
Shostak Light

Harald Ganzinger

MPI Informatik, D-66123 Saarbrücken, Germany, hg@mpi-sb.mpg.de

Abstract. We represent the essential ingredients of Shostak’s procedure
at a high level of abstraction, and as a refinement of the Nelson-Oppen
procedure. We analyze completeness issues of the method based on a
general notion of theories. We also formalize a notion of σ-models and
show that on the basis of Shostak’s procedure we cannot distinguish a
theory from its approximation represented by the class of its σ-models.

1 Introduction

Shostak (1984) introduced a procedure that decides the universal fragment of the
theory of equality. This congruence closure procedure can be combined with de-
cision procedures for other theories, provided they are what Shostak called “can-
onizable” and “solvable”. Shostak’s procedure is at the core of several theorem
proving systems, including PVS (Owre, Rushby & Shankar 1992), STeP (Manna
et al. 1995) and SVC (Barrett, Dill & Levitt 1996). Previous papers have often
suffered from a too technical description of the procedure. Consequently com-
pleteness of those formulations of Shostak’s procedure has always been difficult
to prove. Kapur (2002) compiles a list of technical problems with some of these
papers.

More recently several papers have helped in advancing the status of this mat-
ter. Tiwari (2000) described Shostak’s procedure at an abstract level of inference
rules extending the inference system for congruence closure given by Bachmair &
Tiwari (2000) (also see Kapur 1997). In Tiwari’s presentation Shostak’s method
appears as a special case of the Nelson/Oppen method (Nelson & Oppen 1979)
and is proved complete for equational theories. Rueß & Shankar (2001) presented
a more implementation-oriented version of Shostak’s procedure eliminating cer-
tain sources of incompleteness in Shostak’s original formulation. However be-
cause of the lack of a more abstract specification, the proofs in the latter paper
are somewhat hard to verify. Also, Rueß & Shankar (2001) only treat the validity
problem for Horn clauses, and their completeness proof involves a specific notion
of σ-models. Barrett, Dill & Stump (2002) describe a procedure without treating
free function symbols, concentrating on the relation between convexity, a pre-
requisite for the completeness of Shostak’s method, and stable infiniteness. They
observe that convexity implies stable infiniteness for first-order theories without
trivial models so that solvers for different theories can be combined with the
Nelson-Oppen approach.

The present paper attempts at achieving two goals. One goal is to provide a
formal presentation of Shostak’s procedure intended to be useful as an abstract

layer with respect to which more concrete implementations can be verified and
variations of the procedure can be developed. Secondly we want to adopt a
semantic view where built-in theories are arbitrary classes of structures, not
necessarily first-order, and then investigate completeness issues from that general
point of view.

As in (Tiwari 2000) and in (Bjørner 1998) we shall present Shostak’s proce-
dure (modeled by an inference system S) as a refinement of an inference system
NO modeling a non-branching variant of the Nelson-Oppen procedure. Our
view is similar to the one adopted by Bjørner (1998) in that we relate both
Shostak’s and the Nelson-Oppen method to the general framework of constraint
programming and constraint theorem proving: The solvers assumed for Shostak’s
procedure transform constraints into solved form which in turn can be used to
simplify other constraints by eliminating variables. In the Nelson-Oppen proce-
dure constraints are only tested for satisfiability but never solved. So the main
difference is that of satisfiability checking for constraints vs. actually computing
their solutions. In refutational theorem proving constraint solving is not needed
for completeness, and for theories where complete sets of unifiers are large (or
infinite) constraint solving is not advisable anyway (Huet 1972, Nieuwenhuis &
Rubio 1995). To keep matters simple, in our presentation we do not model any
specific efficient version of congruence closure computation. For these issues the
reader is referred to (Bachmair, Tiwari & Vigneron 2002) and (Kapur 1997).

As theories in this paper are not restricted a priori we will be able to derive
precise characterizations for completeness. Our completeness proofs are seman-
tic and do not require any reasoning about the combinatorics of congruences
and canonical term algebras. We show that convexity of a theory is necessary
and sufficient for the completeness of NO and, hence, of S. That convexity is
necessary is immediate when one wants to apply Shostak’s procedure to the va-
lidity problem of equational clauses with more than one positive literal. What
we prove here is that even if, as in (Rueß & Shankar 2001), the procedure is
only applied to Horn clauses, in the presence of additional free function symbols
convexity is indispensable for completeness.

In Section 5, we shall relate convexity to the concept of σ-models. Shostak’s
(1984) definition of σ-models is somewhat loose. The notion defined in (Rueß &
Shankar 2001) turns out to be too restrictive. For the more liberal definition that
we shall provide the class of σ-models of a solvable theory represents a convex
theory, and hence either Shostak’s procedure is incomplete, or else we cannot
distinguish between the theory and its σ-models by deciding clausal validity
problems.

In Section 6 we briefly take a closer look at the special case of the Nelson-
Oppen procedure for a single built-in theory plus free function symbols. In this
case the procedure turns out to be complete for any, not necessarily stably
infinite, theory. That is we show that if clausal validity is decidable for a theory
it remains decidable upon adding free function symbols. Refining that procedure
by employing a solver would give one a version of Shostak’s procedure complete
also for non-convex theories.

