
SATURATION-BASED DECISION PROCEDURES

FOR

EXTENSIONS OF THE GUARDED FRAGMENT

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

von

Yevgeny Kazakov

Saarbrücken

2005



Verfasser: Yevgeny Kazakov
Max-Planck Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
ykazakov@mpi-inf.mpg.de

Dekan: Prof. Dr. Jörg Eschmeier

Prüfungsausschuss: Prof. Dr. Jörg Siekmann
Prof. Dr. Franz Baader
Prof. Dr. Gert Smolka
Dr. Hans de Nivelle
Dr. Uwe Waldman

Tag des Kolloquiums: 17.03.2006



ABSTRACT

We apply the framework of Bachmair and Ganzinger for saturation-based theorem
proving to derive a range of decision procedures for logical formalisms, starting
with a simple terminological language EL, which allows for conjunction and exis-
tential restrictions only, and ending with extensions of the guarded fragment with
equality, constants, functionality, number restrictions and compositional axioms of
form S ◦ T ⊆ H . Our procedures are derived in a uniform way using standard
saturation-based calculi enhanced with simplification rules based on the general no-
tion of redundancy. We argue that such decision procedures can be applied for
reasoning in expressive description logics, where they have certain advantages over
traditionally used tableau procedures, such as optimal worst-case complexity and
direct correctness proofs.

ZUSAMMENFASSUNG

Wir wenden das Framework von Bachmair und Ganzinger für saturierungsbasiertes
Theorembeweisen an, um eine Reihe von Entscheidungsverfahren für logische For-
malismen abzuleiten, angefangen von einer simplen terminologischen Sprache EL,
die nur Konjunktionen und existentielle Restriktionen erlaubt, bis zu Erweiterungen
des Guarded Fragment mit Gleichheit, Konstanten, Funktionalität, Zahlenrestrik-
tionen und Kompositionsaxiomen der Form S ◦ T ⊆ H . Unsere Verfaren sind ein-
heitlich abgeleitet unter Benutzung herkömmlicher saturierungsbasierter Kalküle,
verbessert durch Simplifikationsregeln, die auf dem Konzept der Redundanz basie-
ren. Wir argumentieren, daß solche Entscheidungsprozeduren für das Beweisen in
ausdrucksvollen Beschreibungslogiken angewendet werden können, wo sie gewisse
Vorteile gegenüber traditionell benutzten Tableauverfahren besitzen, wie z.B. opti-
male worst-case Komplexität und direkte Korrektheitsbeweise.



Посвящается моим родителям

To my parents



Extended Abstract

Description logics (DLs) are families of languages used for representation of knowl-
edge and conceptual modelling. In conceptual modelling one often needs to organise
classes in hierarchies, which requires checking the subsumption relations between
classes. These and other reasoning tasks can be solved by dedicated reasoning pro-
cedures which are specially designed for every description logic. Today the research
in description logics is mainly concentrated on (1) the development of practical al-
gorithms for DLs [Horrocks, Sattler & Tobies, 2000] and (2) study of computational
complexity for reasoning problems in different DLs [see Donini, 2003; Tobies, 2001].

Most algorithms for description logics are based on so-called tableau procedures.
These procedures are shown to behave well in practice, however they have several dis-
advantages: (i) such procedures typically exhibit suboptimal worst-case complexity,
(ii) they rely on (some form of) a tree-model property for DL and (iii) they do not
use the formal semantics of DL-constructors directly. These limitations might be-
come a serious problem for development of reasoning algorithms for very expressive
description logics: this problem already arises with the DL-based ontology language
OWL for the semantic web [see Horrocks & Sattler, 2005].

In this thesis we propose an alternative approach for designing reasoning algo-
rithms for description logics which avoids the above limitations. We argue that the
framework of Bachmair & Ganzinger [1994, 1990] for saturation-based theorem prov-
ing can be used for engineering of decision procedures for many logical formalisms
that can be translated to first-order logic.

