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Abstract. Formal ontologies play an increasingly important role in demanding
knowledge representation applications like ®emantic WebAutomated rea-
soning support for these ontologies is mandatory for tasks like debugging, clas-
sifying or querying the knowledge bases, and description logic (DL) reasoners
have been shown to be very effective for that. Yet, as language extensions beyond
(decidable) DLs are being discussed, more general first-order logic systems are
required, too. In this paper, we pursue this direction and consider automated rea-
soning on full first-order logic knowledge bases. We put forward an optimized
approach of transforming such knowledge bases to clause logic. The transforma-
tions include a Brand-like transformation to eliminate equality, and a transfor-
mation that incorporates lalockingtechnique to “checks loops” in derivations.
The latter transformation lets theorem provers terminate more often on satisfi-
able input formulas. It thus enables more robust automated reasoning support on
ontologies, where disproving is a common task. While the transformations are
applicable to any clause set, we concentrate in this paper on demonstrating their
effectiveness on a standard test suite devised by the Semantic Web community.

1 Introduction

Recent years have seen an increasing interest in formal ontologies. In particular, the
vision of theSemantic Webequires the capability of handling huge formal knowledge
bases by means of automated reasoning. To this end, the Semantic Web community
has been developing a series of formal ontology languages, with OWL being the most
recent one. OWL comes in three different versions - OWL-lite, OWL-DL and OWL-full

- with increasing expressiveness. For OWL-DL, which is designed to be equivalent to
the description logic languageH OIA D, , efficient automated reasoning support is
already availablg]

Yet it becomes clear that many applications (in the Semantic Web context or in
general) demand for extensions of DLs that go beyond decidability. For instance, one
of the currently discussed extensions is the integration of logic programmingsigde
which prove to be necessary even for basic knowledge representatiori tasks [GHVDO3].

However, even simple rule languages are expressive enough to express role-value
maps, which are known to cause undecidability in conjunction even with basic descrip-
tion logic languages. But then, if one is willing to accept undecidability, it becomes a

1 For instance FaCT [Hor99] and RACER [HMO01].



viable option to transform the knowledge base to first order logic altogether and apply
a general purpose first-order theorem prover.

Some efforts already have been been made to apply first-order theorem provers
for ontological reasoning. The web-site [OWI.04] summarizes comparative results of
various systems applied to OWL knowledge bases (see Sé¢tion 5 for more details). Of
the systems tested, the perhaps most advanced system built on top of a theorem prover
is the Hoolet system, which uses Vampire [RV01a]. It was demonstrated in [TRBHO04]
that this approach indeed can compete with dedicated DL reasoner like FaCT.

Yet, one of the conclusions from the available experimental results is that there is
still a need for improving the approach based on theorem provers. Specifically, and
not surprisingly, the provers typically fall behind for satisfiable input formulas. This is
because general first order theorem provers do not automatically éetiason proce-
duresfor common description logics (at least with the standard relational tran@tion

From atechnical viewpoint, addressing this weakness is the main topic of this paper:
to improve the termination behavior of first-order theorem provers on satisfiable input
formulas, with a focus on knowledge base applications. As our approach is based on
transformations on the given formula, no modifications of the provers are necessary.
The obvious advantage over tailoring a dedicated system then is that it enables the
application of available high-performance first-order theorem provers.

While in principle any sound and (refutational) complete first-order prover can be
applied in conjunction with our transformation, we concentrate on provers that return
modelsof satisfiable input formulas in case of termination. These provers have the ad-
vantage that, in a refutational setting, a model provides a counterexample to a con-
jectured entailment or to a conjectured concept subsumption that does not hold. We
will refer to such systems amodel generation procedureExamples include systems
basing on hyper-resolution [FLHTD1], as for instance SATCHMO [MB88], the Hy-
per Tableaux [BENS6] prover KRHyper [Wer03], or instance based methods, like the
Model Evolution [BT03] system Darwin [BET05]

Many ontologies (such as for instance large parts of SUMO/MILO_[NPO01]) are
given in first order logic. Most others, including all OWL ontologies, can be translated
to first order logic (see [BCMOZ2]). Furthermore, it is well known that most common
reasoning tasks like knowledge base satisfiability, subsumption tests between two given
concept descriptions or concept retrieval can be formulated easily as first-order logic
satisfiability or unsatisfiability problems (see again [BC82]). Thus, first order logic
seems a very general input format. Since first order logic can be transformed efficiently
to clause logic[[NRW98] and most state-of-the-art automated theorem provers accept
(only) clause logic as their input language, we assume that all reasoning problems are
given in clause logic.

This paper makes two contributions: first, we present a method that eliminates
equality from a given clause logic set. This is important because most model gener-
ation procedures do not include inference rules for equality. Our transformation is a

2 There exist advanced techniques available for translating description logics to clausal
logic [SHO3.dNHSO0D]. These methods draw their sophistication on exploiting specific proper-
ties of modal logics. It seems not obvious how to extend these methods to general first-order
logic specifications, the setting we are interested in.



simple one, but we will argue why it is actually better suited for typical ontological
reasoning problems than Brand’s transformation or the improved ohe in [BGV98].

Our second contribution is a transformation that adds a “loop check” into the clause
set. More precisely, the clause set obtained in the first step is transformed in such a
way that model generation procedures applied to it will search in preference for a finite
Herbrand-model of the transformed input clause set. Thus, it enables theorem provers
to terminate more often on satisfiable input problems.

Our main theoretical results are the soundness and the completeness of our trans-
formations. On the practical side, we show that our approach compares favorably with
others on a standard test suite of OWL description logic problems [OWLO04]. Moreover,
we show that exploitingion-monotonic negatiooan lead to additional improvements
on larger knowledge bases.

2 Preliminaries

We use standard terminology from automated reasoning. We assume as given a sig-
natureZ of constant symbols, and function symbols and predicate symbols of given
arities. As we are working with equality, we assubheontains a distinguished binary
predicate symbok:, which is written infix. As the only non-standard definition, we
distinguish between 0-ary function symbols and constants (see UNA below). But oth-
erwise the terms, atoms, literals and formulas d&vand a given (denumerable) set of
variablesV are defined as usual.

A clause is a (finite) implicitly universally quantified disjunction of literals, as usual.
We write clauses in a logic-programming style notattényv --- vV Hy, < By, ..., B,
wherem, k > 0, corresponding to the disjunctidéfy V- -- VHy,V —B1 V- -- vV =Bg. Each
H; is called ahead atomand eaclB; is called abody atomWhen writing expressions
like HV H «— B, B we mean any clause whose head literalsrand those in the
disjunction of literals*, and whose body literals aand those in the list of literals
B. A clause sets a finite set of clauses.

A (Herbrand) interpretation lis a set of ground atoms—those that are true in the
interpretation. Satisfiability/validity of ground literals, clauses, and clause sets in a Her-
brand interpretation is defined as usual. Also, as usual, a clause set stands semantically
for the set of all its ground instances. We wilite- F to denote the fact thatsatisfied,
whereF is a ground literal or a (possibly non-ground) clause (set)EAnterpretation
is an interpretation that is also a congruence relation on the ground terms and ground
atomsﬂ If | is an interpretation, we denote bY the smallest congruence relation on
the ground terms and ground atoms that includes all equatiohsvithich is an E-
interpretation. We say th&aE-satisfies Fiff |F = F. Instead ot F |= F we writel =g F.

We say thaF E-entails F, written F =g F/, iff every E-interpretation that satisfiés
also satisfie§’. We say thaF andF’ areE-equivaleniff F =g F’ andF’ =g F.

A UNA-E-interpretationis an E-interpretation that does not contain the equation

¢~ d, for any different constantsandd (we say it “satisfies the unique name assump-

3 We mean that for any E-interpretatibmnd ground atord: whenevel = Ag andl =s~t,
thenl |= Alt].



tion (UNA)").E] In other wordsg ~ d ¢ IE for any UNA-E-interpretation. We consider

the UNA because it seems useful in the context of KBs coupled with databases, where
different constants are usually meant to stand for different things. However, we allow
constants to be declared as nullary functions, so that our approach below is fully com-
patible with the standard semantics.

3 Equality Transformation — Simple is Better

First-order knowledge bases typically make use of equality. For example, equality is
used to define function results, to define that two objects are different or to state that
two objects must be equal under certain circumstances. Furthermore, the translation of
certain DL constructs to first order logic introduces equality. Equality comes in, e.g.,
for DL number restrictions, as in this formula from the Tambis Ontology [Tam]:

Cation C <4 hasCharge

becomes

X1 X VX1 ~=X3V- - VXq4 R~ Xg
Cation(x), hasCharge(X,X1),...,hasCharge(X,Xs) (%)

Numerous other DL constructs translate to equality constraints, the most prominent be-
ing concept disjunctions (“union” in OWL) or extensional concept definitions (“oneOf”
in OWL, “nominals” in DLS).