2 Basic Concepts

We employ the usual logical notions and notation. Specifically we consider first-
order signatures of function symbols and assume that ≈ denotes formal equality,
a logical symbol present implicitly in any signature. If Σ is a signature, a Σ-
term [Σ-formula] is built from function symbols in Σ and from variables. When
we write ∀XF , we assume that X is some superset of the set of free variables
appearing in F . We consider equality ≈ as syntactically symmetric so that u≈ v
also matches v≈u. Negated equations ¬(s≈ t) are also written as s 6≈ t. We
shall sometimes use oriented equations as rewrite rules s ⇒ t. The semantics
of a rewrite rule is that of an equation, but rewrite rules are oriented, that is,
not considered symmetric syntactically. Sets of equations and disequations are
semantically viewed as the conjunction of their elements.

For us a Σ-theory M is simply a class of Σ-structures, the models of the
theory, not necessarily first-order. We are interested in deciding the validity
problem for clauses for such theories. The word problem for M is to decide
whether or not M |= ∀X(s≈ t) for Σ-equations s≈ t. If M |= ∀X(s≈ t) we call
s and t equal modulo M, and call them different modulo M, otherwise. The
uniform word problem, also called the validity problem for Horn clauses , is the
problem of deciding implications M |= ∀X(Γ → A) for finite sets of Σ-equations
Γ and for A = ⊥ or A = s≈ t a Σ-equation. The clausal validity problem in M
is the problem of deciding M |= ∀X(A1∧ . . .∧An → B1∨ . . .∨Bm) for arbitrary
clauses over Σ-equations Ai and Bj .

A theory M is called convex if for any finite set Γ of Σ-equations and for
Σ-equations Ai, 1 ≤ i ≤ n, whenever M |= ∀X(Γ → A1 ∨ . . . ∨ An), then
there exists an index j such that M |= ∀X(Γ → Aj). For convex theories, any
clausal validity problem can be reduced to a linear number of validity problems
for Horn clauses. Clausal validity problems are often presented as unsatisfiability
problems for sets of equational literals since M |= ∀X(Γ → A1 ∨ . . . ∨ An) if,
and only if, ∃X(Γ ∧ ¬A1 ∧ . . . ∧ ¬An) is unsatisfiable in M.

In the simple case, both the Nelson/Oppen and Shostak’s method deal with
two disjoint signatures ∆ and Φ of defined function symbols and of free function
symbols , respectively, where the semantics of the defined symbols are given by a
∆-theory T .1 The theory models are considered in contexts where additional free
functions from Φ exist. To that end, by T Φ we denote the class of ∆∪Φ-structures
I such that the restriction of I to ∆ (one simply ignores the interpretations of the
function symbols from Φ) is in T . Both the Nelson/Oppen method and Shostak’s
method are designed to extend given decision procedures for the clausal validity
problem in the theory T to a decision procedure for the validity of clauses in
T Φ.

1 In the general case of the Nelson-Oppen method we may have more than one theory
over disjoint signatures, possibly including a theory of free functions. The original
definition of Shostak’s procedure in (Shostak 1984) was given for a single built-
in theory, and since then several authors including Bjørner (1998), Kapur (2002),
Barrett et al. (2002), and Shankar & Rueß (2002) have described variants to be
applied to the combination of solvable theories.

Contradiction
E [] D

⊥

if T |= ∀X(E → ⊥).
Compose

E [] D ∪ {f(s1, . . . , sn)≈ s, f(s′1, . . . , s′n)≈ s′}

E ∪ {s≈ s′} [] D ∪ {f(s1, . . . , sn)≈ s}

if T |= ∀X(E → si ≈ s′i), for 1 ≤ i ≤ n.

Fig. 1. Inference system NO modeling a non-branching Nelson-Oppen procedure

3 A Non-Branching Nelson/Oppen Procedure

Let us assume that we have a theory T for which the clausal validity problem
is decidable and that we want to decide the clausal validity problem in T Φ.
One possibility is to employ a non-branching version of the the Nelson/Oppen
method. When a theory clause A1∧. . .∧An → B1∨. . .∨Bm is valid without A1∧
. . .∧An entailing one of the disjuncts Bi we are not going to non-deterministically
backtrack over the m disjuncts. Also we do not consider the free theory of Φ as
another built-in theory, but rather deal with it explicitly using a specific rule
for congruence closure. The system NO given in Figure 1, where rules may
be applied in any order, models that particular version of the Nelson/Oppen
procedure.

The inference rules manipulate configurations of the form E [] D and are
intended to decide the satisfiability of ∃X(E ∧ D) in T Φ, with X the set of
variables appearing in E or D. Our format is such that E contains equations
and disequations over ∆, the constraints . (We use the letters s, t, u, v, and w
to denote ∆-terms.) D is a set of function definitions F ≈u for free function
symbols. Here, F denotes terms of the form f(s1, . . . , sn), with f in Φ and with
∆-terms si as arguments. Since NO only deals with this restricted (“purified”)
syntactic format of constraints and function definitions, we have to assume that
the initially given problem is presented in this form. This is no essential restric-
tion as the satisfiability problems arising from clausal validity problems over
∆ ∪ Φ can be purified with the help of auxiliary variables in linear time.

The rule Contradiction derives ⊥ if the set of constraints is unsatisfiable in
T . Compose computes overlaps between two function definitions, provided their
arguments (which are ∆-terms) are equal for every solution of the constraints
in E. Note that the formulas E → ⊥ and E → si ≈ s′i are equivalent to clauses
and hence their validity is decided by the theory module.