It is well-known that description logics correspond to certain fragments of first-
order logic via the standard semantical translation of DL-constructors. Hence gen-
eral theorem proving calculi for first-order logics, such as ordered resolution or or-
dered paramodulation, can be applied for solving reasoning tasks in description
logics. Such methods give only semi-decision procedures for first-order fragments,
since they do not terminate in general. Joyner Jr. [1976] has noticed that for certain
fragments of first-order logic, general theorem proving methods can be turned into
decision procedures. His method has been later extended to a variety of other first-
order fragments and, via translations, to non-classical logics [see Fermüller, Leitsch,

v



vi Extended Abstract

Hustadt & Tammet, 2001].
To ensure termination, such procedures typically use a collection of “tricks” –

like non-liftable orders, renaming or hyperresolution – which work well for one frag-
ment but do not apply for others. We demonstrate that many of these “tricks” can
be formulated as optional simplification rules. In theorem provers simplification
rules are used to prune the search space of a prover. We found that simplification
rules can be also used to eliminate potentially dangerous clauses. For example, two
clauses a(x, x)∨a(x, y) and ¬a(x, x)∨¬a(x, z) may be resolved on their first literals
producing a clause a(x, y) ∨ ¬a(x, z) with more variables. This inference can be
blocked using a non-liftable order that makes the last literals in these clauses larger.
The same effect can be achieved by splitting the input clauses in a1(x) ∨ a(x, y),
¬a1(x)∨ a(x, x) and ¬a2(x)∨¬a(x, z), a2(x)∨¬a(x, x), and using liftable orders in
which unary literals are smaller than binary ones. It is easy to see that the number
of variables does not grow with resolution on binary literals. Hence the effect of
non-liftable orders in this example is simulated with an additional simplification
rule which splits the clauses.

Simplification rules can be justified by the general notion of redundancy, intro-
duced by Bachmair & Ganzinger [1994, 1990], according to which a clause can be
deleted if it is a consequence of smaller clauses. Simplification rules produce exactly
these smaller clauses. The advantage of simplification rules is that they can be
“plugged-in” to virtually every saturation procedure. This gives a simple recipe for
engineering of decision procedures: apply a saturation strategy and resolve danger-
ous cases using simplification rules. To illustrate this approach, we give a uniform
description of several well-known resolution-based decision procedures for the guar-
ded, two-variable and monadic fragments without equality, and show how they can
be combined in a modular way. Moreover, we prove that these procedures have the
best known complexities.

We apply our framework to a range of first-order fragments that are related to
description logics. First, we consider a simple terminological language EL which
allows for conjunction and existential restrictions only. DL EL is robustly tractable:
subsumption of concepts in EL w.r.t. (cyclic) terminologies is polynomially decidable
[Baader, 2002] and remains so under many extensions [Baader, Brandt & Lutz,
2005]. Tractability of EL can be partially explained in that all clauses obtained
from translating EL-terminologies are Horn. However, this is not enough, since
the Horn logic is undecidable. The second important property is that the Skolem
functions that appear in such clauses, determine uniquely their non-functional part:
it is not possible to have clauses ¬A(x) ∨ R(x, f(x)) and ¬B(x) ∨ C(f(x)) with
A 6= B. This turns out to be an invariant under resolution inferences. These two
properties insure that ordered resolution with appropriate selection produces only
a cubic number of clauses. It also gives us a hint of how to extend EL preserving



vii

tractability.
A surprising property of saturation procedures for EL is that they can be imple-

mented right away without using any theorem prover. This is possible, because all
resolution inferences for EL, can be encoded as datalog rules, for example:

Inference: ¬A(x) ∨ B(f(x)); ¬B(x) ∨ C(x) ⊢ ¬A(x) ∨ C(f(x))

Is encoded by: C(A, B, f), D(B, C) → C(A, C, f).

To obtain saturation-based procedures for more expressive description logics,
we extend a decision procedure of Ganzinger & de Nivelle [1999] for the guarded
fragment. The guarded fragment has been introduced by Andréka, van Benthem
& Németi [1996] to transfer good properties of modal-like languages to first order
formulas. It is obtained by restricting quantification in first-order formulas to the
bounded form: ∀y.[G→F ] or ∃y.[G ∧ F ], where G is an atom-guard containing all
free variables of F . The guarded fragment captures many expressive description log-
ics, like DL ALCIH. However some constructors in description logics like nominals,
functional roles and (qualified) number restrictions do not correspond to guarded
formulas. For every of these constructors, we consider an appropriate extension of
the guarded fragment.

Restrictions for nominals correspond to first-order formulas of form ∀xy.[a(x) ∧
a(y)→x ≃ y], which are not guarded. Nominals can be expressed alternatively by
formula ∀x.[a(x)→ x ≃ ca], which is a guarded formula containing a constant ca.
Hence, to capture nominals it suffices to extend a saturation-based procedure to the
guarded fragment with constants, which can be done in two ways: using elimination
of constants described in [Grädel, 1999], or directly.