In contrast to the resolution calculus, where efficient methods for the treatment of
equality have been developéd [BG98], most model generation procedures do not include
built-in treatment of equality. One option then is to use equality axioms. However, as
it is well-known, the search space induced by the resulting clause set is prohibitively
high. Even worse, achieving termination of a model-generation system on satisfiable
clause sets is practically impossible then. The most cumbersome axioms in this regard
are the functional substitution axioms, liKéx) ~ f(y) < x = y. Another option is
to “compile away” equality. The probably most well-known method in this direction
is the STE-transformationn [Bra75], which was later improved in [MS97,BGV98].

Our approach is similar, but it is specifically tailored to ontological reasoning: First, it
supports the Unique Name Assumption (see Segfjon 2), and, second it performs much
better on typical ontological problems.

Definition 1 (Flat Term). A flat basicterm is a constant or a variable. A termfiat iff

it is a flat basic term or a function term(t, . . . ,t,), where f is a n-ary function symbol
and t,...,t, are flat basic terms. An atom(®,...,t,) is flatiff all terms &, ... ,t, are
flat. A literal isflat iff its atom is flat, and a clause f&at iff all of its literals are flat.

For instance it is a constant andis a 0-ary function symbol, the(x, c,a),
P(f(x), f(c)) and f(x) =~ g(c) are flat, while, sayP(f(a), f(c)) and f(a) = g(c) are
not.

4 Actually, this is a slight misnomer.



Any clause set can be transformed to a set of flat clauses by “pulling out” offending
subterms. This is achieved by applying the following transformation rules to a given
clause set as long as possible:

1. Replace a clause of the form

P(ty,..., f(s1,---,S,---,Sm),---,tn) VH — B
by P(t,..., f(S1,-- -, % ...,Sm),.-»tn) VH «— B X~ §

if 5 is not a flat basic term, whepeis a fresh variable.
2. Replace a clause of the form

H — B,P(ty,...,f(s1,..-,S,---,Sm),---,1n)
by H— B,P(tr,...,f(S1,--,%...,8m),---,In), X~ §
if 5 is not a flat basic term, wheses a fresh variable.

Itis obvious that for any clause set tiiigtteningterminates with a uniquely determined
set of flat clauses (up to renaming of variables and ordering of body atoms).

As an example consider the clal¥@(y),g(a),9(c)) V f(g(y),c) =~y — P(y,g(b)).
Assume that is a constant and andb are 0-ary function symbols. Flattening then
results in the clause

P(a(y),9(x),9(c)) v f(X,c) =y — P(y,g(x")),x= a,x = g(y),x" ~ b

The purpose of flattening is to achieve the effect of the function substitution axioms.
Notice that, unlike 0-ary function symbols, constants are not “pulled out”.

Definition 2 (Equality Transformation). Let P be aZ-clause set. Thequality trans-
formationof P, denoted agP®Y, is the clause set obtained by flattening®find by
adding the following clauses:

—c~d for any two differenk-constants c and d
XA X —
XRY— Yy~ X
XRZ—XRY,YxZ
P(X1,. -y Xn) — P(Xa,y - Xy %), YR X

for each n-ary predicate symbol P froadifferent froms-,
andalliwith1<i<n

When ignoring the dis-equality axioms- c =~ d, the only difference between the equal-
ity transformation and the axiomatic equality treatment lies in the function substitution
axioms, i.e. axioms of the form(xa,...,V,...,Xn) & f(X1,...,Xi,..., %) — y =X, for
eachn-ary Z-function symbol and ali = 1,...,n. Due to flattening, these axioms can
be dispensed with.

The difference might seem negligible, but it isn’t: for instance, a unit claausb «—
together with the axionf (y) ~ f(x1) « y = x; will cause non-termination of model
generation procedures. This is avoided with the equality transfornﬂtion.

5 We also have some preliminary experimental evidence for that: of the&Biableproblems
in theNLP category (“Natural Language Processing”) of the TPTP Library [SSY94], 156 are



Relation to Other Transformation®©ne difference between our transformation and the
STE-transformation [Bra75], as well as the improved one$ in [MS97,BGV98] comes
from the use of constants with their UNA semantics and the fact that our transformation
does not eliminate the predicate substitution axioms.

Forinstance, the clause- P(f(x), f(c)) is flat, and hence our transformation leaves
it unchanged. By contrast, its STE-transformation yields the claug&x,x2), f (X) =
X1, f(X3) & Xp,C~ x3ﬁ Now consider the clause in conjunction with a collection of facts
P(f(c1), f(d)),...,P(f(cn), f(d)), for some (large) value af and constantsy, ..., C,
andd. Notice that noP(f(c;), f(d)), for anyi = 1,...,n, unifies withP(f(x), f(c)).

As the clause— P(f(x), f(c)) and each fadP(f(ci), f(d)) is flat, satisfiability of this
clause set can be detected quickly, witffailed) unification attempts. In contrast, sat-
isfiability of the clause set with the STE-transformation applied may @ke) uni-
fication attempts. This is, because the first three atB(xs, x2), f(X) ~ X1, f(x3) =

X3,C =~ X3 of the body of the STE-transformed clause don’t show a constraining effect
on unification. Preliminary practical experiments we ran demonstrate that a noticeable
difference already shows up with= 10000.

A polynomial speedup might seem negligible. Yet, there are situations where this
makes a practically relevant difference. Conceivable are database-like applications with
many logically simple queries but large A-Boxes (facts).

The STE-transformation, like the others mentioned, differs from our transformation
in that it not only eliminates the need for the function substitution axioms, but also the
symmetry, transitivity and predicate substitution axioms (stated in Defifiition 2). How-
ever, dispensing with these axioms comes at the price of more equations in the trans-
formed clauses — exponentially many in the worst case: in both Brand’s transformation
and the improved ones in [MSB7,BGV98], each occurrence of a positive eqgation
in a clause gives rise to a clause with the symmetric versies instead os~ t. As a
result, a clause with equations produces'2lauses.

The effect of the different transformations on the search can be explained from
a tableaux perspective. Consider a ground clagse t; vV --- V& = t, «— with its
2" symmetric versions. Any exhaustive application of fRrule to these clauses even
under the regularity condition, which should be assuﬂmndl result in

nnl .
k(n) = Z)'T -(n—1)

branches. For instande(2) = 6, k(4) = 196,k(6) = 9786,k(8) = 767208 andk(10) =
88776910.

By contrast, with our transformation ontyfold branching will occur, and each leaf
s =~ t; will be extended with its symmetric versidrn= s without additional branching.

solvable by the Darwin prover [BET05] with an axiomatic treatment of equality, while with
the equality transformation strictly more are solvable, 167. More tests are in preparation.
6n fact, Brand’s modification would introduce further body atoms, but the transformations
[MS97/BGV98] don't.
7 The regularity condition of clausal tableaux forbids to derive a branch where two or more
nodes are labelled with the same litefal [LS01]. It is practically very effective.



For instance, the transformation of the “description-logic” problem “inconsistent022”
from the OWL test suite (see Sectgn 5) contains a clause with 10 positive equations and
becomes unsolvable due to this effect. With our transformation it takes about 20 sec-
onds, and with an axiomatic treatment of equality 44 seconds to find a refutation.

We do not claim that our transformation is always superior to the STE-transformation
or the transformation ir [BGV98]. In fact, the transformations’in [Bia75.BGV98] are
theoretically much more sophisticated. They enjoy the desirably property that deriva-
tions with the resulting clause sets, in terms of resolution, avoid paramodulation into
variables. This property cannot be guaranteed in presence of the symmetry axiom of
equality, which is included in our transformation. Yet, the advantages discussed above
typically apply for clause sets with several disjunctions of positive equations, which
is not uncommon for practical knowledge bases due to number restrictions and cer-
tain other language constructs; it is perhaps not so common in “mathematical” theorem
proving, where indeed the other mentioned transformations may well be superior.

The following theorem is the main result of this section. It expresses that the equality
transformation is complete with respect to UNA-E models.

Theorem 3 (Soundness and Completeness of the Equality Transformatiori)et P
be a clause set. TheRis UNA-E-satisfiable if and only iP®9is satisfiable.

Thus, any sound and complete theorem prover provides a method for checking UNA-
E-satisfiability. The only-if direction (soundness) is easy and nothing essentially new
compared to the results in [BGVB8,Bra75]. The if direction (completeness) would fol-
low easily from the results in [BGVY8,Bral75], were it not for the UNA. This proof can
be found in the appendix.

