,2) — y=2 .
We write D for the conjunction oD for all derived fieldsf.

Note that Definition 1 covers arbitrary constraints on a fielecausd® ; is equivalent
toVz. FCy(z, f(x)).

The totality condition (2) is not required for the soundnefssur approach, only for
its completeness, and rules out invariants equivalentaiséf. The condition (2) does
notinvolve derived fields and can therefore be checked aatioally using a single call
to the underlying decision procedure.

Our goal is to check validity of formulas of the forif\ D — G, whereG is a
formula with possible occurrences of derived field€Ifoes not contain any derived
fields then there is nothing to do, because we can answer #ry gging the under-
lying decision procedure. To check validity 6\ D — G, we therefore proceed as
follows. We first obtain a formul&”’ from G by eliminating all occurrences of derived
fields in G. Next, we check validity o’ with respect tol. In the case of a derived
field f that is defined by a deterministic field constraint, occuresmoff in G can be
eliminated by flattening the formula and substituting e&etf () = y by FC(z, y).
However, in the general case of non-deterministic field tairgs such a substitution
is only sound for negative occurrences of derived fieldgesthe field constraint gives
an over-approximation of the derived field. Therefore, agrsmphisticated elimination
algorithm is needed.

Eliminating derived fields. Figure 9 presents our algorithBlim for elimination of
derived fields. Consider a derived fiefd The basic idea oElim is that we can re-
place an occurrendg(f(z)) of f by a new variable that satisfie$C(x, y), yielding

a stronger formuldry. FCy(z,y) — G(y). As an improvement, ity contains two
occurrenceg (z1) and f(z2), and ifz; andxs evaluate to the same value, then we at-
tempt to replace (x1) and f (z2) with the same valueklim implements this idea using
the setK of triples (z, f,y) to record previously assigned values fi{ex). Elim runs

in time O(n?), wheren is the size of the formula, and produces an at most quadrati-
cally larger formulaElim accepts formulas in negation normal form, where all negatio
signs apply to atomic formulas. We generally assume thdt gaantifierQ z binds a
variablez that is distinct from other bound variables and distinctiriine free variables
of the entire formula. The algorithi#Elim is presented as acting on first-order formulas,
but is also applicable to checking validity of quantifieedrformulas because it only
introduces universal quantifiers which can be replaced lmjesk constants. The algo-
rithm is also applicable to multisorted logics, and, by tirgasets of elements as a new
sort, to MSOL. To make the discussion simpler, we considestarchinistic version of
Elim where the non-deterministic choices of variables and temmasesolved by some
arbitrary, but fixed, linear ordering on terms. We wilitém(G) to denote the result of
applyingElim to a formulaG.

S — aterm or a formula

(S) — terms occurring ir5

(S) — variables free irt

Ground(S) = {t € Terms(S). FV(t) C FV(S)}
Derived(S) — derived function symbols i

Terms

proc Elim(G) = elim(G, 0)
proc elim(G : formula in negation normal form
K : set of (variable,field,variable) triples
letT = {f(¢t) € Ground(G). f € Derived(G) A Derived(t) = 0}
if T# () do
choosef(t) e T
choosez, y fresh first-order variables
let 1t = FCr(z,y) A N(o, fryner(@ =20 — ¥y =1yi)
let Gi1 = G[f(t) :=y]
return Ve.z =t — Vy. (F1 — elim(G1, K U{(z, f,y)}))
else caser of
| Qz. Gy where@ € {v,3}:
return Qz. elim(G1, K)
| GiopG2whereop € {A,V}:
return elim(G1, K) op elim(Gz, K)
| elsereturnG

Fig. 9. Derived-field elimination algorithm

The correctness dlim is given by Theorem 1. The proof of Theorem 1 relies on
monotonicity of logical operations and quantifiers in neganormal form of a formula.
(Proofs for the theorems stated here can be found in [34]).

Theorem 1 (Soundness)The algorithmElim is sound: ifI A D = Elim(G), then
IANDE G.Whatis more] A D AEIm(G) = G.

10

CompletenessWe now analyze the classes of formu@s$or which Elim is complete

Definition 2. We say thaElim is complete fof D, G) iff
IND = GimpliesI A D = Elim(G).

Note that we cannot hope to achieve completeness for asbitemstraintsD. Indeed,
if we let D = true, then D imposes no constraint whatsoever on the derived fields,
and reasoning about the derived fields becomes reasoning afiaterpreted function
symbols, that is, reasoning in unconstrained predicaie.l8gich reasoning is undecid-
able not only for monadic second-order logic, but also focmweaker fragments of
first-order logic [7]. Despite these general observatisreshave identified two cases
important in practice for whicklim is complete (Theorem 2 and Theorem 3).
Theorem 2 expresses the fact that, in the case where all bektraints are deter-
ministic, Elim is complete (and then it reduces to previous approacheg§]l hat are
restricted to the deterministic case). The proof of TheoPeuses the assumption that
F is total and functional to concludér y. FC(z,y) — f(x)=1y, and then uses an
inductive argument similar to the proof of Theorem 1.

Theorem 2 (Completeness for deterministic fieldsklim is complete fof D, G) when
each field constraint itD is deterministic. Moreovel, A D A G |= Elim(G).

x € Var — program variables f € Fld — pointer fields
ecExpu==zlef F — quantifier free formula
c € Com == ey := ey | assume(F) | assert(F)

| havoc(z) (non-deterministic assignment 9

| ci;e2]c10ce (sequential composition and non-deterministic choice)

Fig. 10.Loop-free statements of a guarded command language (sd&]g.g

We next turn to completeness in the cases that admit nomrdieiem of derived
fields. Theorem 3 states that our algorithm is complete foivee fields introduced
by the weakest precondition operator to a class of posttondithat includes field
constraints. This result is very important in practice: evwus, incomplete, version of
our elimination algorithm was not able to verify the skig Bxample in Section 2.2. To
formalize our completeness result, we introduce two cke$evell-behaved formulas:
nice formulasandpretty nice formulas

Definition 3 (Nice formulas). A formulaG is a nice formulaif each occurrence of
each derived field in G is of the formf (¢), wheret € Ground(G).

Nice formulas generalize the notion of quantifier-free fakas by disallowing quanti-
fiers only for variables that are used as arguments to defigkts. We can show that
the elimination of derived fields from nice formulas is coetpl The intuition behind
this result is that if A D |= G, then for the choice of; such thafC(x;, y;) we can
find an interpretation of the function symbplsuch thatf («;) = y;, andl A D holds,
soG holds as well, an&lim(G) evaluates to the same truth value(as

Definition 4 (Pretty nice formulas). The set ofpretty nice formulass defined induc-
tively by 1) a nice formula is pretty nice; 2)i#, andG- are pretty nice, thelir; A G2
andG; V G, are pretty nice; 3) ifGG is pretty nice ande is a first-order variable, then
Vx.G is pretty nice.

11

Pretty nice formulas therefore additionally admit uniadrguantification over argu-
ments of derived fields. We define the functisolem, which strips (top-level) univer-
sal quantifiers, as follows: Ekolem(G; op G2) = skolem(G) op skolem(G2) where
op € {V,A}; 2) skolem(Vz.G) = G; and 3)skolem(G) = G, otherwise. Note also
that pretty nice formulas are closed undép (up to formula equivalence); the closure
property follows from the conjunctivity of the weakest ppadition operator.

Theorem 3 implies thdlim is a complete technique for checking preservation (over
straight-line code) of field constraints, even if they arejomed with additional pretty
nice formulas. Elimination is also complete for data stuoetoperations with loops as
long as the necessary loop invariants are pretty nice.

Theorem 3 (Completeness for preservation of field constrais). Let G be a pretty
nice formula,D a conjunction of field constraints, anda guarded command (Fig-
ure 10). Then

IND Ewlp(c, GAD) iff I}=Elim(wlp(c,skolem(G A D))) .

Example 1.The example in Figure 11 demonstrates the elimination af/eeérfields
using algorithiElim. It is inspired by the skip list module from Section 2.

Diestsuy = Yv1 va. nextSub(vi) = v2 — next™ (vi,va2)

G

wlp((e.nextSub := root.nextSub ; e.next := root), Dpegtsus)
Vo1 va. nextSuble := nextSub(root)](v1) = v2 — (next[e := root])" (v1,v2)

G/

skolem(Elim(G)) =
x1 = root — next+(:c1,y1) —
To =v] — nezt*[e =y1)(z2,y2) A (T2 =21 — Y2 =1y1) —
Y2 = v2 — (next[e := root])T (v1,v2)

Fig. 11.Elimination of derived fields from a pretty nice formula. Tinetationnezt ™ denotes the
irreflexive transitive closure of predicatext(z) = v.

The formulaG expresses the preservation of field constrBint,;s., for updates
of fields next andnextSub that inserte in front of root. G is valid under the assump-
tion thatVz. next(x) # e. Elim first replaces the inner occurreneertSub(root) and
then the outer occurrence ekxtSub. Theorem 3 implies that the resulting formula
skolem(Elim(@&)) is valid under the same assumptions as the original fori&ula

Limits of completeness. In our implementation, we have successfully uggieh in
the context of MSOL, where we encode transitive closuregusigcond-order quan-
tification. Unfortunately, formulas that contain trangiticlosure of derived fields are
often not pretty nice, leading to false alarms after the iappibn of Elim. This behav-
ior is to be expected due to the undecidability of transitilesure logics over general
graphs [10]. On the other hand, unlike approaches basediomatizations of tran-
sitive closure in first-order logic, our use of MSOL enablesplete reasoning about
reachability over the backbone fields. It is therefore udefbe able to consider a field
as part of a backbone whenever possible. For this purposanibe helpful to verify
conjunctions of constraints using different backboneslffierent conjuncts.

12

Verifying conjunctions of constraints. In our skip list example, the fieldextSub
forms an acyclic (sub-)list. It is therefore possible toifyethe conjunction of con-
straints independently, withextSub a derived field in the first conjunct (as in Sec-
tion 2.2) but a backbone field in the second conjunct. Theeefdthough the reasoning
about transitive closure is incomplete in the first conjuités complete in the second
conjunct.

Verifying programs with loop invariants. The technique described so far supports the
following approach for verifying programs annotated witbp invariants:

1. generate verification conditions using loop invariapts;, and postconditions;
2. eliminate derived fields from verification conditionsngsElim (andskolem);
3. decide the resulting formula using a decision proceduch as MONA [13].

Field constraints specific to program points. Our completeness results also ap-
ply when, instead of having one global field constraint, wieoiduce different field
constraints for each program point. This allows the dew&ldp refine data structure
invariants with information specific to particular prograwints.

Field constraint analysis and loop invariant inference. Field constraint analysis
is not limited to verification in the presence of loop invat® In combination with
abstract interpretation [3] it can be used to infer loop irasats automatically. Our im-
plementation combines field constraint analysis with syliclshape analysis based on
Boolean heaps [29, 33] to infer loop invariants that are ers&lly quantified Boolean
combinations of unary predicates over heap objects.

Symbolic shape analysis casts the idea of three-valuedeshnagdysis [32] in the
framework of predicate abstraction. It uses the machinégyredicate abstraction to
automatically construct the abstract post operator arsl dbihstruction solely goes
by deductive reasoning. In fact, the computation of therab8bn amounts to check-
ing validity of entailments that are of the forl:AC — wlp(c,p). Here I is an
over-approximation of the reachable statéss a conjunction of abstraction predicates
andp is a single abstraction predicate. We use field constramiiais to check valid-
ity of these formulas by augmenting them with the appropr&tulation invarianf
and field constraint® that specify the data structure invariants we want to pueser
INDATANC — wlp(e,p). The only problem arises from the fact that these ad-
ditional invariants may be temporarily violated during gram execution. To ensure
applicability of the analysis, we abstract complete logefpaths in the control flow
graph of the program at once. That means we only requireithatation invariants are
valid at loop cut points and hence part of the loop invariafitss supports the program-
ming model where violations of data structure invarianes@mnfined to the interior of
basic blocks [26].

Amortizing invariant checking in loop invariant inference. A straightforward ap-

proach for combining field constraint analysis with abstraterpretation would do a
well-formedness check for global invariants and field crists at every step of the
fixed-point computation, invoking a decision procedureaateiteration step. The fol-
lowing insight allows us to use a single well-formednessckhger basic blockthe

loop invariant synthesized in the presence of well-fornesdris identical to the loop in-
variant synthesized by ignoring the well-formedness ch&ektherefore speculatively

13

compute the abstraction of the system under the assumpiadrboth the simulation
invariant and the field constraints are preserved. Aftelghst fixed-pointfp? of the
abstract system has been computed, we generate for everyré&mpathe with start
point £. a verification conditionZ A D A prfe — wlp(¢, IAD) Wherelfpfc is the
projection oflfp” to program locatior.. We then use again oWitlim algorithm to
eliminate derived fields and check the validity of thesefieation conditions. If they
are all valid then the analysis is sound and the data strigtwariants are preserved.
Note that this approach succeeds whenever the straigtafdrapproach would have
succeeded, so it improves analysis performance withoutadatg precision. More-
over, when the analysis detects an error, it repeats the-fimgtt computation with the
simple approach to obtain an indication of the error trace.

4 Deployment as Modular Analysis Plugin

We have implemented our field constraint analysis and depldyas the “Bohne” anal-
ysis plugin of our Hob framework [16, 21]. We have succesgfigrified singly-linked
lists, doubly-linked lists with and without iterators aneduer nodes, two-level skip lists
(Section 2.2), and our students example from Section 2. Wineeveloper supplies
loop invariants, these benchmarks, including skip listifydén 1.7 seconds (for the
doubly-linked list) to 8 seconds (for insertion into a treBphne automatically infers
loop invariants for insertion and lookup in the two-leveigskst in 30 minutes total. We
believe the running time for loop invariant inference camésuced using ideas such as
lazy predicate abstraction [8].

Because we have integrated Bohne into the Hob framework,ave able to verify
just the parts of programs which require the power of fieldst@int analysis with the
Bohne plugin, while using less detailed analyses for theaiader of the program. We
have used the list data structures verified with Bohne as feedif larger examples,
such as the 900-line Minesweeper benchmark and the 128@véb server benchmark.
Hob’s pluggable analysis approach allowed us to use thestgeeplugin [20] and loop
invariant inference techniques to efficiently verify clie@ode, while reserving shape
analysis for the container data structures.

5 Further Related Work

We are not aware of any previous work that provides compésteiguarantees for an-
alyzing tree-like data structures with non-deterministioss-cutting fields for expres-
sive constraints such as MSOL. TVLA [24, 32] was initiallysigned as an analysis
framework with user-supplied transfer functions; subsequwork addresses synthesis
of transfer functions using finite differencing [31], whichnot guaranteed to be com-
plete. Decision procedures [18, 25] are effective at reiagpabout local properties, but
are not complete for reasoning about reachability. Pramgjsilthough still incomplete,
approachesinclude [23] as well as [19,28]. Some reaclapiibperties can be reduced
to first-order properties using hints in the form of ghostd#e]15, 25]. Completeness
of analysis can be achieved by representing loop invar@mtandidate loop invariants
by formulas in a logic that supports transitive closure P29, 33,35-37]. These ap-
proaches treat decision procedure as a black box and, windiercdpo MSOL, inherit
the limitations of structure simulation [11]. Our work cae biewed as a technique

14

for lifting existing decision procedures into decision pedures that are applicable to
a larger class of structures. Therefore, it can be incotpdrato all of these previous
approaches.

6 Conclusion

Historically, the primary challenge in shape analysis wengo be dealing effectively
with the extremely precise and detailed consistency ptigsethat characterize many
(but by no means all) data structures. Perhaps for this neasany formalisms were
built on logics that supportednly data structures with very precisely defined refer-
encing relationships. This paper presents an analysisstiports both the extreme
precision of previous approaches and the controlled réatuict the precision required
to support a more general class of data structures whosemnefag relationships may
be random, depend on the history of the data structure, grfeaisome other reason
that places the referencing relationships inherently héybe ability of previous logics
and analyses to characterize. We have deployed this asatytsie context of the Hob
program analysis and verification system; our results shawvit is effective at 1) an-
alyzing individual data structures to 2) verify interfatkat allow other, more scalable
analyses to verify larger-grain data structure consist@ngperties whose scope spans
larger regions of the program.

In a broader context, we view our result as taking an imporsgep towards the
practical application of shape analysis. By supportingdatuctures whose backbone
functionally determines the referencing relationshipg/alt as data structures with in-
herently less structured referencing relationships,ahpses to be able to successfully
analyze the broad range of data structures that arise itigealts integration within the
Hob program analysis and verification framework shows holgwerage this analysis
capability to obtain more scalable analyses that build enrésults of shape analysis
to verify important properties that involve larger regiafshe program. Ideally, this
research will significantly increase our ability to effeelly deploy shape analysis and
other subsequently enabled analyses on important progriimtsrest to the practicing
software engineer.

References

1. R.-J.Back and J. von WrighRefinement CalculusSpringer-Verlag, 1998.
2. |. Balaban, A. Pnueli, and L. Zuck. Shape analysis by pegdiabstraction. IWMCAI'05, 2005.

3. P.Cousot and R. Cousot. Systematic design of programpsassdlameworks. IfPOPL, pages 269-282,
1979.

4. D. Dams and K. S. Namjoshi. Shape analysis through predadastraction and model checking. In
VMCAI'03, volume 2575 oL NCS pages 310-323, 2003.

5. P. Fradet and D. L. Métayer. Shape typesPioc. 24th ACM POPL1997.
6. R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic gfaphProc. 23rd ACM POP|.1996.

7. E. Gradel. Decidable fragments of first-order and fixetplogic. From prefix-vocabulary classes to
guarded logics. IfProceedings of Kalmar Workshop on Logic and Computer $eie8zeged®003.

8. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Ldmsfraction. InPOPL, 2002.
9. N.ImmermanDescriptive ComplexitySpringer-Verlag, 1998.

10. N.Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, an¥@sh. The boundary between decidability
and undecidability for transitive-closure logics.@omputer Science Logic (CSlpages 160-174, 2004.

15

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31

32.

33.

34.

35.

36.

37.

N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and@sh. Verification via structure simula-
tion. In CAV, pages 281-294, 2004.

J. L. Jensen, M. E. Jagrgensen, N. Klarlund, and M. |. Sdiaivach. Automatic verification of pointer
programs using monadic second order logicPtoc. ACM PLD| Las Vegas, NV, 1997.

N. Klarlund, A. Mgller, and M. I. Schwartzbach. MONA ingphentation secrets. Froc. 5th Interna-
tional Conference on Implementation and Application ofofeta LNCS, 2000.

N. Klarlund and M. I. Schwartzbach. Graph typesPmc. 20th ACM POPLCharleston, SC, 1993.
V. Kuncak, P. Lam, and M. Rinard. Role analysisPhoc. 29th POP|.2002.

V. Kuncak, P. Lam, K. Zee, and M. Rinard. Implications afada structure consistency checking sys-
tem. IniInt. conf. on Verified Software: Theories, Tools, Experitad€W STTE, IFIP Working Group 2.3
Conference)Zurich, October 2005.

V. Kuncak and M. Rinard. Boolean algebra of shape armlysinstraints. IrProc. 5th International
Conference on Verification, Model Checking and Abstradrpretation 2004.

V. Kuncak and M. Rinard. Decision procedures for setremlfields. Inlst International Workshop on
Abstract Interpretation of Object-Oriented Languages@@IL 2005) 2005.

S. K. Lahiri and S. Qadeer. Verifying properties of wellnded linked lists. IiPOPL'06, 2006.

P. Lam, V. Kuncak, and M. Rinard. Generalized typesthgeking for data structure consistency.6th
International Conference on Verification, Model Checkimgl &bstract Interpretation2005.

P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyirdata structure consistency. Iath
International Conference on Compiler Construction (toehtb) April 2005.

O. Lee, H. Yang, and K. Yi. Automatic verification of pa@ntprograms using grammar-based shape
analysis. InESOP 2005.

T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastaral G. Yorsh. Simulating reachability using
first-order logic with applications to verification of lintelata structures. IGADE-2Q 2005.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingt&tanalysis to work for verification: A case
study. Ininternational Symposium on Software Testing and Angl26i80.

S. McPeak and G. C. Necula. Data structure specificatienkcal equality axioms. IICAV, pages
476-490, 2005.

A. Mgller and M. |. Schwartzbach. The Pointer Asserti@yic Engine. InProgramming Language
Design and Implementatipi2001.

S. S. Muchnick and N. D. Jones, edito”rogram Flow Analysis: Theory and ApplicationBrentice-
Hall, Inc., 1981.

G. Nelson. Verifying reachability invariants of linksttuctures. IiPOPL, 1983.
A. Podelski and T. Wies. Boolean heapsSKS 2005.

W. Pugh. Skip lists: A probabilistic alternative to batad trees. IfCommunications of the ACM
33(6):668-6761990.

T. Reps, M. Sagiv, and A. Loginov. Finite differencinglagical formulas for static analysis. Froc.
12th ESOR2003.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalja 3-valued logic. ACM TOPLAS
24(3):217-298, 2002.

T. Wies. Symbolic shape analysis. Master’s thesis, éfaitat des Saarlandes, Saarbriicken, Germany,
Sep 2004.

T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. @fdficonstraint analysis. Technical Report
MIT-CSAIL-TR-2005-072, MIT CSAIL, November 2005.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingstrprecise abstract operations for shape
analysis. InL0th TACAS2004.

G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical clktgezations of heap abstraction§OCL,
2005. (to appear).

G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatisuase/guarantee reasoning for heap-
manupilating programs. Ihst AIOOL Worksho@2005.

16