For functional restrictions and counting we are faced with a problem that guarded
fragment with functionality is undecidable in general [Grädel, 1999]. Since roles
in description logics are mostly used as guards, we consider a restriction of the
guarded fragment where functional/number restrictions can be imposed on guards
only. These fragments turned out to be decidable by paramodulation with special
simplification rules.

Finally, we are concerned with extensions of the guarded fragment with composi-
tional axioms of form S◦T ⊆ H . Such extensions are known to be very problematic,
since compositional axioms in many cases result in undecidability [Schmidt-Schauß,
1989; Grädel, 1999; Demri, 2001]. At the same time, integration of compositional
axioms is challenging, because many relations are characterised by such axioms:
temporal relations, orderings, distances and topological relations. We analyse a va-
riety of extensions of the guarded fragment with compositional axioms and identify
the border between “dangerous” and “safe” usage of such axioms. For our decid-
ability proofs we employ a refined version of the ordered chaining calculus from
[Bachmair & Ganzinger, 1998b, 1995] and a novel kind of simplification rules, like



viii Extended Abstract

the following one for transitivity:

TC :
¬(xTy) ∨ ¬a(x) ∨ b(y)

¬(xTy) ∨ ¬a(x) ∨ aT (y)
¬(xTy) ∨ ¬aT (x) ∨ aT (y)

¬aT (y) ∨ b(y)

In contrast to conventional simplification rules, such rules do not make clauses re-
dundant but they make inferences redundant: the above rule introduces a new atom
aT (x) such that (1) aT (y) is T -reachable from a(x) in one step, (2) aT (y) is closed
under T , and (3) aT (y) is contained in b(y). After applying this rule, we may “forget”
that T is transitive in the involved clauses, which formally means that the chaining
inferences with these clauses become redundant.



Ausführliche Zusammenfassung

Beschreibungslogiken (BL) sind Sprachfamilien, die für die Wissensrepräsentation
und konzeptuelle Modellierung benutzt werden. In der konzeptuellen Modellierung
müssen oft Klassen in Hierarchien organisiert werden, wozu es notwendig ist, die
Subsumptionsbeziehungen zwischen Klassen zu berechnen. Diese und andere Be-
weisaufgaben können von spezialisierten Beweiser, die speziell für jede Beschrei-
bungslogik entwickelt wurden, gelöst werden. Die Forschung auf dem Gebiet der
Beschreibungslogiken konzentriert sich gegenwärtig hauptsächlich auf (1) Entwick-
lung praxisnaher Algorithmen für BL [Horrocks et al., 2000] und (2) Erforschung
der Komplexität von Beweisaufgaben in unterschiedlichen BL [siehe Donini, 2003;
Tobies, 2001].

Die meisten Algorithmen für Beschreibungslogiken basieren auf sogenannten Ta-
bleauverfahren. Diese Verfahren haben sich in der Praxis bewährt, jedoch sind sie mit
einigen Nachteilen behaftet: (i) Solche Verfahren weisen suboptimale Worst-Case-
Komplexität auf, (ii) sie benötigen eine Baummodelleigenschaft der Beschreibungs-
logik, (iii) sie benutzen nicht direkt die formale Semantik von BL-Konstruktoren.
Diese Beschränkungen können ein ernsthaftes Problem für sehr ausdrucksstärke Be-
schreibungslogiken darstellen: Dieses Problem tritt bereits bei der BL-basierten On-
tologiesprache OWL für das Semantische Web [siehe Horrocks & Sattler, 2005] auf.

In dieser Dissertation stellen wir einen alternativen Ansatz für das Design von
Beweisalgorithmen für Beschreibungslogiken vor, welcher die obigen Probleme ver-
meidet. Wir werden argumentieren, daß das Framework für saturierungsbasiertes
Theorembeweisen von Bachmair & Ganzinger [1994, 1990] für die Konstruktion von
Entscheidungsverfahren für viele logische Formalismen benutzt werden kann, die in
eine Logik erster Stufe übersetzt werden können.