We shall write E [] D `NO E′ [] D′ whenever the first configuration can be
transformed into the second by application of a rule in NO. An NO-derivation
is a sequence of configurations κ0 `NO κ1 `NO A configuration to which no
inference rule applies is called terminal in NO or irreducible by NO.

Proposition 1. The inference system is sound. More specifically, (i) whenever
E [] D ` E′ [] D′ then T Φ |= ∀X(E ∧ D ↔ E′ ∧ D′); and (ii) if E [] D ` ⊥ then
E ∪ D is unsatisfiable in T Φ

Proposition 2. The derivation relation `NO is well-founded.

Theorem 1. NO is complete for a theory T if T is convex.

Proof. We assume that T is convex and show that whenever the procedure
terminates with final state E [] D then E ∧ D is satisfiable in T Φ. For this we
need to identify a suitable T -model I satisfying E and extend it by definitions
for the free function symbols so that D is also satisfied. Consider the set M
of ∆-terms that appear either in a disequation in E, or as an argument of a
free function symbol on the left side of a function definition in D. Call two
terms s and t in M equivalent if T |= ∀X(E → s≈ t). Define N such that
it contains exactly one representative of each equivalence class of M . Suppose
N = {u1, . . . , um}. If E ∪ {ui 6≈uj | i 6= j} were unsatisfiable in T then either
m ≤ 1 and E is unsatisfiable, or else m > 1 and T |= ∀X(E →

∨
i6=j ui ≈uj).

In the first case Contradiction would have derived ⊥ which it did not. In the
second case, by the convexity of T , again either E is unsatisfiable which it is
not, or else T |= ∀X(E+ → ui ≈uj) for some pair i 6= j, where E+ is the subset
of positive equations in E. The latter situation would contradict the way N was
constructed. We have shown that there exists a structure I in T and a variable
assignment α : X → I satisfying E and where the terms ui denote pairwise
different values in I .

Now extend I by interpretations for the free function symbols as follows:
If f is a free function symbol and f(s1, . . . , sn)≈u is a function definition in
D, evaluate the si as well as u in I, α, yielding values ai and c, respectively,
and define fI(a1, . . . , an) to be c. Define fI arbitrarily at all other argument
tuples of the domain of I . We have to show that f is well-defined. A potential
ambiguity may arise from the presence of two definitions f(s1, . . . , sn)≈ s and
f(s′1, . . . , s′n)≈ s′ in D, should it be the case that I, α |= si ≈ s′i, for 1 ≤ i ≤ n.
However, if these two function definitions were present then there would exist
an index j such that T 6|= ∀X(E → sj ≈ s′j), for otherwise Compose would
have eliminated one of the two definitions. By construction N contains different
terms u and u′ equivalent to sj and s′j , respectively. Since we picked I and α
such that different terms in N denote different values in I , it cannot be possible
that I, α |= sj ≈ s′j . 2

In the general branching version of the Nelson-Oppen procedure with an arbi-
trary number of theory components a property weaker than convexity, called
stable infiniteness, suffices to obtain completeness. For a detailed proof of this
fact the reader is referred to (Tinelli & Harandi 1996). For theories having only
non-trivial models—these are structures with more than one element—convexity
is sufficient for the completeness also of the general version of the Nelson-Oppen
procedure. This is a consequence of the results in (Barrett et al. 2002). Above
we gave a direct and simple model construction proof that neither relies on the

general completeness result nor on the relation between convexity and stable
infiniteness.

If a theory has non-trivial models only, convexity is also necessary for NO
to be complete even for merely deciding the validity of Horn clauses.

Theorem 2. If T is a non-convex theory of non-trivial structures then there
exists a Horn clause of the form E, D → s≈ t valid in T Φ such that E∪{s 6≈ t} []
D is irreducible by NO.

Proof. Suppose T is not convex. Then there exists a set of ∆-equations E and
a set of n ≥ 2 ∆-equations si ≈ ti, 1 ≤ i ≤ n, such that the clause C = ∀X(E →∨

i si ≈ ti) is valid in T but T 6|= ∀X(E → si ≈ ti), for any i. Let Φ contain n
different monadic function symbols fi, and define D to be the set of function
definitions containing the equations fi(si)≈x, and fi(ti)≈ y, with x and y two
different variables not occurring in E, si, and ti. We show that T |= ∀X(E∧D →
x≈ y). Suppose that I is in T and α a variable assigment such that I, α |= E∧D.
As C is valid in I there exists an index i such that I, α |= si ≈ ti. Moreover, as
the function definitions are satisfied in I, α we infer that I, α |= fi(ti)≈ y and
I, α |= fi(si)≈x and, hence, I, α |= x≈ y. On the other hand no inference in
NO applies to the configuration E∪{x 6≈ y} [] D. Compose cannot be applied as
T 6|= ∀X(E → si ≈ ti), for every i. For the same reason E must be satisfiable in
T . As T has only non-trivial models, Contradiction does not apply to E∪{x 6≈ y}.
2

The system NO only formalizes the bare bones of a variant of the Nel-
son/Oppen procedure. In practice one may want to add additional (sound) in-
ference rules to increase the efficiency of the method. There is a uniform method
of doing this in a way such that completeness is maintained. Call a set of ad-
ditional inference rules on configurations admissible if they are sound and if
termination is maintained. Completeness can not be lost by adding additional
inference rules. However one can also safely delete instances of inference rules as
long as it is guaranteed that configurations reducible by deleted inference rules
can also be reduced by some other inference rules. In the next section we are
going to model Shostak’s method as a refinement in this sense of the inference
system NO.

4 Shostak Light

Shostak’s procedure assumes the presence of a (unitary) unification algorithm
for T . More specifically it is assumed that there exists an effectively computable
function solve such that, for any T -equation s≈ t:

(A) solve(s≈ t) = ⊥ if, and only if, T |= ∀X(s 6≈ t);
(B) solve(s≈ t) = ∅ if, and only if, T |= ∀X(s≈ t); and otherwise
(C) solve(s≈ t) = {x1 ⇒ u1, . . . , xn ⇒ un} is a finite set of rewrite rules over

∆ such that

(i) the xi are pairwise different variables occurring in s≈ t;
(ii) the xi do not occur in the uj ; and
(iii) T |= ∀X [(s≈ t) ↔ ∃Y (x1 ≈u1 ∧ . . . ∧ xn ≈un)], where Y is the set of
variables occurring in one of the uj but not in s≈ t, and X ∩ Y = ∅.

If a function solve with these properties exists we call the theory solvable.
solve(s≈ t), if different from ⊥, may be viewed as a (possibly empty) substitution
σ = [u1/x1, . . . , un/xn], written as a set of rewrite rules {x1 ⇒ u1, . . . , xn ⇒
un}, that solves the T -equation s≈ t.

Solutions can be parameterized by new variables, those in Y . It is assumed
that in each calling context for solve, the variables in Y are fresh. Where this
needs to be formalized we shall write solveZ(s≈ t) = S, assuming that then the
extra variables appearing in S are not in Z.

Example 1. Let Q be the single-model theory consisting of the rational numbers
with linear arithmetic. In the signature of Q we have all rational numbers as
constants, the binary addition operator +, and, for each rational number q, a
unary operator q · multiplying its argument by q. Equations over Q can be
solved by Gaussian elimination, and it is well-known that the theory is convex.

Example 2. Let Z/(3) be the one-model theory of the three-element field ob-
tained by considering the remainders from division by 3. Let the signature consist
of the constants 0 and 1, and the binary addition +. Clearly, Z/(3) is solvable.
For example, a + a + 1 = b + b is solved by a ⇒ 1 + b. However Z/(3) is not
convex as witnessed by the disjunction ∀x(x≈ 0 ∨ x≈ 1 ∨ x≈ 1 + 1).

Due to (B), solvers effectively decide the word problem for T .2 Further, if
a theory is solvable we can also effectively decide the uniform word problem
for T . In fact, for deciding T |= ∀X(Γ → A) we iteratively apply solve to
the equations in Γ . If this yields ⊥, the implication is valid in T . Otherwise
for the implication to be valid A has to be an equation s≈ t, and we obtain a
substitution σ that is equivalent to Γ such that T |= ∀X(Γ → s≈ t) if, and only
if, T |= ∀X, Y (s≈ t)σ) (with Y the extra variables in the codomain of σ), if and
only if, solve((s≈ t)σ) = ∅.

The Nelson/Oppen method is based on being able to decide the [un-]solvability
of certain theory constraints. When one has a solver available one can do more
and additionally replace constraints by their solved forms (the unifiers). Since

2 Most presentations of Shostak’s method do not require property (B) for solve, but
assume the presence of a canonizer so that the word problem can be decided by
comparing canonical forms. We present Shostak’s procedure without a canonizer.
The word problem is all we need to be able to decide, and we may leave it to
the implementation of the solver as to whether solutions computed will always be
in canonical form. For increasing the efficiency of an actual implementation, the
presence of a canonizer might be helpful, but keeping terms always canonical may
not be the most efficient strategy. Formalizing normalization strategies involving a
canonizer only requires to add more reduction inference rules to our inference system
below. We shall discuss this in more detail at the end of this section.

Contradiction
U ∪ {s≈ t}, R [] D

⊥
if solve(s≈ t) = ⊥

U ∪ {s 6≈ t}, R [] D

⊥
if solve(s≈ t) = ∅

Solve
U ∪ {s≈ t}, R [] D

U, R ∪ S [] D

where
(i) S = solveX(s≈ t) 6= ⊥, with X the set of variables appearing in the antecedent,
(ii) both s and t are irreducible by R.

Reduce
U, R ∪ {x ⇒ t} [] D ∪ {F [x]≈ s}

U, R ∪ {x ⇒ t} [] D ∪ {F [t]≈ s}

U ∪ {L[x]}, R ∪ {x ⇒ t} [] D

U ∪ {L[t]}, R ∪ {x ⇒ t} [] D

Compose
U, R [] D ∪ {f(s1, . . . , sn)≈ s, f(s′1, . . . , s′n)≈ s′}

U ∪ {s≈ s′}, R [] D ∪ {f(s1, . . . , sn)≈ s}

if solve(si ≈ s′i) = ∅, for 1 ≤ i ≤ n.

Fig. 2. Inference system S modeling Shostak’s procedure

solvable theories are required to have unique most general solutions for solv-
able constraints, no backtracking occurs. Also, applying solutions to unsolved
constraints and to function definitions effectively eliminates some of the vari-
ables and in this sense simplifies the satisfiability problem. So Shostak is to
Nelson/Oppen what theorem proving and CLP with computation of unifiers
for built-in theories is to constraint theorem proving and CLP with constraint
propagation and constraint satisfiability checking.

The figure 2 presents the inference system S where again rules may be ap-
plied in any order. S refines NO in that the constraints E in NO are now repre-
sented by the union of two constraints U and R. In other words, S-configurations
U, R [] D correspond to NO-configurations U ∪ R [] D. In the refined format,
U is the subset of disequations and of “unsolved” positive equations, whereas
R is a positive constraint in solved form, a substitution derived from previous
constraint solving steps. The Contradiction and Compose rules are instances of
the Contradiction and Compose rules, respectively, of NO. Configurations re-
ducible by instances of Contradiction and Compose in NO that are not dealt
with by Contradiction and Compose in S can be reduced by instances of Solve
or Reduce (cf. Proposition 8).

Solve solves ∆-equations s≈ t. Soundness of this rule is a consequence of the
soundness of the solver, cf. Proposition 4 below. More precisely, we only solve
normalized equations in which both s and t are irreducible by R. The reduce

inferences are designed to compute those normal forms. The solved equation is
deleted from U and its solution S is added to the solved form R. The rules added
to R upon Solve are all of the form x ⇒ w, and are called variable definitions .
By Propositions 3 and 5 R always contains at most one definition for a variable
and is terminating. Sets of constraints R with these properties we call solved
forms .

Reduce expands variables in the F -terms in D as well as in the ∆-terms in U
by their definitions. In most presentations of Shostak’s method one would apply
both the Contradiction and the Compose rules only to irreducible terms s, t,
si and s′i, respectively. Since our results will be applicable to all fair (that is,
maximal) strategies of inference rule application, soundness and completeness
also follows for any more refined strategy of substitution application.

We shall write U, R [] D `S U ′, R′ [] D′ whenever the first configuration can
be transformed into the second by application of a rule in S. An S-derivation is
a sequence of configurations κ0 `S κ1 `S . . . with κ0 a configuration of the form
U, ∅ [] D. A configuration to which no inference rule applies is called terminal in
S or irreducible by S. A derivation is called maximal if its end configuration is
terminal.

Proposition 3. Any rule set R appearing in an S-derivation contains at most
one definition for any variable.

Proof. The property is trivially true initially. When adding a rule set S to R in
Solve, if R contains a definition x′ ⇒ t′, S cannot contain a rule for x′. Otherwise
x′ would have to occur in s≈ t, and the equation being solved at this step would
not be irreducible with respect to R. 2

Proposition 4. The inference system is sound. More specifically, (i) whenever
U, R [] D `S U ′, R′ [] D′ then T Φ |= ∃X(U ∧ R ∧ D) → ∃X, Y (U ′ ∧ R′ ∧ D′) and
T Φ |= ∀X, Y (U ′ ∧R′ ∧D′ → U ∧R∧D), with Y the variables in U ′, R′ [] D′ but
not in U, R [] D; and (ii) if U, R [] D `S ⊥ then U ∪R∪D is unsatisfiable in T Φ.

In the rewrite systems R, variables are considered as constants which can not
be substituted by other terms. In this sense the systems R induce terminating
rewrite relations.

Proposition 5. If U, R [] D `S U ′, R′ [] D′ and if R is terminating then R′ is
terminating.

Proof. Let us, for a configuration U, R [] D with variables in X , define x �X y if,
and only if, y occurs on the right side of a definition for x in R. R is terminating if,
and only if, �X is a well-founded partial ordering on X . (For the “if” part, use a
lexicographic path ordering over some precedence >X for which Φ >X X >X ∆,
and which coincides with �X on X to show termination of R.)

We now show that if �X is a well-founded partial ordering on X and if
U, R [] D `S U ′, R′ [] D′ then �X′

is a well-founded partial ordering on X ′,
the set of variables in the new configuration. The only non-trivial case is when

the derivation is by Solve where the new variable definitions S are added to R.
However only equations s≈ t irreducible by R are solved, so that no variable
appearing in s or t is reducible by R. Therefore any variable occurring on the
right side of a rule in S is irreducible by R. Also, according to the definition
of a solver, right sides of rules in S are irreducible by S. Consequently, �X′

is
well-founded. 2

Proposition 6. The inference system S is terminating.

Proof. We need to describe a well-founded ordering � on configurations with
terminating rewrite systems R for which all inference rules are strictly monotone.
Define � such that ⊥ is minimal. Moreover if κ = U, R [] D and κ′ = U ′, R′ [] D′

are two configurations with X and X ′, respectively, the set of variables occurring
in κ and κ′, let κ � κ′ whenever
(i) |D| > |D′|; or else
(ii) |D| = |D′|, and U ⊃ U ′; or else
(iii) |D| = |D′|, R = R′, and U ⇒R U ′; or else
(iv) |D| = |D′|, R = R′, U = U ′, and D ⇒R D′.
This ordering is well-founded. For if in a sequence κ0 � κ1 � . . . the number of
function definitions does not decrease and no equations are deleted from U no
new rules can be introduced, and therefore Ri = Ri+1. As the rewrite relations
in configurations are all terminating any such sequence must be terminating.
Clearly, the rules in S are strictly decreasing with respect to �. 2

The proposition in particular shows that the number of new variables introduced
during a derivation must be finite, irrespective of the way a solver introduces
them.

Proposition 7. (i) If R is a solved form and if s and t are irreducible by R
then T |= ∀X(R → s≈ t) if, and only if, T |= ∀X(s≈ t).

(ii) Let T be convex. If R is a solved form, U a set of ∆-disequations sat-
isfiable in T and irreducible by R, and if s and t are irreducible by R then
T |= ∀X(U, R → s≈ t) if, and only if, T |= ∀X(s≈ t).

Proposition 8. Let T be a convex theory. If U, R [] D is a terminal configura-
tion of S then U ∪ R [] D is a terminal configuration of NO.

Proof. If no inference in S can be applied to U, R [] D then U contains only
negative equations and is satisfiable in T , R is a solved form (cf. propositions 3
and 5), and any term appearing in U or in an F -term in D is irreducible by R. We
first show that Compose in NO cannot be applied to U∪R [] D. Otherwise, there
would be two definitions f(s1, . . . , sn)≈ s and f(s′1, . . . , s′n)≈ s′ in D such that
T |= ∀X(U, R → si ≈ s′i), for 1 ≤ i ≤ n. From (ii) in Proposition 7 we conclude
that T |= ∀X(si ≈ s′i), for 1 ≤ i ≤ n. Therefore, solve(si ≈ s′i) = ∅ and Compose
would also be applicable in S, which is a contradiction.

Showing that also the Contradiction inference in NO is not applicable to
U ∪ R [] D is essentially similar. 2

To summarize, we have shown that for convex theories S is a refinement of NO:
(i) All new instances of inference rules are sound. (Proposition 4)
(ii) There is a well-founded refinement of the ordering on NO-configurations
such that the new inference rules are strictly monotone (Proposition 6).
(iii) If U, R [] D is a terminal configuration for S then U ∪ R [] D is a terminal
configuration for NO so that configurations reduced by NO-rules not present
anymore in S can be reduced by other rules in S.
Convexity of T was required for showing (iii). As a consequence we obtain com-
pleteness of S for convex, solvable theories.

Theorem 3. S is complete for any solvable convex theory T .

For theories without trivial models, convexity is also a necessary requirement
for the completeness of Shostak’s procedure. The proof can be given essentially
as for Theorem 2. Another possibility is to exploit one more correspondence
between derivations in NO and S.

Lemma 1. If E [] D is a terminal configuration for NO then all maximal
derivations in S from configurations U, R [] D, where E = U ∪ R, end in a
configuration different from ⊥.

Proof. If E [] D is irreducible by NO, Contradiction is not applicable to U, R [] D.
Also Compose is not applicable in U, R [] D as otherwise Compose in NO would
be applicable to E [] D. Therefore only Solve and Reduce can be applied to U, R []
D. Observe that T |= ∀X(U ∧R ↔ ∃Y (U ′∧R′)) with Y the new variables in the
configuration obtained from any such inference. Moreover, if F ≈ s is a function
definition for a free symbol f in D′ then there exists a corresponding definition
G≈ t in D for f such that T |= ∀X(R → s≈ t), and T |= ∀X(R → u≈ v) for
any two terms u and v appearing at corresponding argument positions in F and
G, respectively. Therefore Contradiction and Compose can also not be applied
in U ′, R′ [] D′ as otherwise the respective rule in NO would be applicable to
E [] D. The Lemma now follows by induction. 2

Theorem 4. If T is a solvable non-convex theory of non-trivial structures then
there exists a Horn clause valid in T Φ such that S fails to derive ⊥ on the
corresponding unsatisfiability problem.

Proof. We apply Theorem 2 to obtain a Horn clause E, D → s≈ t that is valid in
T Φ and for which E ∪{s 6≈ t} [] D is irreducible by NO. Now apply the previous
Lemma. 2

So far we have not modeled the concept of canonizers. We briefly sketch
how to accommodate canonizers in S. A canonizer for a theory T is a ground3

rewrite system C on T∆(X) where the right side of every rule is irreducible by C

and does not contain any variable that does not already appear on the left side.
Moreover, each rule in C must be universally valid in T . (Usually canonizers are

3 The rules may contain variables from X but they are considered as constants.

assumed to have further properties of which we, however, do not make any use
here.) Since right sides of rules are reduced, canonizers are terminating rewrite
systems. However, C∪R, where R is a solved form appearing in an S-deduction,
in general will not be terminating. Therefore, when extending the Reduce rules
to a canonizer one needs to decide upon a terminating strategy for interleaving
C-steps and R-steps. One example of a terminating reduction relation would be

⇒
||
R ∪⇒C, if ⇒

||
R denotes one step of parallel replacement of all R-redexes in a

term. Then the termination proof (Proposition 6) remains the same with ⇒R

replaced by ⇒
||
R ∪⇒C.

5 σ-Models

Shostak’s original paper as well as (Rueß & Shankar 2001) employ a notion of
σ-models relative to which they state completeness. Shostak’s definition is some-
what imprecise. According to (Rueß & Shankar 2001), a σ-model is a ∆-structure
satisfying all equations ∀X(s≈ t) for which s and t are equal modulo T , and all
disequations s 6≈ t such that s and t are ground terms that are different modulo
T . They call a theory solvable if the class of these σ-models is solvable. This def-
inition of σ-models and solvable theories appears to be too restrictive as it does
not capture many intuitively solvable theories. As an example, consider the the-
ory of lists over car, cdr and cons satisfying the rules ∀x, y(car(cons(x, y)) ⇒ x),
∀x, y(cdr(cons(x, y)) ⇒ y), and ∀x(cons(car(x), cdr(x)) ⇒ x) and also the dis-
equations ∀X(x 6≈ t), whenever t is irreducible by the list rules and contains an
occurrence of x as an argument of an occurrence of cons in t. Shostak (1984)
shows that these lists form a solvable theory. The σ-models of lists, however,
contain (non-trivial) structures L in which l = cdr(l) for some element l in L.
Therefore, for any solver, solve(x≈ cdr(x)) 6= ⊥, and as a consequence of this fact
no solver can exist for the theory of σ-models of lists. In fact, solve(x≈ cdr(x))
would have to be a rule x ⇒ t, with x not in t, and thus ∀Y (t≈ cdr(t)) would
have to be a consequence of the list rules which it is not. (To see this assume,
wolog, that t is irreducible by the list rules. If t does not start with a cons, also
cdr(t) is irreducible. Otherwise t = cons(t1, t2) and t2 is the canonical form of
cdr(t) and different from t.)

The definition of σ-models in (Rueß & Shankar 2001) is solely based on
the properties of the canonizer σ (hence the name). Our subsequent definition
will be based on the solver (so we should rather speak of solve-models), and
as a consequence of this we can avoid the shortcomings illustrated by the list
example. Given T , we define σ(T), the class of σ-models of T (with respect to
solve), to be the class of ∆-structures for which solve is sound. This is the class
of structures satisfying (i) σ(T) |= ∀X(s 6≈ t), whenever solve(s≈ t) = ⊥, and
(ii) σ(T) |= ∀X [(s≈ t) ↔ ∃Y (x1 ≈u1 ∧ . . . ∧ xn ≈un)], whenever solve(s≈ t) =
{x1 ⇒ u1, . . . , xn ⇒ un}, where X is the set of parameters in s≈ t and Y is the
set of new parameters in the solution. Hence if solve is a solver for T then it is
also a solver for σ(T). It is easy to see that T ⊆ σ(T). Therefore, any solver for
σ(T) is also a solver for T . Also, σ(σ(T)) = σ(T).

Proposition 9. S is sound with respect to σ(T).

As equational theories, the σ-theories of (Rueß & Shankar 2001) are closed under
products and, therefore, are convex. Our σ-theories are also convex.

Proposition 10. If T is a solvable theory then σ(T) is convex.

Proof. σ-models are axiomatized by the first-order conditions (i) and (ii) above.
It is not difficult to see that theories axiomatized by formulas of this kind are
closed under products, and hence are convex. 2

This proves the completeness of the method with respect to σ-models and, thus,
extends the results in (Rueß & Shankar 2001) on a more abstract level to a more
liberal notion of σ-models. In general T is a proper subset of σ(T). Examples are
T = {Q} or T = {Z/(3)} as defined above. Yet, if T is convex then we cannot
distinguish T from σ(T) with respect to clausal tautology problems.

Theorem 5. If T is convex and solvable and if E is a finite set of equations
and disequations over ∆ ∪ Φ, then E is satisfiable in T Φ if, and only if, E is
satisfiable in σ(T)Φ.

Proof. We have shown that S is sound with respect to both T and σ(T). Since
both T and σ(T) are convex, S is also complete with respect to both T and
σ(T). The result of running S on E will, therefore, establish [un-]satisfiability
of E both with respect to T and σ(T). 2

This result can be viewed as a justification for the semantic concept of σ-models
as defined here. Deciding satisfiability with respect to its σ-models is all one can
get for a solvable theory.

6 Branching Nelson-Oppen

From the model construction in the proof of Theorem 1 one sees what is lack-
ing for making NO complete also for non-convex theories. One needs to non-
deterministically branch on all possible ways two function definitions rules might
be inconsistent with the constraints. Hence, a branching version of the procedure
can be defined by adding this inference rule to NO

E [] D

E ∪ {s≈ t} [] D[s/t] | E ∪ {s 6≈ t} [] D

whenever there are two definitions f(s1, . . . , sn)≈ s and f(s′1, . . . , s′n)≈ s′ in D
such that s = si 6= s′i = t, for some index i, and for no index j the disequation
sj 6≈ s′j is in E. (By D[s/t] we denote the result of substituting all occurrences
of t as an argument of a free function symbol in D by s.)

In the extended system derivations are trees of inference rule applications
with the new rule introducing a branching into two sub-derivations. Clearly, the
system remains terminating. Terminal configurations in a derivation are either

⊥ or are such that if f(s1, . . . , sn)≈ s and f(s′1, . . . , s′n)≈ s′ are two different
function definitions in D for the same f then there exists an index i such that
si 6≈ s′i is in E. Configurations of the first kind are unsatisfiable whereas those
of the second kind are satisfiable. In fact since the configuration is terminal, E
is satisfiable in T , and extending any model I of E by definitions for the free f
satisfying D is no problem as the argument tuples for any two definition rules for
any f are different in I . As a consequence we obtain soundness and completeness
of the branching version of the Nelson-Oppen procedure. We assume that a run
producing a derivation returns “valid” if all leaves in the tree are ⊥, and “not
valid”, otherwise.

Theorem 6. Branching NO is sound and complete for the clausal validity prob-
lem in T Φ, for any theory T where clausal validity is decidable.