4 Blocking

In this section we define a transformation that lets model generation procedures termi-
nate in more cases on satisfiable input clauses than without itbldgking transfor-
mationtransforms the given clause set so that it “encodes” the search for certain finite
models.

As an example to illustrate the main idea consider the following excerpt from the
Tambis knowledge base [Tam]

AuthoredChapter C JpartOf . CollectionBook
CollectionBook C FhasPart . AuthoredChapter (%)

Additionally, hasPart is declared both as a transitiv@e and as the inverse partOf.
The standard relational transformation, which we suppose having been carried out,
yields the clauses

partOf (X, foartof (X)) < AuthoredChapter(x) (AuthoredChapter-1)
CollectionBook( fpartof (X)) < AuthoredChapter(x) (AuthoredChapter-2)
partOf (X, fhaspart (X)) < CollectionBook(X) (CollectionBook-1)



AuthoredChapter( fhaspart (X)) < CollectionBook(X) (CollectionBook-2)

partOf(y,X) « hasPart(Xx,y) (hasPart-inv-1)
hasPart(y,x) < partOf(X,y) (hasPart-inv-1)
hasPart(x, z) < hasPart(x,y), hasPart(y, 2) (hasPart-trans)

It is easy to see that adding a fact, sAythoredChapter(a) < will render the (mini-
mal) Herbrand model infinite. Indeed, model generation procedures will not terminate
then. The model will include, e.cAuthoredChapter(a), CollectionBook(fyartof(a)),
AuthoredChapter( fhaspart ( fpartof(a))) and so on. Now, the idea behind our transforma-
tion is to prefer avoiding the generation of the underlying infinite Herbrand base by
speculating mappings between new Herbrand universe candidates and already present
members of the Herbrand base. Technically, this is achieved by meandoafan
predicate, the extension of which represents the current domain of an interpretation.
The transformation of the clause set is such that, in the example, model generation
procedures will terminate with a finite domaitym(a) and the mapping$,.rcor(a) —
a and fpaspart(a) — a. Together with the additional, implicit mappirg— a a non-
Herbrandinterpretation results, the domain of which consists of those terms that are
specified by thelomain predicate, which is justin this case.
Should the speculation of a mapping likgspart(a) — a have not been success-
ful, in the sense it does not lead to a model, then extended domains are tried. Such a
domain could be, for instance, one that includes two elements denotéshiiy) and

dom(fparror(a)).

Definition 4 (Blocking Transformation). Let 2 be a flatX-clause set. Thélocking
transformatiorof 2, denoted a®””, is obtained in the following four steps applied in
this orderf]

(1) Domain restriction: Replace every rulg{ — B of P by the rule
H — B,dom(xq),...,dom(xy) 1)

where{x, ..., X} is the set of variables occurring i < B, for some k> 0.

(2) Pulling out function terms: In the resulting clause set, replace as long as possible
each clause of the for{ — B,P(ts,...,f(s1,...,%),...,tm) where f is a non-0
arity Z-function symbol with

H — B,P(tr,.... % ..., tm), F(S1,...,5) —ref X (2)

where X is a variable not occurring elsewhere in the original clause. Finally to this
step add the clauses

X=ref X <— (3)
Xi—=refy < X—=Y 4)

8 The (infix) predicate symbolss, —ef and—s,pare assumed to be different to the onesin



(3) Finite domain search: Add to the resulting clause set the following clauses, for
everyz-constant c, for every n-ary-function symbol f and all+1,...,n, and for
every m-aryx-predicate symbol P and all$ 1,...,m:

dom(c) « (5)
dom(x;) < dom(f(Xg,...,Xn)) (6)
dom(x;) < dom_candidate(f (Xq,...,Xn)) (7)
dom_candidate(f (X, ...,Xn)) < dom(xy),...,dom(Xy) (8)

f(Xl,...,Xn) —sup X1 V-V f(XL...,Xn) !—)subXn\/dOm(f(Xl,...,Xn)> —
dom_candidate(f(Xq,...,Xn))

)

X+ C+— X+—gupC (20)

X= F(X1,... %) VX—=supXa V... V X —sup Xn — (11)
X—sup F(X1,...,%n)

P(X1, s X—1, Ys Xj+1, - - -, Xm) < Xj = ¥, P(X1, ..., Xm) (12)

— X+ y,dom(X) (13)

(4) Right uniqueness of— Add to the resulting clause set the following clauses, for
every n-aryz-function symbol f and all+ 1,...,n:

XY X—ZY#£7Z (14)
XAY—yF#X (15)
c#d«— for any two differenk-constantcandd  (16)
C# f(X1,...,%n) < a7)
o(y1,...,¥k) # F(X1,..., %) — for every k-aryz-function (18)

symbol g different from f
f(le"'7Xi*17yvxi+17"'7xn) 7& f(Xla"'7Xn) Hy% Xiv (19)
dom(f(Xa,. ., Xim1, Yo X1, %)), dom(f (Xa, . ., Xn))
Let us add some explanations. In step (1), addingdthre body atoms in clauses (1)
is the key to achieve termination of model generation procedures. For illustration let
us return to the example above. Model generation procedures will d&riwéa) and
CollectionBook( fpartof(a)), but will not derivedom( farcof(a)) from the transformed
clause set. The blocking transformation will turn the claliskectionBook-2 into

AuthoredChapter( fpaspart (X)) < CollectionBook(x),dom(X)

and model generation procedures witit “apply” this clause now to derive the new
fact AuthoredChapter( fhaspart ( fpartof (a)))-

In step (2) function terms are “pulled out”. This is necessary to replace a term
f(s1,...,Sn) in a body atom by a terrain presence of a mappingyss,...,Sn) — S. In
essence, because the blocking transformation is applitat tdause sets only, “pulling



out sub-terms” need not be applied recursively. Clauses (3) and (4) specify that the
replacement can be carried out or not.

Step (3) adds clauses the purpose of which is to search for a model with a finite do-
main, as specified by thdom-predicate. More precisely, if a model of the transformed
clause set containdom(t) thent is denotes a domain element of the intended finite
domain model (and all the sub-termstafiust be domain elements, too, by clause (6)).

Now, how are new domain elements generated? For constants this is obvious (cf.
clause (5)). Notice that for 0-ary function symbols the clauses (6) and (7) are absent,
and, ifa is such a 0-ary function symbol, clause (8) and (9) take the form

dom_candidate(a) < (8)
dom(a) < dom_candidate(a) 9)

Consequentlydom(a) will be contained in any model, as is the case for constants.

For non O-ary function symbols, clause (8) assembles a “domain candidate” term
f(ty,...,tn) from available domain elemertts. ..., ty. With clause (7) its subterms must
be domain elements. This property is important, because clauses (9)-(11) realize in
a nondeterministic fashion all possible ways to nfdfa,...,t) to one of its proper
sub-terms, which must be a domain element in order to define an interpretation for
the symbolf at pointsty,...,t5. The rightmost head atom in clause (9) expresses the
alternative to such a mapping, and the tefrta, . .., t,) becomes a domain element by
it instead.

For better termination behavior it is desirable that the latter possibility, to make
f(t,...,ta) @ new domain element, is tried after the mappings to its sub-terms. The
model generation procedures we tried could be configured to achieve that.

Clause (12) expresses a substituivity property and allows to replace & ¢eaur-
ring as an argument to a predicate symbol by a domain eleth@nbvidedt is mapped
to d. Notice that no replacement the other way round is possible-{thielation is not
symmetric), and replacements only at top level term positions are possible (as above,
that this is sufficient is a consequence of the assumption that the transformation is ap-
plied to flat clause sets only).

Clause (13) states thdbmain elements cannot be mapped to other (domain) ele-
ments. Only “domain candidates” can.

Finally, in step (4) clauses are added that define the “syntactical different” relation
= on domain elements. It is applied in clause (14) to constrain+theelation to a
right-unique one. This is required in order to uniquely map a term to a domain element.

Altogether we get our main result, which is as follows (a proof is in the appendix).

Theorem 5 (Soundness and Completeness of the Blocking Transformatiorbet P
be a flat clause set. Thehis satisfiable if and only if??' is satisfiable.

If non-monotonic negation is available, as is the case in the KRHyper prover [Wer03],
the blocking transformation can be further optimized by using the following clauses in-
stead of step (4):

— XY, X—Znoty=12
X=X+«

10



These clauses spare the generation of quadratically many clauses otherwise (in terms of
the size of the input signature). Although this seems to be a negligible issue, it is not, as
our experiments demonstrate.