Es ist wohlbekannt, daß BL gewissen Fragmenten der Logik erster Stufe mit-
tels der standardmäßigen semantischen Übersetzung von BL-Konstruktoren ent-
sprechen. Deshalb können allgemeine Theorembeweismethoden der Logik erster Stu-
fe, z.B. geordnete Resolution oder geordnete Paramodulation, auf die Lösung von
Beweisaufgaben in BL angewendet werden. Diese Methoden ermöglichen lediglich
Semi-Entscheidungsverfahren für Fragmente erster Stufe, da sie im Allgemeinen

ix



x Ausführliche Zusammenfassung

nicht terminieren. Joyner Jr. [1976] hat bemerkt, daß für gewisse Fragmente der Lo-
gik erster Stufe generelle Theorembeweismethoden in Entscheidungsverfahren umge-
wandelt werden können. Seine Methode wurde später ausgeweitet auf eine Vielzahl
anderer Fragmente erster Stufe und durch Übersetzungen auf nicht-klassische Logi-
ken [siehe Fermüller et al., 2001].

Um eine Terminierung sicherzustellen bedienen sich solche Verfahren typischer-
weise einer Sammlung von “Tricks” – wie nicht-liftbare Ordnungen, Umbenennun-
gen oder Hyperresolution – die gut für ein gewisses Fragment funktionieren, aber
nicht für andere. Wir zeigen, daß viele dieser Tricks als optionale Vereinfachungsre-
geln formuliert werden können. Bei Theorembeweisern werden Vereinfachungsregeln
benutzt, um den Suchraum eines Beweisers einzuschränken. Wir haben herausge-
funden, daß Vereinfachungsregeln benutzt werden können, um potentiell gefährliche
Klauseln zu eliminieren. Z.B. kann es vorkommen daß zwei Klauseln a(x, x)∨a(x, y)
und ¬a(x, x)∨¬a(x, z) auf ihrem ersten Literal resolviert werden, wobei eine Klau-
sel a(x, y) ∨ ¬a(x, z) mit mehr Variablen entsteht. Diese Inferenz kann vermieden
werden, indem eine nicht-liftbare Ordnung benutzt wird, die die letzten Literale der
Klauseln größer macht. Der gleiche Effekt kann durch die Teilung der Inputklauseln
in a1(x) ∨ a(x, y), ¬a1(x) ∨ a(x, x) und ¬a1(x) ∨ ¬a(x, z), a1(x) ∨ ¬a(x, x) und der
Benutzung von liftbaren Ordnungen, bei denen unäre Literale kleiner sind als binäre
Literale, erreicht werden. Es ist leicht erkennbar, daß die Anzahl der Variablen durch
Resolution auf binären Literalen nicht wächst. So wird in diesem Beispiel der Effekt
von nicht-lifbaren Ordnungen simuliert durch eine zusätzliche Vereinfachungsregel,
die die Klauseln teilt.

Vereinfachungsregeln lassen sich rechtfertigen durch das Prinzip der Redundanz,
eingeführt von Bachmair & Ganzinger [1994, 1990], wonach eine Klausel gelöscht
werden kann, wenn sie aus kleineren Klauseln folgt. Vereinfachungsregeln produ-
zieren genau diese kleineren Klauseln. Der Vorteil von Vereinfachungsregeln ist,
daß sie in quasi jede Saturierungsprozedur “eingefügt” werden können. Dies er-
gibt eine einfache Anleitung, um Entscheidungsverfahren zu konstruieren: Wende
eine Saturierungsstrategie an und eliminiere gefährliche Fälle duch Vereinfachungs-
regeln. Um diesen Ansatz zu demonstrieren, präsentieren wir eine uniforme Beschrei-
bung von mehreren wohlbekannten resolutionsbasierten Entscheidungsverfahren für
das “Guarded Fragment”, das zwei-Variablen und das monadische Fragmente oh-
ne Gleichheit und zeigen, wie sie modular kombiniert werden können. Weiterhin
beweisen wir, daß diese Verfahren die beste bekannte Komplexität besitzen.

Wir wenden unser Framework auf eine Reihe von Fragmenten der ersten Stufe,
die mit Beschreibungslogiken verwandt sind, an. Zuerst betrachten wir eine einfache
terminologische Sprache EL, die lediglich Konjunktion und existentielle Restriktion
erlaubt. EL ist effizient entscheidbar: Subsumption von Konzepten in EL ist bzgl.
(zyklischer) Terminologien polynomiell entscheidbar [Baader, 2002] und behält diese



xi

Eigenschaft unter vielen Erweiterungen bei [Baader et al., 2005]. Die polynomielle
Entscheidbarkeit von EL kann teilweise dadurch erklärt werden, daß alle Klauseln,
die durch Übersetzung von EL-Terminologien entstanden sind, Hornklauseln sind.
Dies ist allerdings nicht genug, da Hornlogik unentscheidbar ist. Die zweite wichti-
ge Eigenschaft ist, daß die Skolemfunktionen, die in solchen Klauseln auftauchen,
ihren nicht-funktionalen Teil eindeutig festlegen: Es ist nicht möglich, daß Klau-
seln ¬A(x) ∨ R(x, f(x)) und ¬B(x) ∨ C(f(x)) mit A 6= B vorkommen. Es stellt
sich heraus, daß dies eine Invariante unter Resolutionsinferenzen ist. Diese beiden
Eigenschaften stellen sicher, daß geordnete Resolution mit angemessener Selektion
lediglich kubisch viele Klauseln produziert. Das gibt uns auch Hinweise, wie man
EL erweitert unter Erhaltung der polynomiellen Entscheidbarkeit.

Eine überraschende Eigenschaft von Saturierungsverfahren für EL ist, daß sie
ohne Zuhilfenahme eines Theorembeweisers implementiert werden können. Dies ist
möglich, da alle Resolutionsinferenzen für EL als Datalogregeln kodiert werden kön-
nen, wie zum Beispiel:

Inferenz: ¬A(x) ∨ B(f(x)); ¬B(x) ∨ C(x) ⊢ ¬A(x) ∨ C(f(x))

Wird kodiert durch: C(A, B, f), D(B, C) → C(A, C, f).

Um saturierungsbasierte Verfahren für ausdrucksstärkere Beschreibungslogiken zu
erhalten, erweitern wir ein Entscheidungsverfahren von Ganzinger & de Nivelle
[1999] für das Guarded Fragment. Das Guarded Fragment wurde von Andréka et
al. [1996] eingeführt, um die guten Eigenschaften von modalartigen Sprachen auf
Formeln der Logik erster Stufe zu übertragen. Man erhält das Guarded Fragment
indem die Quantifizierungen der Formeln der Logik erster Stufe auf die folgende
Form beschränkt werden: ∀y.[G→F ] oder ∃y.[G∧F ], wobei G ein Atom-Guard ist,
der alle freien Variablen von F enthält. Das Guarded Fragment enthält ausdrucks-
stärke Beschreibungslogiken, wie z.B. ALCIH. Jedoch fallen einige Konstruktoren
der Beschreibungslogiken, wie z.B. Nominale, funktionale Rollen und Zahlenrestrik-
tionen, nicht in dem Guarded Fragment. Für jeden dieser Konstruktoren betrachten
wir eine geeignete Erweiterung des Guarded Fragments.

Nominale entsprechen den Formeln der ersten Stufe der Form ∀xy.[a(x)∧a(y)→
x ≃ y], die nicht Guarded sind. Nominale können alternativ durch die Formel
∀x.[a(x) → x ≃ ca] ausgedrückt werden, was eine Guarded Formel ist, die eine
Konstante ca enthält. Um Nominale auszudrücken, ist es deshalb ausreichend, ein
saturierungsbasiertes Verfahren auf das Guarded Fragment mit Konstanten zu er-
weitern. Dies kann auf zwei Arten geschehen: Durch Eliminierung von Konstanten,
wie in [Grädel, 1999] beschrieben, oder direkt.

Bei der funktionalen Restriktion und den Zahlenrestriktionen gibt es das Pro-
blem, daß das Guarded Fragment mit Funktionalität im allgemeinen nicht entscheid-
bar ist [Grädel, 1999]. Da Rollen in Beschreibungslogiken größtenteils als Guards



xii Ausführliche Zusammenfassung

benutzt werden, betrachten wir eine Einschränkung des Guarded Fragments, bei
der funktionale/Zahlen-beschränkungen nur auf die Guards angewandt werden. Es
stellte sich heraus, daß diese Fragmente entscheidbar sind durch Paramodulation
mit speziellen Vereinfachungsregeln.

Schließlich betrachten wir Erweiterungen des Guarded Fragments mit Kompo-
sitionsaxiomen der Form S ◦ T ⊆ H . Es ist bekannt, daß solche Erweiterungen
sehr problematisch sind, da Kompositionsaxiome in vielen Fällen unentscheidbar
sind [Schmidt-Schauß, 1989; Grädel, 1999; Demri, 2001]. Gleichzeitig ist die Inte-
gration von Kompositionsaxiome eine Herausforderung, da viele Relationen durch
solche Axiome charakterisiert werden: temporale Relationen, Ordnungen, Distanzen
und topologische Relationen. Wir analysieren eine Vielzahl von Erweiterungen des
Guarded Fragments mit Kompositionsaxiomen und wir identifizieren die Trennli-
nie zwischen “gefährlicher” und “sicherer” Anwendung solcher Axiome. Für unsere
Entscheidbarkeitsbeweise benutzen wir eine erweiterte Variante des geordneten Ver-
kettungskalküls von [Bachmair & Ganzinger, 1998b, 1995] und eine neue Art von
Vereinfachungsregeln wie die folgende für Transitivität:

TC :
¬(xTy) ∨ ¬a(x) ∨ b(y)

¬(xTy) ∨ ¬a(x) ∨ aT (y)
¬(xTy) ∨ ¬aT (x) ∨ aT (y)

¬aT (y) ∨ b(y)

Im Gegensatz zu herkömmlichen Vereinfachungsregeln machen solche Regeln nicht
Klauseln sondern Inferenzen redundant: Obige Regel führt ein neues Atom aT (x) ein,
so daß (1) aT (y) in einem Schritt von a(x) T -erreichbar ist, (2) aT (y) ist abgeschlos-
sen unter T und (3) aT (y) ist enthalten in b(y). Nach der Anwendung dieser Regel
können wir “vergessen”, daß T transitiv in den beteiligten Klauseln ist, was formal
bedeutet, daß die Verkettungsinferenzen mit diesen Klauseln redundant werden.



Acknowledgements

First and foremost, this thesis would not be as it is without Prof. Dr. Harald
Ganzinger, who accepted me as a PhD student into his group at the Max-Planck-
Institute für Informatik. He was for me an example of a wise and rational researcher;
he taught me automated deduction and gave me inspiration through his works, which
have influenced the subject of this thesis. It is sad that he cannot appreciate what
came out as the result of his ideas.

I am indebted to my supervisor Dr. Hans de Nivelle for his constant help and
support in all my troubles, for patience with which he listened all my “inventions”
and for his efforts in improving my scientific writing. Hans always had some time
for me even during his deadlines. Several ideas of Hans have inspired and influenced
some results of this thesis.

I thank Prof. Dr. Franz Baader for agreeing to be an external referee of my thesis
and for interest to my works. I thank Prof. Dr. Gert Smolka for taking over me after
Prof. Dr. Harald Ganzinger has passed away.

I am grateful to Prof. Dr. Andrei Voronkov who brought me into the area of
automated reasoning and to Dr. Uwe Waldmann who taught me the “ins and outs” of
saturation-based theorem proving. In particular, Uwe has patiently explained me all
peculiarities for the notion of redundancy which, I hope I finally understood thanks
to his help. I thank Dr. Viorica Sofronie-Stokkermans for reading the drafts of my
papers and giving valuable remarks. Viorica has drawn my attention to DL EL which
has eventually resulted in chapter 2 of this thesis. I thank Dr. Peter Baumgartner for
encouragement, fruitful discussions and proof reading chapter 2 of this thesis. Peter
and Dr. Patrick Maier have suggested to use XSB-prolog for implementation of
datalog programs derived in chapter 2. Several people have encouraged my interests
in description logics, among them were Prof. Dr. Franz Baader, Sebastian Brandt,
Jan Hladik, Dr. Ulrike Sattler, and Anni-Yasmin Turhan. I am grateful to Birte
Glimm for proof reading of the final version of this thesis.

This thesis has also profited from discussions on various topics with Thomas Hil-
lenbrand, Dr. Konstantin Korovin, Dr. Chin Soon Lee, Dr. Renate Schmidt, Dr. Ger-
not Stenz, Alexander Malkis, Prof. Dr. Andreas Podelski, Dr. Stefan Ratschan and

xiii



xiv Ausführliche Zusammenfassung

Dr. Andrey Rybalchenko. I also thank Rostislav Rusev for helping me with running
the experiments described in section 2.6. Special thanks to Brigitta Hansen, Ker-
stin Meyer-Ross, Simone Schulze, Veronika Weinand and administration of MPII
for making my stay in Germany less troublesome as it could be.

A number of my friends have implicitly contributed to this thesis by encourag-
ing/teasing me during all these years. Among them were Christoph Clodo, