
Model-Generation Theorem Proving for
First-Order Logic Ontologies

Peter Baumgartner and Fabian M. Suchanek

Max-Planck Institute for Computer Science, Saarbrücken, Germany
[baumgart|suchanek]@mpi-sb.mpg.de

Abstract. Formal ontologies play an increasingly important role in demanding
knowledge representation applications like theSemantic Web. Automated rea-
soning support for these ontologies is mandatory for tasks like debugging, clas-
sifying or querying the knowledge bases, and description logic (DL) reasoners
have been shown to be very effective for that. Yet, as language extensions beyond
(decidable) DLs are being discussed, more general first-order logic systems are
required, too. In this paper, we pursue this direction and consider automated rea-
soning on full first-order logic knowledge bases. We put forward an optimized
approach of transforming such knowledge bases to clause logic. The transforma-
tions include a Brand-like transformation to eliminate equality, and a transfor-
mation that incorporates ablocking technique to “checks loops” in derivations.
The latter transformation lets theorem provers terminate more often on satisfi-
able input formulas. It thus enables more robust automated reasoning support on
ontologies, where disproving is a common task. While the transformations are
applicable to any clause set, we concentrate in this paper on demonstrating their
effectiveness on a standard test suite devised by the Semantic Web community.

1 Introduction

Recent years have seen an increasing interest in formal ontologies. In particular, the
vision of theSemantic Webrequires the capability of handling huge formal knowledge
bases by means of automated reasoning. To this end, the Semantic Web community
has been developing a series of formal ontology languages, with OWL being the most
recent one. OWL comes in three different versions - OWL-lite, OWL-DL and OWL-full
- with increasing expressiveness. For OWL-DL, which is designed to be equivalent to
the description logic languageSH OI N D−n , efficient automated reasoning support is
already available1

Yet it becomes clear that many applications (in the Semantic Web context or in
general) demand for extensions of DLs that go beyond decidability. For instance, one
of the currently discussed extensions is the integration of logic programming stylerules,
which prove to be necessary even for basic knowledge representation tasks [GHVD03].

However, even simple rule languages are expressive enough to express role-value
maps, which are known to cause undecidability in conjunction even with basic descrip-
tion logic languages. But then, if one is willing to accept undecidability, it becomes a

1 For instance FaCT [Hor99] and RACER [HM01].

viable option to transform the knowledge base to first order logic altogether and apply
a general purpose first-order theorem prover.

Some efforts already have been been made to apply first-order theorem provers
for ontological reasoning. The web-site [OWL04] summarizes comparative results of
various systems applied to OWL knowledge bases (see Section 5 for more details). Of
the systems tested, the perhaps most advanced system built on top of a theorem prover
is the Hoolet system, which uses Vampire [RV01a]. It was demonstrated in [TRBH04]
that this approach indeed can compete with dedicated DL reasoner like FaCT.

Yet, one of the conclusions from the available experimental results is that there is
still a need for improving the approach based on theorem provers. Specifically, and
not surprisingly, the provers typically fall behind for satisfiable input formulas. This is
because general first order theorem provers do not automatically act asdecision proce-
duresfor common description logics (at least with the standard relational translation2).

From a technical viewpoint, addressing this weakness is the main topic of this paper:
to improve the termination behavior of first-order theorem provers on satisfiable input
formulas, with a focus on knowledge base applications. As our approach is based on
transformations on the given formula, no modifications of the provers are necessary.
The obvious advantage over tailoring a dedicated system then is that it enables the
application of available high-performance first-order theorem provers.

While in principle any sound and (refutational) complete first-order prover can be
applied in conjunction with our transformation, we concentrate on provers that return
modelsof satisfiable input formulas in case of termination. These provers have the ad-
vantage that, in a refutational setting, a model provides a counterexample to a con-
jectured entailment or to a conjectured concept subsumption that does not hold. We
will refer to such systems asmodel generation procedures. Examples include systems
basing on hyper-resolution [FLHT01], as for instance SATCHMO [MB88], the Hy-
per Tableaux [BFN96] prover KRHyper [Wer03], or instance based methods, like the
Model Evolution [BT03] system Darwin [BFT05]

Many ontologies (such as for instance large parts of SUMO/MILO [NP01]) are
given in first order logic. Most others, including all OWL ontologies, can be translated
to first order logic (see [BCM+02]). Furthermore, it is well known that most common
reasoning tasks like knowledge base satisfiability, subsumption tests between two given
concept descriptions or concept retrieval can be formulated easily as first-order logic
satisfiability or unsatisfiability problems (see again [BCM+02]). Thus, first order logic
seems a very general input format. Since first order logic can be transformed efficiently
to clause logic [NRW98] and most state-of-the-art automated theorem provers accept
(only) clause logic as their input language, we assume that all reasoning problems are
given in clause logic.

This paper makes two contributions: first, we present a method that eliminates
equality from a given clause logic set. This is important because most model gener-
ation procedures do not include inference rules for equality. Our transformation is a

2 There exist advanced techniques available for translating description logics to clausal
logic [SH03,dNHS00]. These methods draw their sophistication on exploiting specific proper-
ties of modal logics. It seems not obvious how to extend these methods to general first-order
logic specifications, the setting we are interested in.

2

simple one, but we will argue why it is actually better suited for typical ontological
reasoning problems than Brand’s transformation or the improved one in [BGV98].

Our second contribution is a transformation that adds a “loop check” into the clause
set. More precisely, the clause set obtained in the first step is transformed in such a
way that model generation procedures applied to it will search in preference for a finite
Herbrand-model of the transformed input clause set. Thus, it enables theorem provers
to terminate more often on satisfiable input problems.

Our main theoretical results are the soundness and the completeness of our trans-
formations. On the practical side, we show that our approach compares favorably with
others on a standard test suite of OWL description logic problems [OWL04]. Moreover,
we show that exploitingnon-monotonic negationcan lead to additional improvements
on larger knowledge bases.

2 Preliminaries

We use standard terminology from automated reasoning. We assume as given a sig-
natureΣ of constant symbols, and function symbols and predicate symbols of given
arities. As we are working with equality, we assumeΣ contains a distinguished binary
predicate symbol≈, which is written infix. As the only non-standard definition, we
distinguish between 0-ary function symbols and constants (see UNA below). But oth-
erwise the terms, atoms, literals and formulas overΣ and a given (denumerable) set of
variablesV are defined as usual.

A clause is a (finite) implicitly universally quantified disjunction of literals, as usual.
We write clauses in a logic-programming style notationH1∨ ·· · ∨Hm← B1, . . . ,Bk,
wherem,k≥ 0, corresponding to the disjunctionH1∨·· ·∨Hm∨¬B1∨·· ·∨¬Bk. Each
Hi is called ahead atom, and eachB j is called abody atom. When writing expressions
like H ∨H ← B,B we mean any clause whose head literals areH and those in the
disjunction of literalsH , and whose body literals areB and those in the list of literals
B. A clause setis a finite set of clauses.

A (Herbrand) interpretation Iis a set of ground atoms—those that are true in the
interpretation. Satisfiability/validity of ground literals, clauses, and clause sets in a Her-
brand interpretation is defined as usual. Also, as usual, a clause set stands semantically
for the set of all its ground instances. We writeI |= F to denote the fact thatI satisfiesF ,
whereF is a ground literal or a (possibly non-ground) clause (set). AnE-interpretation
is an interpretation that is also a congruence relation on the ground terms and ground
atoms.3 If I is an interpretation, we denote byIE the smallest congruence relation on
the ground terms and ground atoms that includes all equations inI , which is an E-
interpretation. We say thatI E-satisfies Fiff IE |= F . Instead ofIE |= F we writeI |=E F .
We say thatF E-entails F′, written F |=E F ′, iff every E-interpretation that satisfiesF
also satisfiesF ′. We say thatF andF ′ areE-equivalentiff F |=E F ′ andF ′ |=E F .

A UNA-E-interpretationis an E-interpretation that does not contain the equation
c≈ d, for any different constantsc andd (we say it “satisfies the unique name assump-

3 We mean that for any E-interpretationI and ground atomA: wheneverI |= A[s] andI |= s≈ t,
thenI |= A[t].

3

tion (UNA)”).4 In other words,c≈ d /∈ IE for any UNA-E-interpretationI . We consider
the UNA because it seems useful in the context of KBs coupled with databases, where
different constants are usually meant to stand for different things. However, we allow
constants to be declared as nullary functions, so that our approach below is fully com-
patible with the standard semantics.

3 Equality Transformation – Simple is Better

First-order knowledge bases typically make use of equality. For example, equality is
used to define function results, to define that two objects are different or to state that
two objects must be equal under certain circumstances. Furthermore, the translation of
certain DL constructs to first order logic introduces equality. Equality comes in, e.g.,
for DL number restrictions, as in this formula from the Tambis Ontology [Tam]:

Cationv ≤4 hasCharge

becomes

x1≈ x2∨x1≈ x3∨·· ·∨x4≈ x5←
Cation(x),hasCharge(x,x1), . . . ,hasCharge(x,x5) (?)

Numerous other DL constructs translate to equality constraints, the most prominent be-
ing concept disjunctions (“union” in OWL) or extensional concept definitions (“oneOf”
in OWL, “nominals” in DLs).

In contrast to the resolution calculus, where efficient methods for the treatment of
equality have been developed [BG98], most model generation procedures do not include
built-in treatment of equality. One option then is to use equality axioms. However, as
it is well-known, the search space induced by the resulting clause set is prohibitively
high. Even worse, achieving termination of a model-generation system on satisfiable
clause sets is practically impossible then. The most cumbersome axioms in this regard
are the functional substitution axioms, likef (x) ≈ f (y)← x ≈ y. Another option is
to “compile away” equality. The probably most well-known method in this direction
is the STE-transformationin [Bra75], which was later improved in [MS97,BGV98].
Our approach is similar, but it is specifically tailored to ontological reasoning: First, it
supports the Unique Name Assumption (see Section 2), and, second it performs much
better on typical ontological problems.

Definition 1 (Flat Term). A flat basicterm is a constant or a variable. A term isflat iff
it is a flat basic term or a function term f(t1, . . . , tn), where f is a n-ary function symbol
and t1, . . . , tn are flat basic terms. An atom P(t1, . . . , tn) is flat iff all terms t1, . . . , tn are
flat. A literal isflat iff its atom is flat, and a clause isflat iff all of its literals are flat.

For instance ifc is a constant anda is a 0-ary function symbol, thenP(x,c,a),
P(f (x), f (c)) and f (x) ≈ g(c) are flat, while, say,P(f (a), f (c)) and f (a) ≈ g(c) are
not.
4 Actually, this is a slight misnomer.

4

Any clause set can be transformed to a set of flat clauses by “pulling out” offending
subterms. This is achieved by applying the following transformation rules to a given
clause set as long as possible:

1. Replace a clause of the form

P(t1, . . . , f (s1, . . . ,si , . . . ,sm), . . . , tn)∨H ← B
by P(t1, . . . , f (s1, . . . ,x, . . . ,sm), . . . , tn)∨H ← B,x≈ si

if si is not a flat basic term, wherex is a fresh variable.
2. Replace a clause of the form

H ← B,P(t1, . . . , f (s1, . . . ,si , . . . ,sm), . . . , tn)
by H ← B,P(t1, . . . , f (s1, . . . ,x, . . . ,sm), . . . , tn),x≈ si

if si is not a flat basic term, wherex is a fresh variable.

It is obvious that for any clause set thisflatteningterminates with a uniquely determined
set of flat clauses (up to renaming of variables and ordering of body atoms).

As an example consider the clauseP(g(y),g(a),g(c))∨ f (g(y),c)≈ y←P(y,g(b)).
Assume thatc is a constant anda andb are 0-ary function symbols. Flattening then
results in the clause

P(g(y),g(x),g(c))∨ f (x′,c)≈ y← P(y,g(x′′)),x≈ a,x′ ≈ g(y),x′′ ≈ b

The purpose of flattening is to achieve the effect of the function substitution axioms.
Notice that, unlike 0-ary function symbols, constants are not “pulled out”.

Definition 2 (Equality Transformation). Let P be aΣ-clause set. Theequality trans-
formationof P , denoted asP eq, is the clause set obtained by flattening ofP and by
adding the following clauses:

← c≈ d for any two differentΣ-constants c and d

x≈ x←
x≈ y← y≈ x

x≈ z← x≈ y,y≈ z

P(x1, . . . ,y, . . . ,xn)← P(x1, . . . ,xi , . . . ,xn),y≈ xi

for each n-ary predicate symbol P fromΣ different from≈,
and all i with1≤ i ≤ n

When ignoring the dis-equality axioms← c≈ d, the only difference between the equal-
ity transformation and the axiomatic equality treatment lies in the function substitution
axioms, i.e. axioms of the formf (x1, . . . ,y, . . . ,xn) ≈ f (x1, . . . ,xi , . . . ,xn)← y≈ xi , for
eachn-ary Σ-function symbol and alli = 1, . . . ,n. Due to flattening, these axioms can
be dispensed with.

The difference might seem negligible, but it isn’t: for instance, a unit clausea≈ b←
together with the axiomf (y) ≈ f (x1)← y = x1 will cause non-termination of model
generation procedures. This is avoided with the equality transformation.5

5 We also have some preliminary experimental evidence for that: of the 236satisfiableproblems
in theNLP category (“Natural Language Processing”) of the TPTP Library [SSY94], 156 are

5

Relation to Other Transformations.One difference between our transformation and the
STE-transformation [Bra75], as well as the improved ones in [MS97,BGV98] comes
from the use of constants with their UNA semantics and the fact that our transformation
does not eliminate the predicate substitution axioms.

For instance, the clause←P(f (x), f (c)) is flat, and hence our transformation leaves
it unchanged. By contrast, its STE-transformation yields the clause←P(x1,x2), f (x)≈
x1, f (x3)≈ x2,c≈ x3.6 Now consider the clause in conjunction with a collection of facts
P(f (c1), f (d)), . . . ,P(f (cn), f (d)), for some (large) value ofn and constantsc1, . . . ,cn

andd. Notice that noP(f (ci), f (d)), for any i = 1, . . . ,n, unifies withP(f (x), f (c)).
As the clause← P(f (x), f (c)) and each factP(f (ci), f (d)) is flat, satisfiability of this
clause set can be detected quickly, withn (failed) unification attempts. In contrast, sat-
isfiability of the clause set with the STE-transformation applied may takeO(n3) uni-
fication attempts. This is, because the first three atomsP(x1,x2), f (x) ≈ x1, f (x3) ≈
x3,c≈ x3 of the body of the STE-transformed clause don’t show a constraining effect
on unification. Preliminary practical experiments we ran demonstrate that a noticeable
difference already shows up withn = 10000.

A polynomial speedup might seem negligible. Yet, there are situations where this
makes a practically relevant difference. Conceivable are database-like applications with
many logically simple queries but large A-Boxes (facts).

The STE-transformation, like the others mentioned, differs from our transformation
in that it not only eliminates the need for the function substitution axioms, but also the
symmetry, transitivity and predicate substitution axioms (stated in Definition 2). How-
ever, dispensing with these axioms comes at the price of more equations in the trans-
formed clauses – exponentially many in the worst case: in both Brand’s transformation
and the improved ones in [MS97,BGV98], each occurrence of a positive equations≈ t
in a clause gives rise to a clause with the symmetric versiont ≈ s instead ofs≈ t. As a
result, a clause withn equations produces 2n clauses.

The effect of the different transformations on the search can be explained from
a tableaux perspective. Consider a ground clauses1 ≈ t1∨ ·· · ∨ sn ≈ tn ← with its
2n symmetric versions. Any exhaustive application of theβ-rule to these clauses even
under the regularity condition, which should be assumed,7 will result in

k(n) =
n−1

∑
i=0

n!
i!
· (n− i)

branches. For instance,k(2) = 6, k(4) = 196,k(6) = 9786,k(8) = 767208 andk(10) =
88776910.

By contrast, with our transformation onlyn-fold branching will occur, and each leaf
si ≈ ti will be extended with its symmetric versionti ≈ si without additional branching.

solvable by the Darwin prover [BFT05] with an axiomatic treatment of equality, while with
the equality transformation strictly more are solvable, 167. More tests are in preparation.

6 In fact, Brand’s modification would introduce further body atoms, but the transformations
[MS97,BGV98] don’t.

7 The regularity condition of clausal tableaux forbids to derive a branch where two or more
nodes are labelled with the same literal [LS01]. It is practically very effective.

6

For instance, the transformation of the “description-logic” problem “inconsistent022”
from the OWL test suite (see Section 5) contains a clause with 10 positive equations and
becomes unsolvable due to this effect. With our transformation it takes about 20 sec-
onds, and with an axiomatic treatment of equality 44 seconds to find a refutation.

We do not claim that our transformation is always superior to the STE-transformation
or the transformation in [BGV98]. In fact, the transformations in [Bra75,BGV98] are
theoretically much more sophisticated. They enjoy the desirably property that deriva-
tions with the resulting clause sets, in terms of resolution, avoid paramodulation into
variables. This property cannot be guaranteed in presence of the symmetry axiom of
equality, which is included in our transformation. Yet, the advantages discussed above
typically apply for clause sets with several disjunctions of positive equations, which
is not uncommon for practical knowledge bases due to number restrictions and cer-
tain other language constructs; it is perhaps not so common in “mathematical” theorem
proving, where indeed the other mentioned transformations may well be superior.

The following theorem is the main result of this section. It expresses that the equality
transformation is complete with respect to UNA-E models.

Theorem 3 (Soundness and Completeness of the Equality Transformation).Let P
be a clause set. ThenP is UNA-E-satisfiable if and only ifP eq is satisfiable.

Thus, any sound and complete theorem prover provides a method for checking UNA-
E-satisfiability. The only-if direction (soundness) is easy and nothing essentially new
compared to the results in [BGV98,Bra75]. The if direction (completeness) would fol-
low easily from the results in [BGV98,Bra75], were it not for the UNA. This proof can
be found in the appendix.

4 Blocking

In this section we define a transformation that lets model generation procedures termi-
nate in more cases on satisfiable input clauses than without it. Thisblocking transfor-
mationtransforms the given clause set so that it “encodes” the search for certain finite
models.

As an example to illustrate the main idea consider the following excerpt from the
Tambis knowledge base [Tam]

AuthoredChapter v ∃partOf . CollectionBook

CollectionBookv ∃hasPart . AuthoredChapter (??)

Additionally, hasPart is declared both as a transitive rôle and as the inverse ofpartOf.
The standard relational transformation, which we suppose having been carried out,

yields the clauses

partOf(x, fpartOf(x))← AuthoredChapter(x) (AuthoredChapter-1)

CollectionBook(fpartOf(x))← AuthoredChapter(x) (AuthoredChapter-2)

partOf(x, fhasPart(x))← CollectionBook(x) (CollectionBook-1)

7

AuthoredChapter(fhasPart(x))← CollectionBook(x) (CollectionBook-2)

partOf(y,x)← hasPart(x,y) (hasPart-inv-1)

hasPart(y,x)← partOf(x,y) (hasPart-inv-1)

hasPart(x,z)← hasPart(x,y),hasPart(y,z) (hasPart-trans)

It is easy to see that adding a fact, say,AuthoredChapter(a)← will render the (mini-
mal) Herbrand model infinite. Indeed, model generation procedures will not terminate
then. The model will include, e.g.AuthoredChapter(a), CollectionBook(fpartOf(a)),
AuthoredChapter(fhasPart(fpartOf(a))) and so on. Now, the idea behind our transforma-
tion is to prefer avoiding the generation of the underlying infinite Herbrand base by
speculating mappings between new Herbrand universe candidates and already present
members of the Herbrand base. Technically, this is achieved by means of adomain
predicate, the extension of which represents the current domain of an interpretation.

The transformation of the clause set is such that, in the example, model generation
procedures will terminate with a finite domain,dom(a) and the mappingsfpartOf(a) 7→
a and fhasPart(a) 7→ a. Together with the additional, implicit mappinga 7→ a a non-
Herbrand interpretation results, the domain of which consists of those terms that are
specified by thedomain predicate, which is justa in this case.

Should the speculation of a mapping likefhasPart(a) 7→ a have not been success-
ful, in the sense it does not lead to a model, then extended domains are tried. Such a
domain could be, for instance, one that includes two elements denoted bydom(a) and
dom(fpartOf(a)).

Definition 4 (Blocking Transformation). Let P be a flatΣ-clause set. Theblocking
transformationof P , denoted asP bl, is obtained in the following four steps applied in
this order:8

(1) Domain restriction: Replace every ruleH ← B of P by the rule

H ← B,dom(x1), . . . ,dom(xk) (1)

where{x1, . . . ,xk} is the set of variables occurring inH ← B, for some k≥ 0.
(2) Pulling out function terms: In the resulting clause set, replace as long as possible

each clause of the formH ← B,P(t1, . . . , f (s1, . . . ,sn), . . . , tm) where f is a non-0
arity Σ-function symbol with

H ← B,P(t1, . . . ,x, . . . , tm), f (s1, . . . ,sn) 7→ref x (2)

where x is a variable not occurring elsewhere in the original clause. Finally to this
step add the clauses

x 7→ref x← (3)

x 7→ref y← x 7→ y (4)

8 The (infix) predicate symbols7→, 7→ref and 7→sub are assumed to be different to the ones inP .

8

(3) Finite domain search: Add to the resulting clause set the following clauses, for
everyΣ-constant c, for every n-aryΣ-function symbol f and all i= 1, . . . ,n, and for
every m-aryΣ-predicate symbol P and all j= 1, . . . ,m:

dom(c)← (5)

dom(xi)← dom(f (x1, . . . ,xn)) (6)

dom(xi)← dom candidate(f (x1, . . . ,xn)) (7)

dom candidate(f (x1, . . . ,xn))← dom(x1), . . . ,dom(xn) (8)

f (x1, . . . ,xn) 7→subx1∨·· ·∨ f (x1, . . . ,xn) 7→subxn∨dom(f (x1, . . . ,xn))←
dom candidate(f (x1, . . . ,xn))

(9)

x 7→ c← x 7→subc (10)

x 7→ f (x1, . . . ,xn)∨x 7→subx1∨ . . .∨x 7→subxn←
x 7→sub f (x1, . . . ,xn)

(11)

P(x1, . . . ,x j−1,y,x j+1, . . . ,xm)← x j 7→ y,P(x1, . . . ,xm) (12)

← x 7→ y,dom(x) (13)

(4) Right uniqueness of7→ Add to the resulting clause set the following clauses, for
every n-aryΣ-function symbol f and all i= 1, . . . ,n:

← x 7→ y,x 7→ z,y 6= z (14)

x 6= y← y 6= x (15)

c 6= d← for any two differentΣ-constant c and d (16)

c 6= f (x1, . . . ,xn)← (17)

g(y1, . . . ,yk) 6= f (x1, . . . ,xn)← for every k-aryΣ-function
symbol g different from f

(18)

f (x1, . . . ,xi−1,y,xi+1, . . . ,xn) 6= f (x1, . . . ,xn)← y 6= xi ,

dom(f (x1, . . . ,xi−1,y,xi+1, . . . ,xn)),dom(f (x1, . . . ,xn))
(19)

Let us add some explanations. In step (1), adding thedom body atoms in clauses (1)
is the key to achieve termination of model generation procedures. For illustration let
us return to the example above. Model generation procedures will derivedom(a) and
CollectionBook(fpartOf(a)), but will not derivedom(fpartOf(a)) from the transformed
clause set. The blocking transformation will turn the clauseCollectionBook-2 into

AuthoredChapter(fhasPart(x))← CollectionBook(x),dom(x)

and model generation procedures willnot “apply” this clause now to derive the new
factAuthoredChapter(fhasPart(fpartOf(a))).

In step (2) function terms are “pulled out”. This is necessary to replace a term
f (s1, . . . ,sm) in a body atom by a terms in presence of a mappingf (s1, . . . ,sm) 7→ s. In
essence, because the blocking transformation is applied toflat clause sets only, “pulling

9

out sub-terms” need not be applied recursively. Clauses (3) and (4) specify that the
replacement can be carried out or not.

Step (3) adds clauses the purpose of which is to search for a model with a finite do-
main, as specified by thedom-predicate. More precisely, if a model of the transformed
clause set containsdom(t) then t is denotes a domain element of the intended finite
domain model (and all the sub-terms oft must be domain elements, too, by clause (6)).

Now, how are new domain elements generated? For constants this is obvious (cf.
clause (5)). Notice that for 0-ary function symbols the clauses (6) and (7) are absent,
and, ifa is such a 0-ary function symbol, clause (8) and (9) take the form

dom candidate(a)← (8’)

dom(a)← dom candidate(a) (9’)

Consequently,dom(a) will be contained in any model, as is the case for constants.
For non 0-ary function symbols, clause (8) assembles a “domain candidate” term

f (t1, . . . , tn) from available domain elementst1, . . . , tn. With clause (7) its subterms must
be domain elements. This property is important, because clauses (9)-(11) realize in
a nondeterministic fashion all possible ways to mapf (t1, . . . , tn) to one of its proper
sub-terms, which must be a domain element in order to define an interpretation for
the symbolf at pointst1, . . . , tn. The rightmost head atom in clause (9) expresses the
alternative to such a mapping, and the termf (t1, . . . , tn) becomes a domain element by
it instead.

For better termination behavior it is desirable that the latter possibility, to make
f (t1, . . . , tn) a new domain element, is tried after the mappings to its sub-terms. The
model generation procedures we tried could be configured to achieve that.

Clause (12) expresses a substituivity property and allows to replace a termt occur-
ring as an argument to a predicate symbol by a domain elementd, providedt is mapped
to d. Notice that no replacement the other way round is possible (the7→ relation is not
symmetric), and replacements only at top level term positions are possible (as above,
that this is sufficient is a consequence of the assumption that the transformation is ap-
plied to flat clause sets only).

Clause (13) states thatdomain elements cannot be mapped to other (domain) ele-
ments. Only “domain candidates” can.

Finally, in step (4) clauses are added that define the “syntactical different” relation
6= on domain elements. It is applied in clause (14) to constrain the7→ relation to a
right-unique one. This is required in order to uniquely map a term to a domain element.

Altogether we get our main result, which is as follows (a proof is in the appendix).

Theorem 5 (Soundness and Completeness of the Blocking Transformation).Let P
be a flat clause set. ThenP is satisfiable if and only ifP bl is satisfiable.

If non-monotonic negation is available, as is the case in the KRHyper prover [Wer03],
the blocking transformation can be further optimized by using the following clauses in-
stead of step (4):

← x 7→ y,x 7→ z,not y = z

x = x←

10

These clauses spare the generation of quadratically many clauses otherwise (in terms of
the size of the input signature). Although this seems to be a negligible issue, it is not, as
our experiments demonstrate.

Related Work.Our transformation is inspired by the well-known blocking technique
as used in DL systems [BDS93,HS99,HST99,HM00]. The most powerful DL blocking
techniques suffice to decide certain description logics that do no have the finite model
property. That is not possibly with our transformation. On the other hand, our blocking
transformation is more general as it is applicable toanyflat clause set, not only to clause
sets obtained from DL knowledge bases. Our strategy should be sufficient to guarantee
termination of model generation procedures for, for instance, description logics that
have the finite model property.9

In [BFGHK04] a blocking transformation similar to ours is described. That trans-
formation exploitsnon-monotonic negationas a language element to conveniently “pro-
gram” the blocking technique in the transformed clause set. This entails two disadvan-
tages: First, standard model generators that do not support non-monotonic negation can-
not be applied. Second, unrestricted use of non-monotonic negation, as in in [BFGHK04],
prevents the effective use ofback-jumpingin the KRHyper prover,10 which otherwise
is one of the most effective optimization techniques in DL systems, DPLL style SAT
solvers and also in Hyper Tableaux for classical logic [BFN96].

Virtually not using back-jumping might have been irrelevant for the application in
[BFGHK04], but with larger databases back-jumping is really needed. The alternative
transformation to step (4) suggested above makes use of nonmonotonic negation in an
inessential way only, so that back-jumping still remains in effect.11

Related to our approach are general methods for finite model computation. In the
“SEM-style” approach, certain base calculi or systems are extended by techniques for
discovering satisfiability in finite domain models (e.g. SCOTT [SLM94] and SEM
[Zha95]) In [BT98] a rather general tableaux calculus in the SATCHMO tradition is
described, however both refutationally complete and complete for finite domain satisfi-
ability. In the “MACE-style” approach to model building, the search for a finite model
is reduced to a propositional SAT problem [Sla92,McC94,CS03, e.g.].

One of the details of our blocking transformation is that it does not aim to be com-
plete for minimal domain size satisfiability. The reason is, only a mapping from a term
to one of its sub-terms is attempted, but not to other terms. The rationale behind is to
have a small searcher space this way (model computation procedures like MACE or
SEM try all possibilities and thus can be complete wrt. minimal domain size models). It
would be interesting to see how all these systems perform on knowledge representation
tasks like the ones considered in this paper.

9 Should the paper be accepted for LPAR we hope to include such results in the final version.
10 This is, because non-chronological backtracking is based on an analysis of what literals along

a branch (in a tableaux) contributed to a derivation, and which don’t. With non-monotonic
negation at disposal such an analysis seems promising only in very restricted cases.

11 In fact, we began our experiments with the transformation in [BFGHK04], but with it we
did not arrive at satisfactory results. The model generation system that we tried, KRHy-
per [Wer03], performs much better with the new transformation.

11

In [PP98], a general theorem prover is coupled with a propositional SAT solver to
search for finite models. The results are encouraging, although somewhat outdated in
the meantime, as much improved DL systems (FaCT [Hor99], RACER [HM01]) are
available than those used for comparison in [PP98].

5 Experimental Evaluation

For our experimental evaluation, we used the KRHyper [Wer03] and Darwin [BFT05]
systems. KRHyper implements the Hyper Tableaux calculus [BFN96], and Darwin im-
plements the Model Evolution calculus [BT03]. Both systems are sound and complete
for classical first-order logic. KRHyper supports non-monotonic negation, and the way
it is used in the blocking transformation it is obvious that soundness and completeness
are not affected. In our experiments with KRHyper we always use it.

We applied our transformation to three ontologies also used in [TRBH04] to eval-
uate the Vampire prover on ontological reasoning. The first one is Tambis [Tam], a
knowledge bases about chemical structures, functions, processes, etc. within a cell,
which contains about 345 concepts. The second one is the Galen Common Reference
Model [Gal], a medical terminology ontology comprising 24.000 concepts and 913.000
relations (including transitive ones). The third one is the Wine Ontology [Win] from the
OWL test suite, with 346 concepts and 16 roles. The following table shows the time (in
seconds) that Darwin and KRHyper took to prove theconsistencyof the ontology:

Ontology System w/o blocking with blocking
Tambis w/o instances KRHyper 0.64 42
Tambis w/o instances Darwin 0.1 20
Tambis with instances KRHyper ∞ 66
Tambis with instances Darwin ∞ 22
Galen KRHyper 1.3 4
Galen Darwin 0.5 timeout
Wine KRHyper 97 timeout
Wine Darwin timeout timeout

The column labeled “w/o blocking” contains the results when only the equality
transformation is applied, whereas in the right column, both transformations are ap-
plied. Without blocking, all problems with a finite Herbrand model are solvable quite
quickly – except for the Wine ontology, where Darwin exceeded the time-limit (1h).
We presume, however, that Darwin did not fail for principal reasons.

If Tambis is populated with a suitable instance, the problem described in (??) ren-
ders the Herbrand model infinite, and the provers do not terminate. The blocking tech-
nique solves this problem as expected. On the flip-side, due to the additional search
space introduced by blocking, some problems becomepractically unsolvable. In par-
ticular, explicitly deriving the ground6=-theory for a current domain in the classical
formulation (cf. step (4) in the blocking transformation) may slow down the model
computation considerable. Similarly to [TRBH04], we validated our transformation by
pairwise concept subsumption tests. We used KRHyper and our optimized transforma-
tion (with non-monotonic negation), although we could not use the blocking technique

12

for the Wine Ontology, because this results in a timeout (s.a.). The samples that we run
took the following average times (in seconds), and the runs on all samples terminated.

Ontology System Satisfiable Unsatisfiable
Tambis KRHyper with blocking 47 2
Galen KRHyper with blocking 3.8 3.8
Wine KRHyper w/o blocking 120 0.15

Furthermore, we applied our transformation to the OWL test cases provided by
the W3 consortium [OWL04]. This is a collection of OWL files on which numerous
reasoners have already been tested. We used the WonderWeb API [Won04] to translate
the OWL test cases to first order logic. As it supports only OWL-DL and OWL-lite, we
could not run the OWL-full tests. The distribution of the problem classes is as follows:

Test class # OWL-light # OWL-DL # total
Consistency tests 25 27 52
Inconsistency tests 29 38 67
Entailment tests 23 29 52

171
As has been done with the other reasoners, we distinguish three result cases: pass

(the prover returned the correct answer), fail (the prover returned the wrong answer,
thus entailing its incorrectness) and other cases (such as memory problems, undecided
answers or timeouts). The following table contains the results of our experiments at the
top. For the other systems the results were just taken from the OWL test cases web page.
For that systems we list in parenthesis whether it is a native description logic (DL) or
OWL reasoner, or the theorem prover it is based on. The numbers denote the percentage
of problems solved of those mentioned in the previous table.

Consistency Inconsistency Entailment
System pass fail pass fail pass fail
KRHyper with blocking 89% 4% 90% 4% 86% 7%
KRHyper w/o blocking 75% 4% 93% 4% 86% 5%
Darwin with blocking 89% 4% 92% 4% 84% 5%
Darwin w/o blocking 7% 4% 94% 4% 86% 5%
Darwin ∪ KRHyper 93% 4% 94% 4% 88% 5%
Fact (DL) 42% 0% 85% 0% 7% 0%
Hoolet (Vampire) 78% 0% 94% 0% 72% 0%
FOWL (OWL) 53% 0% 4% 0% 32% 0%
Pellet (DL) 96% 0% 98% 0% 86% 0%
Euler (“Prover”) 0% 2% 98% 0% 100% 0%
OWLP (DL) 50% 10% 26% 12% 53% 4%
Cerebra (DL) 90% 0% 59% 0% 61% 0%
Surnia (Otter) - - 0% 0% 13% 0%
ConsVISor (OWL-full) 77% 6% 65% 1% - -

KRHyper and Darwin perform quite well compared to the other systems. All of the
fail cases can be traced back to conversion failures of the OWL-to-TPTP converter or
the TPTP-to-KIF converter. These failures lie outside the scope of our implementation.

Still, our systems do not return an answer for all of the test cases. In the majority
of these cases, a timeout limitation (200 seconds) caused the prover to stop, but it is

13

unlikely that extending the time limit would help a lot. Memory problems were not an
issue at all (both provers realize a memory-efficient one-branch-at-a-time approach).

For the consistent (satisfiable) problems both Darwin and KRHyper gained from the
blocking transformation. There are clearly identifiable problems in the test suite where
the provers will not terminate without blocking, for any timeout. Notice that the “union”
of Darwin and KRHyper solves more problems than Darwin or KRHyper individually.
This is because they don’t solve exactly the same problems.

For the inconsistent (unsatisfiable) problems both Darwin’s and KRHyper’s perfor-
mance degraded with the blocking transformation. This is clear, as both systems are
refutationally complete, and the blocking transformation introducesadditional model
candidates to be inspected for model-ship (without success, of course).

6 Conclusion

We presented improvements for first-order model-generation style reasoning in the con-
text of ontological knowledge bases. We proposed a transformation for equality reason-
ing and a “blocking” transformation that enables provers to terminate more often on
satisfiable input, a useful feature e.g. when debugging knowledge bases or when com-
puting subsumption hierarchies. The approach is motivated by the possibility to easily
accommodate powerful extensions to the input language, like rule languages.

Under what conditions our transformation provides a decision procedure in conjunc-
tion with model-generation style provers is a question we are currently investigating (we
expect a positive result for all description logics with a finite model property).

In this paper we evaluated our technique on description logics knowledge bases. We
did this in order to compare our approach to others. It will be interesting to apply our
technique to problems outside this domain, e.g. on problems stemming from natural
language representation [Bos03, e.g.].

References

Baa03. F. Baader, ed.CADE-19, vol. 2741 ofLNAI. Springer, 2003.
BCM+02. F. Baader, et al. eds.Description Logic Handbook. Cambridge U Press, 2002.
BDS93. M. Buchheit, F.M. Donini, A.Schaerf. Decidable reasoning in terminological knowl-

edge representation systems.JAIR, 1:109–138, 1993.
BFGHK04. P. Baumgartner et al. Model based deduction for database schema reasoning. In S.

Biundo et al eds,KI 2004, vol. 3238, 168–182. Springer, 2004.
BFN96. P. Baumgartner, U. Furbach, I. Niemelä. Hyper Tableaux. InProc. JELIA 96, no.

1126 in LNAI. Springer, 1996.
BFT05. P. Baumgartner, A. Fuchs, C. Tinelli. Implementing the Model Evolution Calculus.

In S. Schulz, et al eds,Special Issue of the IJAIT, 2005. To appear.
BG98. L. Bachmair, H. Ganzinger. Equational Reasoning in Saturation-Based Theorem

Proving. In W. Bibel, P. Schmitt, eds,Automated Deduction, vol. I, 353–398. Kluwer
Academic, 1998.

BGV98. L. Bachmair, H. Ganzinger, A. Voronkov. Elimination of equality via transformation
with ordering constraints. In Kirchner&Kirchner [KK98].

14

Bos03. J. Bos. Exploring model building for natural language understanding. InProc.
ICoS-4, 2003.

Bra75. D. Brand. Proving theorems with the modification method.SIAM J. on Computing,
4:412–430, 1975.

BT98. F. Bry, S. Torge. A Deduction Method Complete for Refutation and Finite Satisfia-
bility. In Proc. JELIA, LNAI. Springer, 1998.

BT03. P. Baumgartner C. Tinelli. The Model Evolution Calculus. In Baader [Baa03],
350–364.

Bun94. A. Bundy, ed.CADE 12, LNAI 814. 1994. Springer.
CS03. K. Claessen N. Sörensson. New techniques that improve mace-style finite model

building. In P. Baumgartner, C. Fermüller, eds,CADE-19 Workshop, 2003.
dNHS00. H. de Nivelle, U. Hustadt, R. Schmidt. Resolution-based methods for modal logics.

Logic J. of the IGPL, 8(3):265–292, 2000.
FLHT01. C. Ferm̈uller, A. Leitsch, U. Hustadt, T. Tammet. Resolution Decision Procedures.

In Robinson Voronkov [RV01b], 1791–1850.
Gal. The galen common reference model.

http://www.cs.man.ac.uk/˜horrocks/OWL/Ontologies/galen.owl.
GHVD03. B. Grosof, I. Horrocks, R. Volz, S. Decker. Description logic programs: Combining

logic programs with description logic. InProc. WWW 2003, 48–57. ACM, 2003.
HM00. V. Haarslev R. M̈oller. Expressive ABox reasoning with number restrictions, role

hierarchies, and transitively closed roles. In A. Cohn, et al eds,KR2000, 273–284,
2000. Morgan Kaufmann.

HM01. V. Haarslev R. M̈oller. High Performance Reasoning with Very Large Knowledge
Bases: A Practical Case Study. InIJCAI 97. Morgan Kaufmann, 2001.

Hor99. I. Horrocks. FaCT and iFaCT. In P. Lambrix et al. eds,Proc. DL’99, 133–135, 1999.
HS99. U. Hustadt R. Schmidt. On the relation of resolution and tableaux proof systems for

description logics. InProc. IJCAI ’99, 110–117, 1999. Morgan Kaufmann.
HST99. I. Horrocks, U. Sattler, S. Tobies. A description logic with transitive and converse

roles, role hierarchies and qualifying number restrictions. LTCS-Report LTCS-99-
08, RWTH Aachen, 1999. Revised version.

KK98. C. Kirchner, H. Kirchner, eds.CADE 15, LNAI 1421, 1998. Springer.
LS01. R. Letz G. Stenz. Model elimination and connection tableau procedures. In A.

Robinson, A. Voronkov, eds,Handbook of AR, 2017–2114. Elsevier, 2001.
MB88. R. Manthey F. Bry. SATCHMO: a theorem prover implemented in Prolog. In E.

Lusk, R. Overbeek, eds,Proc. CAD 1988, vol. 310 ofLNCS, 415–434. Springer.
McC94. W. McCune. A davis-putnam program and its application to finite first-order model

search: Quasigroup existence problems. TR, Argonne National Lab., 1994.
MS97. M. Moser, J. Steinbach. Ste-modification revisited. TR AR-97-03, TU Munich,

1997.
NP01. I. Niles, A. Pease. Towards a standard upper ontology. In C. Welty, B. Smith, eds,

Proc. FOIS-2001, 2001.
NR01. R. Nieuwenhuis, A. Rubio. Paramodulation-based theorem proving. In Robinson

Voronkov [RV01b], 371–443.
NRW98. A. Nonnengart, G. Rock, C. Weidenbach. On generating small clause normal forms.

In Kirchner&Kirchner [KK98].
OWL04. 2004.http://www.w3.org/2003/08/owl-systems/test-results-out.
PP98. M. Paramasivam D. Plaisted. Automated deduction techniques for classification in

description logic systems.JAR, 20(3):337–364, 1998.
RV01a. A. Riazonov, A. Voronkov. Vampire 1.1 (system description). InProc. IJCAR, vol.

2083 ofLNCS. Springer, 2001.

15

http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl
http://www.w3.org/2003/08/owl-systems/test-results-out

RV01b. J. Robinson, A. Voronkov, eds.Handbook of AR. Elsevier MIT Press, 2001.
SH03. R. Schmidt U. Hustadt. A principle for incorporating axioms into the first-order

translation of modal formulae. In Baader [Baa03], 412–426.
Sla92. John Slaney. Finder (finite domain enumerator): Notes and guide. TR-ARP-1/92,

Australian National U, Canberra, 1992.
SLM94. J. Slaney, E. Lusk, W. McCune. SCOTT: Semantically constrained Otter (system

description). In Bundy [Bun94], 764–768.
SSY94. G. Sutcliffe, C. Suttner, T. Yemenis. The TPTP problem library. In Bundy [Bun94].
Tam. The Tambis ontology.

http://protege.stanford.edu/plugins/owl/owl-library/tambis-full.
owl.

TH03. D. Tsarkov, I. Horrocks. DL reasoner vs. first-order prover. InProc. DL 2003,
vol. 81 ofCEUR, 152–159, 2003.

TRBH04. D. Tsarkov, A. Riazanov, S. Bechhofer, I. Horrocks. Using vampire to reason with
owl. In S. McIlraith et al, eds,ISWC, vol. 3298 ofLNCS, 471–485. Springer, 2004.

Wer03. C. Wernhard. System Description: KRHyper. Fachberichte Informatik 14–2003,
Universiẗat Koblenz-Landau, 2003.

Win. The w3c wine ontology.
http://www.w3.org/TR/2003/WD-owl-guide-20030331/wine.owl.

Won04. http://owl.man.ac.uk/api.shtml.
Zha95. H. Zhang. Sem: a system for enumerating models. InProc. IJCAI-95, 298–303,

1995.

16

http://protege.stanford.edu/plugins/owl/owl-library/tambis-full.owl
http://protege.stanford.edu/plugins/owl/owl-library/tambis-full.owl
http://www.w3.org/TR/2003/WD-owl-guide-20030331/wine.owl
http://owl.man.ac.uk/api.shtml

A Proofs

A.1 Proof of Theorem 3

The formal tool to prove the completeness direction of Theorem 3 is the model con-
struction technique introduced for the superposition calculus [BG98,NR01, e.g.].

We will need some terminology regarding term orderings and rewrite systems. A
(rewrite) rule is an expression of the forml → r wherel andr areΣ-terms. Arewrite
systemis a set of rewrite rules.

We suppose as given a reduction ordering� that is total on groundΣ-terms.12 Fix
any such reduction ordering� that additionally satisfies the following two conditions:

1. For any constantc and termt, if c� t then t is a constant, too. That is, no non-
constant term can be smaller that a non-constant term.

2. There is a designated constanttrue, not occuring in the given clause set and that is
minimal in�. That is, there is no termt with true� t.

The purpose of the constanttrue is to enable uniform notation in the proof. More pre-
cisely, an atomA that is not an equation is read as the equationA≈ true. This way
non-equational atoms become terms. Also, a flat atomA is possibly no longer flat when
written asA≈ true. This all causes no problems, though, as the changes are made only
conceptually, for the sake of leaner notation in the proof.

Equations are compared reading an equations≈ t as a multiset{s, t} and using the
extension of� to multisets, which is also denoted by�. To compare ground clauses,
program rules, it is sufficient to define(H ←B)� (H ′←B ′) iff (H ∪B)� (H ′∪B ′),
where� again denotes its own extension to multisets.

A ground rewrite systemR is ordered by� iff l � r, for every rulel → r ∈ R. In
the sequel, the letterRwill always denote a ground rewrite system ordered by the given
reduction ordering�. By the symbol→R we denote the one-step rewrite relation on
groundΣ-terms, and by→?

R we denote its transitive-reflexive closure.
As a non-standard notion, we define arewrite system without overlapsto be a

ground rewrite systemR that is ordered by�, and wheneverl → r ∈ R then there is
no other rule inRof the forms[l]→ t or s→ t[l]. In other words, no rule can be reduced
by another rule, neither the left hand sidenor the right hand side.

Any rewrite system without overlaps is a convergent ground rewrite system. It is
well known that for any convergent ground rewrite systemR, and any two termss and
t, R |=E s≈ t13 if and only if there is a termu such thats→?

R u andt→?
R u. This result

thus applies in particular to ground rewrite systems without overlaps.
When talking about a ground substitutionγ for a clauseH ← B below we always

mean a substitution that moves (only) the variables ofH ← B to groundΣ-terms. We
say thatγ is reducibleby a rewrite systemR if there is a variablex such thatxγ→R t.
That is, some term in the range ofγ can be rewritten by some rule inR to the smaller
termt. Otherwise,γ is irreducible by R.

12 A reduction orderingis a strict partial ordering that is well-founded and is closed unter context
i.e., s� s′ implies t[s] � t[s′] for all termst, and liftable, i.e.,s� t impliessδ � tδ for every
terms andt and substitutionδ.

13 HereR is read as a set of equations.

17

Finally, for aΣ-clause setP let P gr denote the set of all groundΣ-instances of all
clauses inP .

Theorem 3 (Soundness and Completeness of the Equality Transformation).Let P
be a clause set. ThenP is UNA-E-satisfiable if and only ifP eq is satisfiable.

Proof. The proof of the only-if direction is not difficult and is omitted. The main obser-
vation needed is that “pulling out” subterms preserves E-satisfiability.

For the if direction (completeness) suppose thatI is a Herbrand model ofP eq. We
will show that a certain subsetRI ⊆ I is a UNA-E-model ofP (to make the statement
RI ⊆ I meaningful, every equations≈ t in I is taken as the two ruless→ t andt→ s).
More precisely,RI will be a terminating rewrite system without overlaps.

The proof thatRI is a UNA-E-model ofP has three parts. In the first part we will
defineRI and showRI |=E P eq. The subsequent (easy) step is to concludeRI |=E P . In
the final step we will show thatRsatisfies the UNA, which will complete the proof.

RI |=E P eq|=E P eq|=E P eq. At the beginning we assumed thatI is a Herbrand model ofP eq. That is,
I |= (P eq)gr. We first constructRI and then showRI |=E (P eq)gr.

For every equations≈ t ∈ I14 we define by induction on the term ordering� sets
of rewrite rulesεs≈t andRs≈t as follows. Assume thatεs≈t has already been defined for
all s′ ≈ t ′ ∈ I with s≈ t � s′ ≈ t ′. Let Rs≈t =

S
s≈t�s′≈t ′ εs′≈t ′ and define15

εs≈t = {s→ t} if


s� t,

s is irreducible byRs≈t , and

t is irreducible byRs≈t .

Otherwiseεs≈t = /0. Finally letRI =
S

s≈t εs≈t .
By constructionRI is a rewrite system without overlaps. Because� is a well-

founded orderingRI thus is a convergent rewrite system.
Now we show by well-founded induction thatRI is an E-model of of(P eq)gr, or,

equivalently,RI |=E (P eq)gr. It suffices to chose a clause from(P eq)gr arbitrary. It is of
the form(H eq← Beq)γ, for some clauseCeq = (H eq← Beq) ∈ P eq and some ground
substitutionγ, the domain of which are the variables ofC.

We distinguish two complementary cases.

(1) γ is reducible by RI .
That is, there is a variablex in the domain ofγ such thatxγ→RI t for some (ground)
termt. Let γ′ be the substitution such that

yγ′ =

{
t if y = x

yγ otherwise

Becausex occurs inCeq it follows Ceqγ � Ceqγ′. By the induction hypothesisRI |=E

Ceqγ′, and by congruenceRI |=E Ceqγ.

14 Recall that an atomA is written as an equationA≈ true for the purpose of uniform notation.
15 The third condition is absent in the standard model construction [BG98].

18

(2) γ is irreducible by R.
If RI 6|=E Beqγ thenRI |=E Ceqγ follows trivially. Hence supposeRI |=E Beqγ from now
on.

Becauseγ is irreducible byRI , with Lemmas 7 and 8 it followsI |= Beqγ. Recall
thatI is given as a Herbrand model of(P eq)gr. FromI |= Beqγ it thus followsI |= H eqγ.
Again by Lemmas 7 and 8, this time in the other direction, it followsRI |=E H eqγ. This
result implies triviallyRI |=E (H eq← Beq)γ.

This concludes the case analysis. Notice that in both cases we have shownRI |=E

Ceqγ, which remained to be shown.

RI |=E P|=E P|=E P . LetC = (H ← B) ∈ P andγ a ground substitution forC. It suffices to show
RI |=E Cγ.

LetCeq = (H eq← Beq) ∈ P eq be the rule obtained fromC by the equality transfor-
mation. The rulesC andCeq can be written as

C = H [s]← B[t]

Ceq = H [xs]← B[xt],flatten(s≈ xs),flatten(t≈ xt) ,

wheres (t) are the terms occuring inH (in B) that prevent the literals inH (in B)
from being flat. The variablesxs are those that replace the termss in the head literals by
flattening. By flatten(s≈ xs) the list of equations is ment that results from flattening the
equationss1≈ xs

1, . . . ,xn≈ xs
n, wheres= s1, . . . ,sn andxs = xs

1, . . . ,x
s
n, for somen≥ 0.

The expression flatten(t≈ xt) is defined in the same way, as expected.
The equations flatten(s≈ xs),flatten(t≈ xt) can be written asu1≈ x1, . . . ,um≈ xm,

for somem≥ 0, whereu1, . . . ,um are (flat) terms andx1, . . . ,xm are variables (pairwise
different and fresh wrt. the variables inC). These equations can be seen as a unification
problem in solved form. Now consider the substitution

γ′ = {x1 7→ u1, . . . ,xn 7→ un} .

By inspection of the flattening process one convinces oneself thats= xsγ′ andt = xtγ′.16

Thus we obtain

Ceqγ′ = H [xsγ′]← B[xtγ′],u1γ′ ≈ x1γ′, . . . ,umγ′ ≈ xmγ′

= H [s]← B[t],u1γ′ ≈ x1γ′, . . . ,umγ′ ≈ xmγ′

Now apply the given substitutionγ to Ceqγ′ and obtain

Ceqγ′γ = (H [s]← B[t],u1γ′ ≈ x1γ′, . . . ,umγ′ ≈ xmγ′)γ
= H γ← Bγ,u1γ′γ≈ x1γ′γ, . . . ,umγ′γ≈ xmγ′γ

With the result of the preceeding part concludeRI |=≈ Ceqγ′γ. Becauseuiγ′ = xiγ′,
for all i = 1, . . . ,m, it follows trivially uiγ′γ = xiγ′γ andRI |=≈ uiγ′γ ≈ xiγ′γ. But then
RI |=≈ H γ← Bγ follows, which was to show.

16 The somewhat tedious formal proof would not provide any additional insights.

19

R satisfies UNA.Suppose, to the contrary, thatRdoes not satisfy UNA, i.e.RI |=E c≈ d
for some different constantsc and d. The equationc ≈ d is flat. By Lemma 7 then
c≈ d ∈ I . With (P eq)gr containing the rule← c≈ d this is impossible, though. ut

Lemma 7. Let s≈ t be a flat equation andγ a ground substitution irreducible by RI .
Then, RI |=E sγ≈ tγ iff sγ≈ tγ ∈ I.

Proof. For the if-direction supposesγ≈ tγ ∈ I .
If sγ = tγ thenRI |=E sγ≈ tγ follows trivially.
If both sγ andtγ are irreducible byRI thenεsγ≈tγ = {sγ→ tγ} and sosγ→ tγ ∈ RI .

Fromsγ→ tγ ∈ RI the resultRI |=E sγ≈ tγ follows easily.
Hence suppose, without loss of generality thatsγ is reducible. Recall first thatI is

a model of a program that was obtained by the equality transformation. Any such pro-
gram contains, by construction, the program rulesfalse← c,d for any pair of different
constantsc andd. Hence,I cannot contain any equationc≈ d. Nor can it containd≈ c
because the equality transformation adds a program rule for symmetry. Notice that con-
sequentlyRI does not containc→ d or d→ c either (because ofRI ⊆ I). Together with
the restriction (1) on orderings defined above it follows thatRI does not contain any
rule of the formc→ t, wherec is a constant andt is any term. In other words, constants
are irreducible byRI .

By this consideration,sγ cannot be a constant. The termsγ thus is of the formf (v)γ
where f is some (possibly 0-ary) function symbol andv is some list of terms. More
specifically, becauses≈ t is given as a flat equation, each termv in v must be a constant
or a variable. Now, ifv is a constant thenv = vγ is irreducible, as just concluded. And
if v is a variable thenvγ is irreducible, too, becauseγ is given as irreducible byRI .

Recall we are considering the case thatsγ = f (v)γ is reducible. Becausevγ is irre-
ducible, for eachv in v, f (v)γ must be reducible at the top position. That is,RI must
contain a rule of the formsγ→ u, for some termu.

From sγ→ u ∈ RI it follows εsγ≈u = {sγ→ u}. By definition of ε, Rsγ≈u cannot
contain a rule that rewritesu. Further, the ordering� on equations is defined in such
a way that any rule that could rewriteu must precede the rulesγ→ u. Together, thus,
u is irreducible. In other words, deriving the normal form ofsγ takes exactly one step.
Notice this fact is independent from whethersγ≈ tγ∈ I or not. It holds for any flat term
s and irreducible substitutionγ. This result will be used also in the proof of the only-if
direction below.

Next considertγ. If tγ is reducible then by the same arguments as forsγ it must
be of the formg(w)γ whereg is some function symbol andw is a list of constants or
variables. Further, there is a ruletγ→ u′ ∈ RI for some irreducible termu′.

Recall any program obtained from the equality transformation contains the axioms
of reflexivity, symmetry and transitivity. Further recall thatI is a model of some such
program.

Because ofRI ⊆ I , from sγ→ u ∈ RI and tγ→ u′ ∈ RI it follows sγ ≈ u ∈ I and
tγ≈ u′ ∈ I . The symmetric versions are also contained inI by the symmetry axioms.

Becausesγ ≈ tγ ∈ I , sγ ≈ u∈ I andtγ ≈ u′ ∈ I and the fact thatI must be a model
in particular for the symmetry and transitivity axioms it followsu≈ u′ ∈ I .

20

Next we will show thatu = u′. Suppose, to the contrary thatu andu′ are different
terms. But then, eitheru� u′ or u′ � u holds. Without loss of generality supposeu� u′.
Recall that bothu andu′ are irreducible. But thenεu≈u′ = {u→ u′} and sou→ u′ ∈RI ,
contradicting irreducibility ofu. Hence it followsu = u′. Consequently we havetγ→
u∈ RI . Together withsγ→ u∈ RI it follows trivially sγ→RI u andtγ→RI u. Because
RI is convergent it followsRI |=E sγ≈ tγ as desired.

The last open case, thattγ is irreducible, is treated similarly: fromsγ ≈ tγ ∈ I and
sγ ≈ u ∈ I it follows by the symmetry and transitivity axioms thattγ ≈ u ∈ I . By the
same arguments as above it must holdtγ = u (because both terms are irreducible, and if
they were different, a ruletγ→ u or u→ tγ would have been added toRI , contradicting
irreducibility of tγ and ofu). Thus, withsγ→ u∈RI andtγ = u it follows RI |=E sγ≈ tγ.

This completes the proof for the if-direction.
For the only-if direction supposeRI |=E sγ≈ tγ. BecauseRI is a convergent rewrite

system there is a termw such thatsγ→?
RI

w andtγ→?
RI

w.
If both sγ andtγ are irreducible thensγ = tγ, sγ≈ tγ is an instance of the reflexivity

axiom, and sosγ≈ tγ ∈ I follows.
Hence suppose thatsγ or tγ is reducible. Without loss of generality supposesγ is

reducible. By exactly the same arguments as made in the proof of the if-direction,sγ
can only be rewritable at the top position. Thus, there is a rule of the formsγ→ u∈ RI .
In the if-part of the proof we concluded that deriving the normal form ofsγ takes exactly
one step. This impliesu = w.

If tγ is reducible, by the same arguments as forsγ, there is a rule of the formsγ→
u′ ∈RI with u′ = w. BecauseRI ⊆ I we getsγ≈w∈ I andtγ≈w∈ I . By the symmetry
and transitivity axioms,I must also satisfysγ≈ tγ andtγ≈ sγ. Equivalently,sγ≈ tγ ∈ I
andtγ≈ sγ ∈ I .

If tγ is irreducible, we havetγ = w. Fromsγ→ w∈ RI , RI ⊆ I andtγ = w it follows
(with the symmetry axiom)sγ≈ tγ ∈ I andtγ≈ sγ ∈ I . ut

Lemma 8. Let P(t1, . . . , tn) be a flat non-equational atom andγ a ground substitution
irreducible by RI . Then, RI |=E P(t1, . . . , tn)17 iff P(t1, . . . , tn) ∈ I.

Proof. The proof is similar to the proof of Lemma 7 and is omitted. An important detail
is thatI is a model of the predicate substitution axioms, which are part of the equality
transformation (cf. Definition 2, the last clause scheme stated there). ut

A.2 Proof of Theorem 5

Lemma 9. Let P be a flat clause set. IfP bl is unsatisfiable thenP is unsatisfiable.

Proof. SupposeP bl is unsatisfiable. We directly show thatP is unsatisfiable.
Consider the clause set(P bl)1 which is obtained fromP bl by replacing every clause

of the form (9) by its subclause

dom(f (x1, . . . ,xn))← dom candidate(f (x1, . . . ,xn)) (9’)

17 Or, more precisely,RI |=E P(t1, . . . , tn)≈ true according to the convention that non-equational
atoms are represented as rewrite rules inRI .

21

With P bl being unsatisfiable,(P bl)1 is unsatisfiable, too. We consider a hyper-resolution
refutation of(P bl)1, which exists by the completeness of hyper-resolution. We take this
refutation as a starting point to argue that certain clauses can be deleted from(P bl)1

without affecting unsatisfiability.
Observe that with the move from (9) to (9’) the only occurences of7→sub-literals are

those in clauses (10) and (11). It is easy to see that no hyper-resolution inferences from
these clauses exist. Consequently, they can be removed from(P bl)1 without affecting
unsatisfiability. Let(P bl)2 be the resulting clause set. With the removal of clauses (10)
and (11), the clause set(P bl)2 contains no positive occurence of7→-literals any more.18

In the clauses (4), (12), (13) and (14), all the occurences of7→-literals are negative.
Therefore these clauses can be removed from(P bl)2 without affecting unsatisfiability.
Let (P bl)3 be the resulting clause set. The only positive occurence of7→ref-literals in
(P bl)3 is in clause (3), and the only negative occurences of7→ref-literals is in clause (2).
It is clear that all hyper-resolution inferences from these clauses can be done exhaus-
tively and clauses (2) can be removed afterwards, thus undoing the transformation that
led to clauses (2). Clearly, the resulting clause set(P bl)4 is unsatisfiable, too.

Next we consider the clauses (15)-(19), which axiomatize a theory of syntactic
equality on thedomain elements. It is easy to see that these clauses are consistent with
any set ofdom-atoms. Further, as no clause from the other clauses in(P bl)4 contains
a negative occurence of an6=-literal. It follows that with (P bl)4 being unsatisfiable,
removal of the clauses (15)-(19) preserves unsatisfiability. Let(P bl)5 be the resulting
clause set.

Now, (P bl)5 is the same clause set as the clause set obtained fromP by applying
only step (1) of Defintion 4 and augment the resulting clause set with the following
clauses, for everyΣ-constantc, and for everyn-ary Σ-function symbol f and all i =
1, . . . ,n:

dom(c)← (5)

dom(xi)← dom(f (x1, . . . ,xn)) (6)

dom(xi)← dom candidate(f (x1, . . . ,xn)) (7)

dom candidate(f (x1, . . . ,xn))← dom(x1), . . . ,dom(xn) (8)

dom(f (x1, . . . ,xn))← dom candidate(f (x1, . . . ,xn)) (9’)

As thedom candidate-predicate does not appear outside these clauses, it is not difficult
to see that these clauses can be replaced in an unsatisfiability preserving way by the
following clauses, for everyΣ-constantc, and for everyn-ary Σ-function symbolf :

dom(c)←
dom(f (x1, . . . ,xn))← dom(x1), . . . ,dom(xn)

Let (P bl)6 be the resulting clause set. Of course, these clauses just enumerate the Her-
brand universe ofΣ.

Recall that for every clauseH ← B in P there is a clause

H ← B,dom(x1), . . . ,dom(xk) (2’)

18 I.e., no clause contains a head atom with the predicate symbol7→.

22

in (P bl)4, which is also in(P bl)6. By definition of Herbrand-satisfiability, unsatisfiabil-
ity of (P bl)6 entails that each clause (2’) can be replaced by all its ground instances,
i.e., by

H γ← Bγ,dom(x1)γ, . . . ,dom(xk)γ

for all ground substitutionsγ. The resulting clause set(P bl)7 is unsatisfiable, too. Be-
cause of the presence of the clauses above that enumerate the Herbrand universe, each
clause

H γ← Bγ,dom(x1)γ, . . . ,dom(xk)γ

in (P bl)7 can be replaced by

H γ← Bγ

and the axioms above enumerating the Herbrand universe can be deleted. Let(P bl)8 be
the resulting clause set, which is unsatisfiable, too. Notice that(P bl)8 can be obtained
also fromP by replacing every clauseH ← B in P by all its ground instances. Hence,
with (P bl)8 being unsatisfiable,P is unsatisfiable, too. ut

Non-Herbrand Interpretations. In most parts of this paper we are working with Her-
brand interpretations. An exception is below, in the completeness proof of the blocking
transformation. Let us therefore introduce our notation regarding (not necessarily Her-
brand) interpretations; everything is complete standard.

A (Σ-)interpretation Iconsists of a domain∆, which is a non-empty set, and map-
pings for eachΣ-constant to a domain element, for eachn-ary Σ-function symbol to a
function from∆n to ∆, and for eachn-ary Σ-predicate symbol to a function from∆n to
{true, false}. We denote these mappings bycI , f I andPI , respectively.

A valuationis a mapping from the set of variablesV to ∆. We writev(x) to denote
the value ofx underv.

Given an interpretationI , a valuationv and aΣ−term t we write t I ,v to denote the
result of evaluatingt under the usual homomorphic extension of·I andv to terms. For a
Σ-atomP(t1, . . . , tn) we define, completely standard,(P(t1, . . . , tn))I ,v = PI (t I ,v

1 , . . . , t I ,v
n).

We write I ,v |=? A iff I ,v satisfies the atomA.19 The only quantified formulas we are
concerned with are clauses. We therefore define thatI satisfiesa clauseH ←B, written
asI |=? H ← B, iff for all valuationsv it holdsI ,v |=? H ← B. The latter is defined as
I ,v |=? H ← B iff wheneverI ,v |= B for all body atomsB of B thenI ,v |= H for some
head atomH of H . Finally, I is amodelof clause setP iff I satisfies all clauses inP .

Theorem 5 (Completeness).Let P be a flat clause set. ThenP is satisfiable if and
only if P bl is satisfiable.

19 We always use the symbol|=? for satisfaction by (not necessarily Herbrand) interpretations,
whereas the symbol|= is reserved for satisfaction by Herbrand interpretations.

23

Proof. The only-if direction follows immediately from Lemma 9.
Regarding the if-direction, supposeP bl is satisfiable. We have to show thatP is

satisfiable.
Let Ibl be a HerbrandΣ-model of P bl. We show thatIbl determines a (possibly

non-Herbrand)Σ-model I of P . The proof proceeds in two steps. In the first step we
construct the domain ofI and the interpretation of the constants, function symbols and
predicate symbols. In the second step we then show thatI is a model ofP .

The domain ofI is defined as the set∆ = {d | dom(d) ∈ Ibl}. Regarding the inter-
pretation function·I , definecI = c for every constantc; for everyn-ary function symbol
f and all domain elementsd1, . . . ,dn ∈ ∆ define

f I (d1, . . . ,dn) =


d if f (d1, . . . ,dn) 7→ d ∈ Ibl and

d is a proper subterm off (d1, . . . ,dn)
f (d1, . . . ,dn) otherwise

We have to make sure that this definition is well-defined. This is immediate for con-
stants, as with clause (5) it followsc∈ ∆. Regarding function symbols, letd1, . . . ,dn∈ ∆
arbitrary. By definition of∆ it follows dom(d1), . . . ,dom(dn) ∈ Ibl. By clause (8) we
havedom candidate(f (d1, . . . ,dn)) ∈ Ibl. With clauses (9), (10) and (11) this implies

(i) dom(f (d1, . . . ,dn)) ∈ Ibl (cf. the rightmost head atom in (9)), or
(ii) f (d1, . . . ,dn)) 7→ d ∈ Ibl for some proper subtermd of f (d1, . . . ,dn)).

In case (i) we first showf (d1, . . . ,dn)) 7→ d /∈ Ibl, for any termd. This however follows
easily fromdom(f (d1, . . . ,dn)) ∈ Ibl and clause (13). Thus, in the definition of·I the
second case applies. Withdom(f (d1, . . . ,dn)) ∈ Ibl and the definition of∆ it follows
f (d1, . . . ,dn) ∈ ∆. Thus f I (d1, . . . ,dn) ∈ ∆, which means that·I is well-defined in case
(i).

In case (ii) we have to show two things: the first is right-uniqueness, i.e. there is no
proper subtermd′ of f (d1, . . . ,dn)) such thatd 6= d′ and f (d1, . . . ,dn)) 7→ d′ ∈ Ibl, and
the second isd∈∆. The second follows easily fromf (d1, . . . ,dn)) 7→ d∈ Ibl, the clauses
(6) and (7), which implydom(d) ∈ Ibl, and the definition of∆. In fact, no assumption
aboutd was made except that it is a proper subterm off (d1, . . . ,dn)). Thus, regarding
right-uniqueness, if there were a proper subtermd′ of f (d1, . . . ,dn)) such thatd 6= d′ and
f (d1, . . . ,dn)) 7→ d′ ∈ Ibl, then it would also holddom(d′) ∈ Ibl. By clauses (14)-(19),
however, this is impossible. Thus, also in case (ii) the definition of·I is well-defined.

To conclude the first step of the proof, for everyn-ary predicate symbolP and
domain elementsd1, . . . ,dn ∈ ∆ define

PI (d1, . . . ,dn) =

{
true if P(d1, . . . ,dn) ∈ Ibl

false otherwise

Now we turn to the second step of the proof. LetH ← B be an arbitrarily chosen
clause fromP and letv be an arbitrary valuation. It suffices to showI ,v |=? H ← B.
From now on supposeI ,v |=? B for all body atomsB of B, because otherwise the claim
holds trivially.

24

We are given thatIbl is a Herbrand model ofP bl. Therefore, in particular,Ibl |=
(H ← B ′,dom(x1), . . . ,dom(xk))γ, for all ground substitutionsγ, where thedom body
atoms result from step (1) of Definition 4 applied to the clauseH ← B, and B ′ is
obtained fromB by “pulling out function terms”, as described in step (2).

The first subgoal of the proof is to show there is some such ground substitutionγ
that satisfies the rule body. That is, we are going to show there is a ground substitution
γ such that

B′γ ∈ Ibl , for all body atomsB′ of B ′, and (20)

dom(x1)γ, . . . ,dom(xk)γ ∈ Ibl (21)

The substitutionγ is defined asγ := γB1 · · ·γBmγv, for certain substitutionsγB1, . . . ,γBm,
whereB = B1, . . . ,Bm. All these substitutions will have disjoint domains. With that dis-
jointness property, (21) follows easily by the following argumentation: recall thatIbl

is a Herbrand model ofP . Therefore∆ consists of ground (Σ-)terms, and for each do-
main elementd ∈ ∆ it holdsdom(d) ∈ Ibl. With ∆ consisting of ground terms (only),
the valuationv must map the variables to ground terms. This allows to viewv also as a
ground substitution. Formally define the substitutionγv as the substitution with domain
{x1, . . . ,xk} such thatxγv = v(x) for all variablesx1, . . . ,xk. Finally, with dom(d) ∈ Ibl

for all d ∈ ∆ it follows in particulardom(xi)γv ∈ Ibl, for all i = 1, . . . ,k. It thus remains
to prove (20).

Let P(t1, . . . , tn) be any body atom ofB. Pulling out function terms transforms it to
a body atomP(t ′1, . . . , t

′
n) in B ′, where eacht ′i is the same asti , or elset ′i is a variableyi

andB ′ includes an atomti 7→ref yi (for systematic notation we note the variable asyi but
not asx). Let J⊆ {1, . . . ,n} be those indicies corresponding to the latter case.

The substitutionγP(t1,...,tn) mentioned earlier will be defined below with the domain
{y j | j ∈ J} and in such a way that

(t j 7→ref y j)γP(t1,...,tn)γv ∈ Ibl , for all j ∈ J, and (22)

t I ,v
i = t ′i γP(t1,...,tn)γv , for all i = 1, . . . ,n. (23)

We get

I ,v |=? P(t1, . . . , tn)

iff PI (t I ,v
1 , . . . , t I ,v

n) = true (by definition of|=?)

iff PI (t ′1γP(t1,...,tn)γv, . . . , t
′
nγP(t1,...,tn)γv) = true (by (23))

iff P(t ′1γP(t1,...,tn)γv, . . . , t
′
nγP(t1,...,tn)γv) ∈ Ibl (by definition ofPI)

iff P(t ′1, . . . , t
′
n)γP(t1,...,tn)γv ∈ Ibl (trivial)

By definition of “pulling out function terms” all the variablesy j , for all j ∈ J, are pair-
wise different, different to all other variables introduced by pulling out function terms
of other body atoms ofB, and different to all the variablesx1, . . . ,xk. The substitu-
tionsγB1, . . . ,γBm thus may all be composed, e.g. in this order, and also composed with
γv, and the resulting substitutionγ = γB1 · · ·γBmγv can be used equivalently instead of
γP(t1,...,tn)γv in the chain of equivalences just derived, and also in (22) and (23).

25

Recall from above the assumptionI ,v |=? B, for all body atomsB of B. With the
just said and from the equivalences above it followsP(t ′1, . . . , t

′
n)γ ∈ Ibl, and from (22)

it follows (t j 7→ref y j)γ ∈ Ibl, for all j ∈ J. Together this entails (20).
In order to complete the proof of the first subgoal stated above, it remains only

to defineγP(t1,...,tn) in such a way that (22) and (23) hold. To this end, set inititally
γP(t1,...,tn) := ε (the empty substitution) and extend it by considering the termsti , for
i = 1, . . . ,n. We distinguish two main cases.

In the first caseti is a variable, a constant or a function term with a 0-ary func-
tion symbol. As such terms are not pulled out, it followsti = t ′i . We consider the three
subcases, and in all of them the substitutionγP(t1,...,tn) is kept unmodified:

– if ti is a variable, it is one of the variablesx1, . . . ,xk. To prove (23) observe

t I ,v
i = v(ti) (ti is a variable)

= tiγv (by definition ofγv)

= t ′i γv (ti = t ′i)

= t ′i γP(t1,...,tn)γv .

The last identity follows from the easy to check invariant in the construction of
γP(t1,...,tn), thatγP(t1,...,tn) will not move any variablex1, . . . ,xk.

– if ti is a constantc we havecI = c by definition of·I . To prove (23) observe

t I ,v
i = ti (ti = cI = c)

= t ′i (ti = t ′i)

= t ′i γP(t1,...,tn)γv .

– if ti is a 0-ary function symbola it cannot have a proper subterm. By definition of
·I it follows aI = a. The proof of (23) is the same then as in the preceeding case.

In the second caseti is a function termf (s1, . . . ,sm) for some non 0-ary function
symbol f and some terms1, . . . ,sm, wherem> 0. The termt ′i then is a variableyi and
B ′ includes an atomf (s1, . . . ,sm) 7→ref yi .

Recall thatP is given as aflat clause set. This impliessl is a constant or a variable,
for eachl = 1, . . . ,m. If sl is a constant we have

sI ,v
l = sI

l = sl (24)

Likewise, if sl is a variable it must be one ofx1, . . . ,xk and we have

sI ,v
l = v(sl) = sl γv (25)

Because by the invariant stated above, thatγP(t1,...,tn) will not move any variablex1, . . . ,xk,
we obtain easily in both cases

sI ,v
l = sl γP(t1,...,tn)γv (26)

Next we consider the termti and its value

t I ,v
i = (f (s1, . . . ,sm))I ,v = f I (sI ,v

1 , . . . ,sI ,v
m) (26)= f I (s1γP(t1,...,tn)γv, . . . ,smγP(t1,...,tn)γv) (27)

26

For slightly lighter notation definedl = sl γP(t1,...,tn)γv.
We distinguish two cases according to the definition off I .
In the first casef I (d1, . . . ,dm) = d, for some proper subtermd of f (d1, . . . ,dm).

From the definition off I it follows f (d1, . . . ,dm) 7→ d ∈ Ibl. Recall that the domain∆ is
comprised of terms. Becauseyi does not occur in any termt1, . . . , ti−1 by construction,
we may assume that the substitutionγP(t1,...,tn) constructed so far does not moveyi .
Therefore we can define

γP(t1,...,tn) := γP(t1,...,tn){yi/d}

and it followsyiγP(t1,...,tn) = d.
Becauseyi is a variable introduced by pulling out, it must be different to all terms

s1, . . . ,sm. Thereforedl = sl γP(t1,...,tn)γv still holds.
Above we defined the index setJ as comprised of those indices that are subject to

pulling out terms inP(t1, . . . , tn). It follows i ∈ J.
Recall we have to show (22) and (23). First we turn to (22):

(f (s1, . . . ,sm) 7→ yi)γP(t1,...,tn)γv

= f (s1, . . . ,sm)γP(t1,...,tn)γv 7→ yiγP(t1,...,tn)γv

= f (d1, . . . ,dm) 7→ yiγP(t1,...,tn)γv (dl = sl γP(t1,...,tn)γv)

= f (d1, . . . ,dm) 7→ dγv (yiγP(t1,...,tn) = d, as derived above)

= f (d1, . . . ,dm) 7→ d (trivial)

But then, fromf (d1, . . . ,dm) 7→ d ∈ Ibl, as concluded further above, these identities and
clause (4) it follows(f (s1, . . . ,sm) 7→ref yi)γP(t1,...,tn)γv ∈ Ibl as desired.

Finally to this case, (23) is proven as follows:

t I ,v
i = f I (s1γP(t1,...,tn)γv, . . . ,smγP(t1,...,tn)γv) (by (27))

= f I (d1, . . . ,dm) (dl = sl γP(t1,...,tn)γv)

= d (assumption of current case)

= yiγP(t1,...,tn) (see above)

= yiγP(t1,...,tn)γv (trivial)

= t ′i γP(t1,...,tn)γv (t ′i = yi , see above)

In the second casef I (d1, . . . ,dm) = f (d1, . . . ,dm). The proof is similar to the first
case.

Becauseyi does not occur in any termt1, . . . , ti−1 by construction, we may assume
that the substitutionγP(t1,...,tn) constructed so far does not moveyi . Therefore we can
define

γP(t1,...,tn) := γP(t1,...,tn){yi/ f (d1, . . . ,dm)}

and it followsyiγP(t1,...,tn) = f (d1, . . . ,dm).

27

Becauseyi is a variable introduced by pulling out, it must be different to all terms
s1, . . . ,sm. Thereforedl = sl γP(t1,...,tn)γv still holds.

Above we defined the index setJ as comprised of those indices that are subject to
pulling out terms inP(t1, . . . , tn). It follows i ∈ J.

Recall we have to show (22) and (23). First we turn to (22):

(f (s1, . . . ,sm) 7→ yi)γP(t1,...,tn)γv

= f (s1, . . . ,sm)γP(t1,...,tn)γv 7→ yiγP(t1,...,tn)γv

= f (d1, . . . ,dm) 7→ yiγP(t1,...,tn)γv (dl = sl γP(t1,...,tn)γv)

= f (d1, . . . ,dm) 7→ f (d1, . . . ,dm)γv (yiγP(t1,...,tn) = f (d1, . . . ,dm), as derived above)

= f (d1, . . . ,dm) 7→ f (d1, . . . ,dm) (trivial)

But then, from f (d1, . . . ,dm) 7→ f (d1, . . . ,dm) ∈ Ibl, as concluded further above, these
identities and clause (3) it follows(f (s1, . . . ,sm) 7→ref yi)γP(t1,...,tn)γv ∈ Ibl as desired.

Finally to this case, (23) is proven as follows:

t I ,v
i = f I (s1γP(t1,...,tn)γv, . . . ,smγP(t1,...,tn)γv) (by (27))

= f I (d1, . . . ,dm) (dl = sl γP(t1,...,tn)γv)

= f (d1, . . . ,dm) (assumption of current case)

= yiγP(t1,...,tn) (see above)

= yiγP(t1,...,tn)γv (trivial)

= t ′i γP(t1,...,tn)γv (t ′i = yi , see above)

This concludes the proof of the first subgoal.

Now that we have shown (20) and (21), withIbl |=(H ←B ′,dom(x1), . . . ,dom(xk))γ
it follows Hγ ∈ Ibl for some head atomH of H . The second subgoal of the proof now
is to showI ,v |=? H. This suffices to obtainI ,v |= H ← B and the proof will thus be
complete.

Instead ofγ we can work now withγv, as defined above, and it still holdsHγv ∈ Ibl.
This holds, because each variable ofH is among{x1, . . . ,xk}, which is the domain of
γv.

The head atomH can be written asP(t1, . . . , tn). Thus we haveP(t1, . . . , tn)γv =
P(t1γv, . . . , tnγv) ∈ Ibl. We will first show there is a (ground) atomP(d1, . . . ,dn), for
some domain elementsd1, . . . ,dn ∈ ∆ such that

P(d1, . . . ,dn) ∈ Ibl , and (28)

t I ,v
i = di , for all i = 1, . . . ,n (29)

28

This will actually suffice to proveI ,v |=? H:

P(d1, . . . ,dn) ∈ Ibl

iff PI (d1, . . . ,dn) = true (by definition ofPI)

iff PI (t I ,v
1 , . . . , t I ,v

n) = true (by (29))

iff I ,v |=? P(t1, . . . , tn)

It thus only remains to prove (28) and (29). The proof will be by proceeding along
i = 1, . . . ,n, where we show howdi can be obtained fromtiγv so that (29) holds. In each
intermediate stagei we will haveP(d1, . . . ,di−1, tiγv, . . . , tnγv) ∈ Ibl, which in the end
implies (28).

Recall thatP is given as aflat clause set. Therefore,ti is a variable (one ofx1, . . . ,xk),
a constant, or a function termf (s1, . . . ,sm) such thats1, . . . ,sm all are variables or con-
stants. We consider all these cases.

– if ti is a variable, it is one of the variablesx1, . . . ,xk. To prove (29) consider

t I ,v
i = v(ti) (ti is a variable)

= tiγv (by definition ofγv)

=: di .

Clearly, fromP(d1, . . . ,di−1, tiγv, . . . , tnγv)∈ Ibl it follows P(d1, . . . ,di−1,di , ti+1γv, . . . , tnγv)∈
Ibl.

– if ti is a constantc we havecI = c by definition of·I . To prove (29) consider

t I ,v
i = ti (ti = cI = c)

= tiγv (trivial)

=: di

As above, fromP(d1, . . . ,di−1, tiγv, . . . , tnγv)∈ Ibl it follows P(d1, . . . ,di−1,di , ti+1γv, . . . , tnγv)∈
Ibl.

– If none of the previous cases applies,ti must be a function termf (s1, . . . ,sm). As
said above,s1, . . . ,sm all are variables or constants. With the same argumentation
that led to (27) above, we have here

t I ,v
i = (f (s1, . . . ,sm))I ,v = f I (sI ,v

1 , . . . ,sI ,v
m) = f I (s1γv, . . . ,smγv) (30)

We distinguish two cases according to the definition off I .
In the first casef I (s1γv, . . . ,smγv)= d, for some proper subtermd of f (s1γv, . . . ,smγv).
From the definition off I it follows f (s1γv, . . . ,smγv) 7→ d ∈ Ibl. Recall we assume
P(d1, . . . ,di−1, tiγv, . . . , tnγv) ∈ Ibl. With tiγv = f (s1, . . . ,sm)γv = f (s1γv, . . . ,smγv)
and the clause (12) concludeP(d1, . . . ,di−1,d, ti+1γv, . . . , tnγv) ∈ Ibl. Thus we de-
finedi := d to prove the invariant.
The equation (29) is obtained as follows:

t I ,v
i = f I (s1γv, . . . ,smγv) (by (30))

= d (assumption of this case)

= di (definition ofdi)

29

If the first casef I (s1γv, . . . ,smγv) = d does not apply, then, by definition off I ,
f I (s1γv, . . . ,smγv) = f (s1γv, . . . ,smγv). We definedi := f (s1γv, . . . ,smγv).
Recall we assumeP(d1, . . . ,di−1, tiγv, . . . , tnγv) ∈ Ibl. With tiγv = f (s1, . . . ,sm)γv =
f (s1γv, . . . ,smγv) = di the invariantP(d1, . . . ,di−1,di , ti+1γv, . . . , tnγv) ∈ Ibl follows.
The equation (29) is obtained as follows:

t I ,v
i = f I (s1γv, . . . ,smγv) (by (30))

= f I (s1γv, . . . ,smγv) (assumption of this case)

= di (definition ofdi)

This completes the proof. ut

30

	Model-Generation Theorem Proving for First-Order Logic Ontologies
	Peter Baumgartner and Fabian M. Suchanek