Related Work.Our transformation is inspired by the well-known blocking technique

as used in DL systems [BDS93,HS99,HSIIT'99,HMO00]. The most powerful DL blocking
techniques suffice to decide certain description logics that do no have the finite model
property. That is not possibly with our transformation. On the other hand, our blocking
transformation is more general as it is applicablengflat clause set, not only to clause

sets obtained from DL knowledge bases. Our strategy should be sufficient to guarantee
termination of model generation procedures for, for instance, description logics that
have the finite model propef}.

In [BEGHKO04] a blocking transformation similar to ours is described. That trans-
formation exploitsnon-monotonic negatioas a language element to conveniently “pro-
gram” the blocking technique in the transformed clause set. This entails two disadvan-
tages: First, standard model generators that do not support non-monotonic negation can-
not be applied. Second, unrestricted use of non-monotonic negation, a@s in in [BFGHK04],
prevents the effective use back-jumpingn the KRHyper prove[E] which otherwise
is one of the most effective optimization techniques in DL systems, DPLL style SAT
solvers and also in Hyper Tableaux for classical logic [BEN96].

Virtually not using back-jumping might have been irrelevant for the application in
[BEGHKO4], but with larger databases back-jumping is really needed. The alternative
transformation to step (4) suggested above makes use of nonmonotonic negation in an
inessential way only, so that back-jumping still remains in ect.

Related to our approach are general methods for finite model computation. In the
“SEM-style” approach, certain base calculi or systems are extended by techniques for
discovering satisfiability in finite domain models (e.g. SCOTT_[SLM94] and SEM
[Zha95]) In [BT98] a rather general tableaux calculus in the SATCHMO tradition is
described, however both refutationally complete and complete for finite domain satisfi-
ability. In the “MACE-style” approach to model building, the search for a finite model
is reduced to a propositional SAT problem [SIA92,Mc(C94,CS03, e.g.].

One of the details of our blocking transformation is that it does not aim to be com-
plete for minimal domain size satisfiability. The reason is, only a mapping from a term
to one of its sub-terms is attempted, but not to other terms. The rationale behind is to
have a small searcher space this way (model computation procedures like MACE or
SEM try all possibilities and thus can be complete wrt. minimal domain size models). It
would be interesting to see how all these systems perform on knowledge representation
tasks like the ones considered in this paper.

9 Should the paper be accepted for LPAR we hope to include such results in the final version.
10 This is, because non-chronological backtracking is based on an analysis of what literals along
a branch (in a tableaux) contributed to a derivation, and which don’t. With non-monotonic

negation at disposal such an analysis seems promising only in very restricted cases.

11 |n fact, we began our experiments with the transformatiori in [BEGFIK04], but with it we
did not arrive at satisfactory results. The model generation system that we tried, KRHy-
per Wer03], performs much better with the new transformation.
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In [PP98], a general theorem prover is coupled with a propositional SAT solver to
search for finite models. The results are encouraging, although somewhat outdated in
the meantime, as much improved DL systems (FACT [Hor99], RACER [HMO01]) are
available than those used for comparison in [RP98].

5 Experimental Evaluation

For our experimental evaluation, we used the KRHyper [Wer03] and Darwin [BFT05]
systems. KRHyper implements the Hyper Tableaux calculus [BFN96], and Darwin im-
plements the Model Evolution calculus [BT03]. Both systems are sound and complete
for classical first-order logic. KRHyper supports hon-monotonic negation, and the way
it is used in the blocking transformation it is obvious that soundness and completeness
are not affected. In our experiments with KRHyper we always use it.

We applied our transformation to three ontologies also used in [TRBHO04] to eval-
uate the Vampire prover on ontological reasoning. The first one is Tambis [Tam], a
knowledge bases about chemical structures, functions, processes, etc. within a cell,
which contains about 345 concepts. The second one is the Galen Common Reference
Model [Gal], a medical terminology ontology comprising 24.000 concepts and 913.000
relations (including transitive ones). The third one is the Wine Ontology![Win] from the
OWL test suite, with 346 concepts and 16 roles. The following table shows the time (in
seconds) that Darwin and KRHyper took to prove tbhasistencyf the ontology:

Ontology System  w/o blocking with blocking
Tambis w/o instances KRHyper 0.64 42
Tambis w/o instances Darwin 0.1 20
Tambis with instances KRHyper 00 66
Tambis with instances Darwin 0 22
Galen KRHyper 1.3 4
Galen Darwin 0.5 timeout
Wine KRHyper 97 timeout
Wine Darwin timeout timeout

The column labeled “w/o blocking” contains the results when only the equality
transformation is applied, whereas in the right column, both transformations are ap-
plied. Without blocking, all problems with a finite Herbrand model are solvable quite
quickly — except for the Wine ontology, where Darwin exceeded the time-limit (1h).
We presume, however, that Darwin did not fail for principal reasons.

If Tambis is populated with a suitable instance, the problem describé&)imen-
ders the Herbrand model infinite, and the provers do not terminate. The blocking tech-
nigue solves this problem as expected. On the flip-side, due to the additional search
space introduced by blocking, some problems becpraetically unsolvable. In par-
ticular, explicitly deriving the groung:-theory for a current domain in the classical
formulation (cf. step (4) in the blocking transformation) may slow down the model
computation considerable. Similarly fo [TRBHO04], we validated our transformation by
pairwise concept subsumption tests. We used KRHyper and our optimized transforma-
tion (with non-monotonic negation), although we could not use the blocking technique
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for the Wine Ontology, because this results in a timeout (s.a.). The samples that we run
took the following average times (in seconds), and the runs on all samples terminated.

Ontology System Satisfiable Unsatisfiable
Tambis  KRHyper with blocking 47 2
Galen KRHyper with blocking 3.8 3.8
Wine KRHyper w/o blocking 120 0.15

Furthermore, we applied our transformation to the OWL test cases provided by
the W3 consortium [OWLQ4]. This is a collection of OWL files on which numerous
reasoners have already been tested. We used the WonderWeb APl [Won04] to translate
the OWL test cases to first order logic. As it supports only OWL-DL and OWL-lite, we
could not run the OWL-full tests. The distribution of the problem classes is as follows:

Test class # OWL-light # OWL-DL # total
Consistency tests 25 27 52
Inconsistency tests 29 38 67
Entailment tests 23 29 52
171

As has been done with the other reasoners, we distinguish three result cases: pass
(the prover returned the correct answer), fail (the prover returned the wrong answer,
thus entailing its incorrectness) and other cases (such as memory problems, undecided
answers or timeouts). The following table contains the results of our experiments at the
top. For the other systems the results were just taken from the OWL test cases web page.
For that systems we list in parenthesis whether it is a native description logic (DL) or
OWL reasoner, or the theorem prover it is based on. The numbers denote the percentage
of problems solved of those mentioned in the previous table.

Consistency Inconsistency Entailment

System pass fail pass fail pass fail

KRHyper with blocking 89% 4% 90% 4% 86% 7%

KRHyper w/o blocking  75% 4% 93% 4% 86% 5%

Darwin with blocking  89% 4% 92% 4% 84% 5%
Darwin w/o blocking 7% 4% 94% 4% 86% 5%
Darwin U KRHyper 93% 4% 94% 4% 88% 5%
Fact (DL) 42% 0% 85% 0% 7% 0%
Hoolet (Vampire) 78% 0% 94% 0% 2% 0%
FOWL (OWL) 53% 0% 4% 0% 32% 0%
Pellet (DL) 96% 0% 98% 0% 86% 0%
Euler (“Prover”) 0% 2% 98% 0% 100% 0%
OWLP (DL) 50% 10% 26% 12% 53% 4%
Cerebra (DL) 90% 0% 59% 0% 61% 0%
Surnia (Otter) - - 0% 0% 13% 0%

ConsVISor (OWL-full)  77% 6% 65% 1% - -

KRHyper and Darwin perform quite well compared to the other systems. All of the
fail cases can be traced back to conversion failures of the OWL-to-TPTP converter or
the TPTP-to-KIF converter. These failures lie outside the scope of our implementation.

Still, our systems do not return an answer for all of the test cases. In the majority
of these cases, a timeout limitation (200 seconds) caused the prover to stop, but it is
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unlikely that extending the time limit would help a lot. Memory problems were not an
issue at all (both provers realize a memory-efficient one-branch-at-a-time approach).

For the consistent (satisfiable) problems both Darwin and KRHyper gained from the
blocking transformation. There are clearly identifiable problems in the test suite where
the provers will not terminate without blocking, for any timeout. Notice that the “union”
of Darwin and KRHyper solves more problems than Darwin or KRHyper individually.
This is because they don't solve exactly the same problems.

For the inconsistent (unsatisfiable) problems both Darwin’s and KRHyper's perfor-
mance degraded with the blocking transformation. This is clear, as both systems are
refutationally complete, and the blocking transformation introdwaigitional model
candidates to be inspected for model-ship (without success, of course).

6 Conclusion

We presented improvements for first-order model-generation style reasoning in the con-
text of ontological knowledge bases. We proposed a transformation for equality reason-
ing and a “blocking” transformation that enables provers to terminate more often on
satisfiable input, a useful feature e.g. when debugging knowledge bases or when com-
puting subsumption hierarchies. The approach is motivated by the possibility to easily
accommodate powerful extensions to the input language, like rule languages.

Under what conditions our transformation provides a decision procedure in conjunc-
tion with model-generation style provers is a question we are currently investigating (we
expect a positive result for all description logics with a finite model property).

In this paper we evaluated our technique on description logics knowledge bases. We
did this in order to compare our approach to others. It will be interesting to apply our
technique to problems outside this domain, e.g. on problems stemming from natural
language representatidn [Bo$03, e.g.].
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A Proofs

A.1 Proof of Theorem[3

The formal tool to prove the completeness direction of Thedrem 3 is the model con-
struction technique introduced for the superposition calculus [BG98,NRO01, e.g.].

We will need some terminology regarding term orderings and rewrite systems. A
(rewrite) ruleis an expression of the forin— r wherel andr are>-terms. Arewrite
systenis a set of rewrite rules.

We suppose as given a reduction orderinthat is total on ground—termsE] Fix
any such reduction ordering that additionally satisfies the following two conditions:

1. For any constart and termt, if ¢ > t thent is a constant, too. That is, no non-
constant term can be smaller that a non-constant term.

2. There is a designated constamie, not occuring in the given clause set and that is
minimal in . That is, there is no termwith true > t.

The purpose of the constattie is to enable uniform notation in the proof. More pre-
cisely, an atomA that is not an equation is read as the equation true. This way
non-equational atoms become terms. Also, a flat adagpossibly no longer flat when
written asA = true. This all causes no problems, though, as the changes are made only
conceptually, for the sake of leaner notation in the proof.

Equations are compared reading an equadiert as a multise{s,t} and using the
extension of- to multisets, which is also denoted by To compare ground clauses,
program rules, it is sufficient to defifgf « B) = (H' «— B) iff (HUB) - (H'UB'),
where> again denotes its own extension to multisets.

A ground rewrite systenR is ordered bys iff | > r, for every rulel - r € R In
the sequel, the lettd® will always denote a ground rewrite system ordered by the given
reduction ordering-. By the symbol—gr we denote the one-step rewrite relation on
groundZ-terms, and by—g we denote its transitive-reflexive closure.

As a non-standard notion, we definereawrite system without overlap® be a
ground rewrite systerR that is ordered by-, and whenevel — r € R then there is
no other rule irR of the forms[l] — t ors— t]l]. In other words, no rule can be reduced
by another rule, neither the left hand sinler the right hand side

Any rewrite system without overlaps is a convergent ground rewrite system. It is
well known that for any convergent ground rewrite sys@pand any two terms and
t,R=g s~ ﬁ if and only if there is a ternu such thas —x u andt —g u. This result
thus applies in particular to ground rewrite systems without overlaps.

When talking about a ground substitutigiior a clause# < B below we always
mean a substitution that moves (only) the variablegfof- B to groundz-terms. We
say thaty is reducibleby a rewrite systenR if there is a variablex such thatxy —r .
That is, some term in the range yptan be rewritten by some rule Rto the smaller
termt. Otherwisey is irreducible by R

12 A reduction orderings a strict partial ordering that is well-founded and is closed unter context
i.e.,s> s impliest[s] > t[s] for all termst, and liftable, i.e.s - t impliessd > t3 for every
terms andt and substitutiod.

13 HereRis read as a set of equations.
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Finally, for aZ-clause set? let P9 denote the set of all grourd-instances of all
clauses inP.

Theorem[3 (Soundness and Completeness of the Equality Transformatior)et ©
be a clause set. Thehis UNA-E-satisfiable if and only iP®%is satisfiable.

Proof. The proof of the only-if direction is not difficult and is omitted. The main obser-
vation needed is that “pulling out” subterms preserves E-satisfiability.

For the if direction (completeness) suppose thiata Herbrand model aP®9. We
will show that a certain subs&; C | is a UNA-E-model of? (to make the statement
R C | meaningful, every equatiosi: t in | is taken as the two rules— t andt — ).
More preciselyR, will be a terminating rewrite system without overlaps.

The proof thatR, is a UNA-E-model of? has three parts. In the first part we will
defineR and showR, =g P°% The subsequent (easy) step is to conclBde=g 7. In
the final step we will show tha satisfies the UNA, which will complete the proof.

R/ e P®9. At the beginning we assumed tHais a Herbrand model aP®9. That is,
| = (PE9)9". We first construcR, and then showR, =g (P€9)Y".

For every equatios~t € IE] we define by induction on the term orderirgsets
of rewrite rulessst andRsyt as follows. Assume that.; has already been defined for
alls ~t' el withs~t = § ~t'. LetRet = Usutygar E¢~v and defing?

s>,
€t = {s— t}if < sisirreducible byRst, and
t is irreducible byRgt.

Otherwiseesy = 0. Finally letRy = gt Esat-

By constructionR, is a rewrite system without overlaps. Becausds a well-
founded orderindr thus is a convergent rewrite system.

Now we show by well-founded induction thBt is an E-model of of PN, or,
equivalentlyR =g (P*9)9". It suffices to chose a clause frar#€%)9" arbitrary. It is of
the form (H®49 — B9y, for some claus€®d = (H*®4— B°9) ¢ P*4and some ground
substitutiony, the domain of which are the variables@f

We distinguish two complementary cases.

(1) yis reducible by R
That is, there is a variabbein the domain ofy such thatxy —g, t for some (ground)
termt. Lety be the substitution such that

W—{t if y=x

yy otherwise

Becausex occurs inC®4 it follows C®% - C®% . By the induction hypothesi® =g
C®%/, and by congruencl =g C®%.

14 Recall that an atom is written as an equatiof ~ true for the purpose of uniform notation.
15 The third condition is absent in the standard model construdtion [BG98].
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(2) yis irreducible by R.
If R e B%% thenR, =g C®% follows trivially. Hence supposB, =g B%% from now
on.

Becausey is irreducible byR;, with Lemmag |7 anfl]8 it follows = B°%. Recall
thatl is given as a Herbrand model @¢%9'. Froml| |= B%% it thus followsl| = #H*®%.
Again by Lemma§[7 ar{d 8, this time in the other direction, it foll®y$=g #°%. This
result implies triviallyR, =g (H®9— B%%)y.

This concludes the case analysis. Notice that in both cases we have Bhewn
C®%, which remained to be shown.

R| e P. LetC = (H « B) € P andy a ground substitution fdE. It suffices to show

R e Cy.
LetC®9= (H*49— B®9) c P*9be the rule obtained froi@ by the equality transfor-
mation. The rule€ andC®9 can be written as

C— #H[g — B
C®= #[x% «— B[x'],flatten(s =~ x°), flatten(t ~ x') ,

wheres (t) are the terms occuring it/ (in B) that prevent the literals itH (in B)
from being flat. The variables’ are those that replace the teraia the head literals by
flattening. By flattefs~ x®) the list of equations is ment that results from flattening the
equationss; ~ x3,..., %) = X3, wheres=sq,...,5, andx®> = x3,..., X3, for somen > 0.
The expression flattéh~ x!) is defined in the same way, as expected.

The equations flattés ~ x®), flattent ~ x') can be written ag; ~ Xy, ..., Un ~ Xm,
for somem > 0, whereuy, ..., uy are (flat) terms angy, ..., Xy are variables (pairwise
different and fresh wrt. the variables@). These equations can be seen as a unification
problem in solved form. Now consider the substitution

Y ={X1—Ug,....% — Un} .

By inspection of the flattening process one convinces onesel thaty andt = xt\/F_G]
Thus we obtain

CY = H[xSY] — BX'Y],uy ~x1Y,...,UnY = Xmy
:_‘7—[[5] — 3[t],U1V%X1V,...,Umy’%me’

Now apply the given substitutionto C®%/ and obtain
CoWy = (H|[s| «— B[t],ury =x1yY,...,UnY ~XnY)y
= HY — BY, Uty Y= X1YY, - ., Umy Y = XmY'Y

With the result of the preceeding part concliRle=., C®%y. Becausasy = XY,
foralli=1,...,m, it follows trivially uyy=xyyandR E~ UYy= XYYy. But then
R E~ Hy« Byfollows, which was to show.

16 The somewhat tedious formal proof would not provide any additional insights.
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R satisfies UNASuppose, to the contrary, tHatloes not satisfy UNA, i.&R =g c~d
for some different constantsandd. The equatiorc ~ d is flat. By Lemmg [} then
c~d e |. With (P99 containing the rule— c ~ d this is impossible, though. O

Lemma 7. Let s~ t be a flat equation ang a ground substitution irreducible by R
Then, Rl=e sy~ tyiffsy=tyel.

Proof. For the if-direction supposg/~ty € l.

If sy=tythenR, =g sy= tyfollows trivially.

If both sy andty are irreducible byR, thenegy = {sy — ty} and sosy — tye R,.
Fromsy — ty € R the resuliRy =g sy ~ ty follows easily.

Hence suppose, without loss of generality thais reducible. Recall first thdtis
a model of a program that was obtained by the equality transformation. Any such pro-
gram contains, by construction, the program rutgés: < c,d for any pair of different
constantg andd. Hence| cannot contain any equatiaer~ d. Nor can it contaird ~ ¢
because the equality transformation adds a program rule for symmetry. Notice that con-
sequentlyR, does not contais — d ord — c either (because d C I). Together with
the restriction (1) on orderings defined above it follows tRatloes not contain any
rule of the formc — t, wherec is a constant antis any term. In other words, constants
are irreducible byr,.

By this consideratiorsy cannot be a constant. The tesgthus is of the formf (v)y
where f is some (possibly 0-ary) function symbol aads some list of terms. More
specifically, because~t is given as a flat equation, each teviim v must be a constant
or a variable. Now, ifv is a constant them = vy is irreducible, as just concluded. And
if vis a variable themy is irreducible, too, becausds given as irreducible big,.

Recall we are considering the case that f(v)yis reducible. Becausey is irre-
ducible, for eachv in v, f(v)y must be reducible at the top position. ThatRs,must
contain a rule of the forrsy — u, for some termu.

Fromsy — u € R it follows &g~y = {Sy — u}. By definition of g, Rgxy cannot
contain a rule that rewrites. Further, the ordering- on equations is defined in such
a way that any rule that could rewritemust precede the rukyy — u. Together, thus,
u is irreducible. In other words, deriving the normal formggftakes exactly one step.
Notice this fact is independent from whetlsgr=ty € | or not. It holds for any flat term
sand irreducible substitutiop This result will be used also in the proof of the only-if
direction below.

Next considety. If ty is reducible then by the same arguments assfdt must
be of the formg(w)y whereg is some function symbol and is a list of constants or
variables. Further, there is a rufe— U € R, for some irreducible term'.

Recall any program obtained from the equality transformation contains the axioms
of reflexivity, symmetry and transitivity. Further recall tHais a model of some such
program.

Because oRR C I, fromsy — ue€ R andty — U € R, it follows sy~ u e | and
ty~ U € |. The symmetric versions are also containetllry the symmetry axioms.

Becaussy~tyec |, sy~ uel andty~ U €| and the fact that must be a model
in particular for the symmetry and transitivity axioms it follows: U’ € I.
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Next we will show thaiu = u'. Suppose, to the contrary thaandu’ are different
terms. But then, eithar- U’ or U’ > u holds. Without loss of generality suppase- U'.
Recall that botlu andu’ are irreducible. But theg,.y = {u— U} and sau — U € R,
contradicting irreducibility ofu. Hence it followsu = u'. Consequently we hawg —

u € R. Together withsy — u € R, it follows trivially sy —g, u andty —g, u. Because
R/ is convergent it followsR, =g sy~ ty as desired.

The last open case, thigtis irreducible, is treated similarly: fromy~ty € | and
sy~ u € | it follows by the symmetry and transitivity axioms thgt~ u € |. By the
same arguments as above it must hgle u (because both terms are irreducible, and if
they were different, a ruley — u or u — ty would have been added R, contradicting
irreducibility ofty and ofu). Thus, withsy — u € R, andty=uit follows R, =g sy~ ty.

This completes the proof for the if-direction.

For the only-if direction suppod® =g sy~ ty. Becauser, is a convergent rewrite
system there is a term such thasy —g wandty —g w.

If both sy andty are irreducible thesy =ty, sy ~ tyis an instance of the reflexivity
axiom, and s@y ~ ty € | follows.

Hence suppose thay or ty is reducible. Without loss of generality suppases
reducible. By exactly the same arguments as made in the proof of the if-direstion,
can only be rewritable at the top position. Thus, there is a rule of the$prmu € R,.
In the if-part of the proof we concluded that deriving the normal forrsyaékes exactly
one step. This implies = w.

If ty is reducible, by the same arguments assfpthere is a rule of the forray —
U € R with U =w. Becausdr, C | we getsy~w € | andty~ w € |. By the symmetry
and transitivity axioms, must also satisfgy ~ ty andty ~ sy. Equivalently sy~ ty € |

andty~syel.
If tyis irreducible, we havey=w. Fromsy — w € R, R C | andty = w it follows
(with the symmetry axiom$y ~tyc | andty~ sy e I. ad

Lemma 8. Let P(ty,...,t,) be a flat non-equational atom anyh ground substitution
irreducible by R. Then, Rl=g P(ty, ..., tn)iff P(ty, ..., ta) €1

Proof. The proof is similar to the proof of Lemmi& 7 and is omitted. An important detail
is thatl is a model of the predicate substitution axioms, which are part of the equality
transformation (cf. Definitiop]2, the last clause scheme stated there). ad

A.2 Proof of Theorem(3

Lemma 9. Let ® be a flat clause set. P is unsatisfiable thef® is unsatisfiable.

Proof. SupposeP?! is unsatisfiable. We directly show thatis unsatisfiable.
Consider the clause sgp?'); which is obtained fron®® by replacing every clause
of the form (9) by its subclause

dom(f(Xs,..., X)) < dom_candidate(f(X,...,X)) 9)
atoms are represented as rewrite ruleRjin
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With PP being unsatisfiablé '), is unsatisfiable, too. We consider a hyper-resolution
refutation of(?')1, which exists by the completeness of hyper-resolution. We take this
refutation as a starting point to argue that certain clauses can be deIete(jflbem
without affecting unsatisfiability.

Observe that with the move from (9) to (9) the only occurences-gfi;literals are
those in clauses (10) and (11). It is easy to see that no hyper-resolution inferences from
these clauses exist. Consequently, they can be removed(fP8 without affecting
unsatisfiability. Let "), be the resulting clause set. With the removal of clauses (10)
and (11), the clause s({Pb')z contains no positive occurencetef-literals any mor
In the clauses (4), (12), (13) and (14), all the occurences-diterals are negative.
Therefore these clauses can be removed ff@h), without affecting unsatisfiability.

Let ()3 be the resulting clause set. The only positive occurence gf-literals in
(P"")3is in clause (3), and the only negative occurences-gf-literals is in clause (2).

It is clear that all hyper-resolution inferences from these clauses can be done exhaus-
tively and clauses (2) can be removed afterwards, thus undoing the transformation that
led to clauses (2). Clearly, the resulting clause(##t), is unsatisfiable, too.

Next we consider the clauses (15)-(19), which axiomatize a theory of syntactic
equality on thedlomain elements. It is easy to see that these clauses are consistent with
any set ofdom-atoms. Further, as no clause from the other claus¢#%, contains
a negative occurence of a#-literal. It follows that with ('), being unsatisfiable,
removal of the clauses (15)-(19) preserves unsatisfiability(#8&%)s be the resulting
clause set.

Now, ()5 is the same clause set as the clause set obtained®rosmapplying
only step (1) of Defintio }4 and augment the resulting clause set with the following
clauses, for everg-constantc, and for everyn-ary Z-function symbolf and alli =
1,....n

dom(c) — (5)
dom(x;) < dom(f(xq,...,X)) (6)
dom(X;) < dom_candidate(f(X1,...,Xn)) (7)
dom_candidate(f(X1,...,Xn)) < dom(X1),...,dom(Xn) (8)
dom(f(X1,...,%X)) < dom_candidate(f(X1,...,X)) 9)

As thedom _candidate-predicate does not appear outside these clauses, it is not difficult
to see that these clauses can be replaced in an unsatisfiability preserving way by the
following clauses, for everf-constant, and for everyn-ary Z-function symbolf:

dom(c) «—
dom(f(X1,...,%Xn)) < dom(X1),...,dom(Xn)

Let (?"))g be the resulting clause set. Of course, these clauses just enumerate the Her-
brand universe of.
Recall that for every claus® < B in P there is a clause

I — B, dom(xy),...,dom(xc) )

18| e., no clause contains a head atom with the predicate symbol
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in ()4, which is also in(?")s. By definition of Herbrand-satisfiability, unsatisfiabil-
ity of (¢ entails that each clause (2’) can be replaced by all its ground instances,
i.e., by

Hy — By,dom(Xp)Y,...,dom(xx)y

for all ground substitutiong. The resulting clause sé&P'); is unsatisfiable, too. Be-
cause of the presence of the clauses above that enumerate the Herbrand universe, each
clause

HY — By,dom(xp)y, ..., dom(x)y
in ()7 can be replaced by
Hy— By

and the axioms above enumerating the Herbrand universe can be deletee?')gebe
the resulting clause set, which is unsatisfiable, too. Notice(thdl)g can be obtained
also from? by replacing every claus# < B in 2 by all its ground instances. Hence,
with (?°)g being unsatisfiable? is unsatisfiable, too. 0

Non-Herbrand Interpretations. In most parts of this paper we are working with Her-
brand interpretations. An exception is below, in the completeness proof of the blocking
transformation. Let us therefore introduce our notation regarding (not necessarily Her-
brand) interpretations; everything is complete standard.

A (Z-)interpretation I consists of a domaif, which is a non-empty set, and map-
pings for eaclz-constant to a domain element, for eaehry 2-function symbol to a
function fromA" to A, and for each-ary Z-predicate symbol to a function fro&® to
{true, false}. We denote these mappings tly f' andP', respectively.

A valuationis a mapping from the set of variablgsto A. We writev(x) to denote
the value ofk underv.

Given an interpretatioh, a valuatiorv and aZ—termt we writet' to denote the
result of evaluating under the usual homomorphic extension'aindv to terms. For a
s-atomP(ty, ..., t) we define, completely standar@®(ty, ..., tn))'¥ = P (t;",... . tn").

We write |, v I=* A iff |,v satisfies the atorAB The only quantified formulas we are
concerned with are clauses. We therefore defined thatisfiesa clause — B, written
asl =* #H « B, iff for all valuationsv it holds|,v =* # <« B. The latter is defined as
I,vE* H «— Biff wheneverl,v |= B for all body atomsB of B thenl,v = H for some
head atonH of #(. Finally, | is amodelof clause sef iff | satisfies all clauses i#.

Theorem[8 (Completeness)Let ? be a flat clause set. Thef is satisfiable if and
only if P% is satisfiable.

19 We always use the symbegt* for satisfaction by (not necessarily Herbrand) interpretations,
whereas the symbgt is reserved for satisfaction by Herbrand interpretations.
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Proof. The only-if direction follows immediately from Lemnfia 9.

Regarding the if-direction, suppos® is satisfiable. We have to show thatis
satisfiable.

Let I?' be a Herbrand-model of PP We show that? determines a (possibly
non-Herbrandk-modell of . The proof proceeds in two steps. In the first step we
construct the domain dfand the interpretation of the constants, function symbols and
predicate symbols. In the second step we then show tkat model ofP.

The domain of is defined as the sét= {d | dom(d) € I”'}. Regarding the inter-
pretation function', definec' = c for every constant; for everyn-ary function symbol
f and all domain elementy, ..., d, € A define

d if £(du,...,dn) —d €1 and
fl(dy,...,dn) = d is a proper subterm df(ds, ..., d,)
f(di,...,dn) otherwise

We have to make sure that this definition is well-defined. This is immediate for con-
stants, as with clause (5) it folloves= A. Regarding function symbols, léi, ... ,d, € A
arbitrary. By definition ofA it follows dom(dy),...,dom(d,) € I?'. By clause (8) we
havedom_candidate(f(dy,...,dn)) € 1P With clauses (9), (10) and (11) this implies

(i) dom(f(dy,...,dn)) € 1P (cf. the rightmost head atom in (9)), or
(i) f(dy,...,dn)) — d e 1” for some proper subterghof f(dy,...,dy)).

In case (i) we first showi (dy, .. .,dn)) — d ¢ 1!, for any termd. This however follows
easily fromdom(f(dy,...,dn)) € I°" and clause (13). Thus, in the definition bfthe
second case applies. Witom(f(dy,...,dn)) € 1°" and the definition of it follows
f(dy,...,dn) € A. Thusf'(dy,...,dn) € A, which means that is well-defined in case
@i).

In case (ii) we have to show two things: the first is right-uniqueness, i.e. there is no
proper subternd’ of f(dy,...,d,)) such thad # d’ and f(dy,...,dn)) — d’ € 1?', and
the second id € A. The second follows easily frof(dy,...,dn)) —d e 19! the clauses
(6) and (7), which implydom(d) € I®!, and the definition of\. In fact, no assumption
aboutd was made except that it is a proper subternf @, ...,dn)). Thus, regarding
right-uniqueness, if there were a proper subtdfiof f(dj,...,d,)) such thad # d’ and
f(dy,...,dn)) — d’ € 1!, then it would also holdiom(d’) € I”!. By clauses (14)-(19),
however, this is impossible. Thus, also in case (i) the definitioh isfwell-defined.

To conclude the first step of the proof, for evanary predicate symbdP and
domain elementd, ..., d, € A define

| true if P(d,...,dy) 1®
P (dy,.., Gn) = {false otherwise

Now we turn to the second step of the proof. [Zét— B be an arbitrarily chosen
clause from? and letv be an arbitrary valuation. It suffices to shoyw =* # «— 3.
From now on supposev =* B for all body atomsB of B, because otherwise the claim
holds trivially.
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We are given that® is a Herbrand model of®'. Therefore, in particulad,? =
(H «— B',dom(xq),...,dom(x))y, for all ground substitutiong, where thedom body
atoms result from step (1) of Definitidﬂ 4 applied to the clagite— B, and B’ is
obtained fromB by “pulling out function terms”, as described in step (2).

The first subgoal of the proof is to show there is some such ground substijution
that satisfies the rule body. That is, we are going to show there is a ground substitution
y such that

1®' | for all body atoms’ of B, and (20)
dom(xy)y,...,dom(x()y e I” (21)

Byc

The substitutiotyis defined ag:=vg, - - - Y, v, for certain substitutiong, , ..., Ve,
whereB = By, ..., Bny. All these substitutions will have disjoint domains. With that dis-
jointness property[ (21) follows easily by the following argumentation: recall lfhat
is a Herbrand model aP. ThereforeA consists of ground-)terms, and for each do-
main element € A it holdsdom(d) € IP!. With A consisting of ground terms (only),
the valuatiorv must map the variables to ground terms. This allows to wi@lso as a
ground substitution. Formally define the substitutjprs the substitution with domain
{X1,...,%} such thatxy, = v(x) for all variablesxy, ..., xc. Finally, with dom(d) € I°
for all d € A it follows in particulardom(x;)y, € 1P foralli =1,....k. It thus remains
to prove [(2D).

LetP(ty,...,tn) be any body atom oB. Pulling out function terms transforms it to
a body atonP(t7,....t}) in B, where eacly is the same a5, or elset/ is a variabley;
and®’ includes an atory — et Y; (for systematic notation we note the variableyasut
not asx). LetJ C {1,...,n} be those indicies corresponding to the latter case.

The substitutioryp, ... t,) mentioned earlier will be defined below with the domain
{yj | j € 3} and in such a way that

(tj —ref Yi)Ve@,. tyW € 1%, forall j € J, and (22)

Y = tVpgy, W . foralli=1,....n. (23)
We get

| ,V |:* F)(tl7 PN ,tn)

it P'(tyY,....th") =true (by definition of=*)

iff P (t1YP(ty,... ) Wo - - > EnYP(ty .. t) W) = TrUE (by (23))

iff PtV )W - thYP(ty, )W) € 1 (by definition ofP')

iff - P(t, .. th)Veqy,. g W € 1 (trivial)

By definition of “pulling out function terms” all the variablgs, for all j € J, are pair-

wise different, different to all other variables introduced by pulling out function terms
of other body atoms of8, and different to all the variables,...,x. The substitu-
tionsys,, ..., Ys, thus may all be composed, e.g. in this order, and also composed with
Vv, and the resulting substitution= yg, - - - ys,,\v can be used equivalently instead of
Yp(,...t) W IN the chain of equivalences just derived, and alsg ih (22)[and (23).
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Recall from above the assumptibyv =* B, for all body atomsB of B. With the
just said and from the equivalences above it folld¥s, ..., t,)y € I1°, and from [22)
it follows (tj —ref yj)y € IP', for all j € J. Together this entail§ (20).

In order to complete the proof of the first subgoal stated above, it remains only
Yoty tn) = € (the empty substitution) and extend it by considering the ternfsr
i =1,...,n. We distinguish two main cases.

In the first case; is a variable, a constant or a function term with a 0-ary func-
tion symbol. As such terms are not pulled out, it folloys- t/. We consider the three
subcases, and in all of them the substitutfpp, ;) is kept unmodified:

— if tj is a variable, it is one of the variablgs, . .., . To prove [2B) observe

th = v(t) (ti is a variable)
=tiw (by definition ofy,)
=tiw G =t)

:ti/yP(tl ..... W -

The last identity follows from the easy to check invariant in the construction of

yeestn)? HTEETE(L .

— if tj is a constant we havec' = ¢ by definition of-'. To prove [2B) observe
Y =t (t=c =0
=t (ti =t
=tYp(y,..t)W -

— if tj is a O-ary function symbad it cannot have a proper subterm. By definition of
it follows @ = a. The proof of [2B) is the same then as in the preceeding case.

In the second casgis a function termf(sy,...,sn) for some non O-ary function
symbol f and some ternsy, ..., sm, wherem> 0. The ternt/ then is a variablg; and
B’ includes an atonf(sy,...,Sn) —ref i-

Recall that? is given as dlat clause set. This implies is a constant or a variable,
foreachl =1,....,m. If § is a constant we have

§'=s=5 (24)
Likewise, ifg is a variable it must be one af, ..., xx and we have
gV =v(s)=sw (25)

we obtain easily in both cases

gV = AYP(ty....tm) W (26)

Next we consider the tertnand its value

Y = (f(st o sm) ™Y = PSS B (1t oo - STV, W) (27)



For slightly lighter notation defing| = syp(, . t,) W-

We distinguish two cases according to the definitiori'of

In the first casef'(dy,...,dm) = d, for some proper subterm of f(dy,...,dm).
From the definition off' it follows f(dy,...,dm) — d € IP!. Recall that the domaif is
comprised of terms. Becaugedoes not occur in any terky,...,t_; by construction,
we may assume that the substitutigsy, ., constructed so far does not moye
Therefore we can define

Above we defined the index sétas comprised of those indices that are subject to
pulling out terms irP(ty, ..., tn). It follows i € J.
Recall we have to shoy (2) ar{d {23). First we turrj td (22):

(f(s1,--+,Sm) = Yi)Ye(ty....tn) W
= f(St,- s S)YP(ty,...t) W — YiYP(ty....tn) W
= f(d1,....dm) = ¥iVe(ty,..t W (di = sYpqy,...tn) W)
= f(dy,...,dm) — dy iYe(,....tn) = d, as derived above)
= f(dy,...,dm) —d (trivial)

But then, fromf (dy,...,dm) — d € IP!, as concluded further above, these identities and
clause (4) it follows( f (s, ..., Sm) —ref ¥i)Yp(y,...t) W € 1P as desired.

Finally to this case[(23) is proven as follows:

til V=t (S1Yey... ) Wos - -+ SmYP(ty ... ) W) (by (27))

= fl(dy,...,dm) (d =S Ypety,...t) W)

=d (assumption of current case)
=YiYP(ty, ... tn) (see above)

=VYiYe(ty,...tn) W (trivial)

=tYp(t, ..t W (t/ =i, see above)

In the second cas# (dy,...,dm) = f(dy,...,dn). The proof is similar to the first
case.

Becausey; does not occur in any tert, ... ,ti_; by construction, we may assume
that the substitutionyp, . +,) constructed so far does not moye Therefore we can
define

and it followsyiypy, .. t,) = f(d, ..., dm).
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Becausey; is a variable introduced by pulling out, it must be different to all terms
St,...,Sm. Therefored, = §yp(, ..., W Still holds.

Above we defined the index sétas comprised of those indices that are subject to
pulling out terms irP(ty, ...,tn). It follows i € J.

Recall we have to shoy (P2) ar]d {23). First we turf i (22):

(f(s1,.--,5m) — Yi)VP(tl ..... tn) W
= f(S1,- -, Sm)YP(ty,...t) W = YiYP(ty, o tn) W
= f(d1,....,dm) = YiYe(ey,...tn) W (d =S Ypuy,..1)W)
= f(dy,...,dm) — f(di,...,dm)W iYey....tn) = f(d1,...,dm), as derived above)
= f(dy,...,dm) — f(dy,...,0m) (trivial)

But then, fromf(dy,...,dm) — f(dy,...,dm) € IP!, as concluded further above, these
identities and clause (3) it followd (st ..., Sm) —ref Yi)Vp(,...t) W € 1P as desired.

Finally to this case[(23) is proven as follows:

tiI V=t (S1Ypy,... ) Wos - - - SmYP(ty ... ) W) (by (27))

= fl(dy,...,dm) (d =S Ypety,...tn) W)

= f(dy,...,dm) (assumption of current case)
=VYiYP(ty,...tn) (see above)

=VYiYe(ty,...tn) W (trivial)

=t Yy, tn) W (t/ =i, see above)

This concludes the proof of the first subgoal.

Now that we have showf (R0) afid [21), with|= (# «— B’,dom(x1),...,dom(x))y
it follows Hy e 1 for some head atoH of #. The second subgoal of the proof now
is to showl,v =* H. This suffices to obtaih,v = # < B and the proof will thus be
complete.

Instead ofy we can work now withy, as defined above, and it still holdsy, < 1?'.
This holds, because each variablerbfs among{xy, ..., X}, which is the domain of
Yo-

The head atonH can be written a®(ts,...,t,). Thus we haveP(ty, ... th)Ww =
P(t1yv,- ... taw) € 1P, We will first show there is a (ground) atoR(ds,...,dy), for
some domain elements, . ..,d, € A such that

P(dy,...,dn) €1® ,and (28)
t=d ,foralli=1,...,n (29)
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This will actually suffice to prové, v =* H:
P(dy,...,dn) € I®
iff  P'(dy,...,dn) =true (by definition ofP')
iff PV, th)=true  (by (29))
iff 1,vE*P(t,...,t)
It thus only remains to prové (28) and [29). The proof will be by proceeding along

i=1,...,n, where we show howl; can be obtained frory, so that[(2P) holds. In each
intermediate stagewe will have P(dy,...,di_1,t,...,taw) € 1P, which in the end

implies [28).

Recall that? is given as dlat clause set. Thereforgjs a variable (one ofy, . . ., Xy),
a constant, or a function terif(sy, . .., Sy) such thas, ..., sy all are variables or con-
stants. We consider all these cases.

— if tj is a variable, it is one of the variablgs, . .., . To prove [29) consider
t=v({t)  (tisavariable)
=tw (by definition ofyy)

= di .
Clearly, fromP(dy, ..., di_1,tiy,. .., taw) € 1P itfollows P(dy,...,di_1,di, tif 1V, - ., tayy) €
o,
— if tj is a constant we havec' = c by definition of-'. To prove [[29) consider
th =t ti=c =c)
=tw (trivial)
=:d

As above, fronP(dy, ..., di_1,tiVy,...,taw) € 1Pl itfollows P(dy, ..., di_1,di,tic 1V, .. ., taw) €
o,

— If none of the previous cases appligsnust be a function ternfi(sy,...,Sn). As
said aboves,,...,sy all are variables or constants. With the same argumentation
that led to[(2)) above, we have here

Y = (F(st,...,sm)"Y = £ (57", .., 9) = ' (S1vhr - -, Sm) (30)
We distinguish two cases according to the definitiorf'of
In the first case' (spyy, . . . , Smyw) = d, for some proper subterchof f(spyy, ..., Sm)-
From the definition off' it follows f(Siy,...,Sny) — d € IP'. Recall we assume
P(d,...,di_1,tiVe,....tayy) € 1P With tiyy = f(S1,...,Sn)W = F(S1V, ..., Sm\v)
and the clause (12) concludds,...,di_1,d,t1\,...,taw) € 1P, Thus we de-
fined; := d to prove the invariant.
The equation[(39) is obtained as follows:

='W sow) (Y G)
—d (assumption of this case)
—d (definition ofd;)
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If the first casef'(siy,...,Smyv) = d does not apply, then, by definition df,
1 (s1V, - .-, SmW) = T(StW, - - » Smyv). We defined; := f(Si\,. . ., Sm\)-

Recall we assumB(dy,...,di_1,t,....taw) € 1°. With tiy, = f(s1,...,Sn)Ww =
f(StW, - -, SmW) = di the invariantP(dy, ..., di_1,di,ti 1\, . ., tayw) € 1P follows.
The equation(Z9) is obtained as follows:

V= f'(siv,....sw)  (by B0))
_ gl (S1Yos - - -, SmW) (assumption of this case)
—d (definition ofd;)

This completes the proof.
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