This result is not in contradiction with previous results in the literature. For
one we only have a single theory built-in and the free function symbols are
explicitly dealt with by the Compose rule. Only when combining more than
one built-in theory stable infiniteness of the theories is needed. Secondly, the
example 2.2 in (Baader & Tinelli 1997) which appears like a counterexample to
our theorem allows negative equations to also contain free function symbols. Our
preprocessing of satisfiability problems purifies such disequations by introducing
new variables the disequality of which might lead to a contradiction in T that
the procedure in (Baader & Tinelli 1997) might fail to infer.

7 Conclusion

We have modeled a version of Shostak’s procedure at a high-level of abstraction
and as a refinement of a similarly high-level model of a Nelson-Oppen-like pro-
cedure. On the semantic side theories were arbitrary sets of structures. Among
others we have show that completeness for Horn clause validity problems is equiv-
alent with the convexity of the theory. We have given a definition of σ-models
based on the properties of solvers and have shown that these σ-models represent
a tight approximation of solvable theories. Hence one may argue that the con-
cept of a solver is more fundamental in Shostak’s procedure than the concept
of a canonizer (that we have not formalized here). Our completeness result for
branching NO indicates how to obtain a Shostak procedure for non-convex solv-
able theories. We expect that we can extend our modeling and proof techniques
also to the interesting and natural combination procedure for Shostak theories
presented in (Shankar & Rueß 2002).

Acknowledgments. I am grateful to Viorica Sofronie-Stokkermans, Uwe Wald-
mann, Natarajan Shankar, Harald Rueß, and Franz Baader for fruitful discus-
sions on the subject of this paper. I also thank the referees for their detailed and
constructive criticism on a much different initial version of this paper.

References

Baader, F. & Tinelli, C. (1997), A new approach for combining decision procedures for
the word problem, and its connection to the nelson-oppen combination method,
in W. McCune, ed., ‘Automated Deduction – CADE-14, 14th International Con-
ference on Automated Deduction’, LNAI 1249, Springer-Verlag, Townsville, North
Queensland, Australia, pp. 19–33.

Bachmair, L. & Tiwari, A. (2000), Abstract congruence closure and specializations, in

D. McAllester, ed., ‘Automated Deduction – CADE-17, 17th International Con-
ference on Automated Deduction’, LNAI 1831, Springer-Verlag, Pittsburgh, PA,
USA, pp. 64–78.

Bachmair, L., Tiwari, A. & Vigneron, L. (2002), ‘Abstract congruence closure’, J.

Automated Reasoning . To appear.
Barrett, C., Dill, D. & Levitt, J. (1996), Validity checking for combinations of theories

with equality, in M. Srivas & A. Camilleri, eds, ‘Formal Methods In Computer-
Aided Design, Palo Alto/CA, USA’, Vol. 1166, Springer-Verlag, pp. 187–201. cite-
seer.nj.nec.com/barrett96validity.html

Barrett, C., Dill, D. & Stump, A. (2002), A generalization of Shostak’s method for
combining decision procedures, in ‘Proc. FroCos 2002’, Springer-Verlag. to appear.

Bjørner, N. (1998), Integrating decision procedures for temporal verification, PhD the-
sis, Stanford University.

Huet, G. (1972), Constrained Resolution: A Complete Method for Higher Order Logic,
PhD thesis, Case Western Reserve University.

Kapur, D. (1997), Shostak’s congruence closure as completion, in H. Comon, ed.,
‘Rewriting Techniques and Applications’, Lecture Notes in Computer Science,
Springer, Sitges, Spain, pp. 23–37.

Kapur, D. (2002), A rewrite rule based framework for combining decision procedures,
in ‘Proc. FroCos 2002’, Springer-Verlag. to appear.

Manna, Z., Anuchitanulu, A., Bjørner, N., Browne, A., Chang, E. S., Colón, M., de Al-
faro, L., Devarajan, H., Kapur, A., Lee, J., Sipma, H. & Uribe, T. E. (1995),
STeP: The Stanford Temporal Prover, in ‘TAPSOFT’, Vol. 915 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 793–794.
Nelson, G. & Oppen, D. C. (1979), ‘Simplification by cooperating decision procedures’,

ACM Transactions on Programming Languages and Systems 2(2), 245–257.
Nieuwenhuis, R. & Rubio, A. (1995), ‘Theorem proving with ordering and equality

constrained clauses’, J. Symbolic Computation 19(4), 321–352.
Owre, S., Rushby, J. M. & Shankar, N. (1992), PVS: A prototype verification system,

in D. Kapur, ed., ‘11th International Conference on Automated Deduction’, LNAI
607, Springer-Verlag, Saratoga Springs, New York, USA, pp. 748–752.

Rueß, H. & Shankar, N. (2001), Deconstructing Shostak, in ‘Proceedings of the Six-
teenth IEEE Symposium On Logic In Computer Science (LICS’01)’, IEEE Com-
puter Society Press, pp. 19–28.

Shankar, N. & Rueß, H. (2002), Combining Shostak theories, in ‘Proc. RTA 2002’,
Lecture Notes in Computer Science, Springer-Verlag. to appear.

Shostak, R. E. (1984), ‘Deciding combinations of theories’, J. Association for Comput-

ing Machinery 31(1), 1–12.
Tinelli, C. & Harandi, M. (1996), A new correctness proof of the Nelson-Oppen com-

bination procedure, in ‘1st Int’l Workshop on Frontiers of Combining Systems
(FroCoS’96)’, Vol. 3 of Applied Logic Series, Kluwer Academic Publishers.

Tiwari, A. (2000), Decision procedures in automated deduction, PhD thesis, SUNY at
Stony Brook.

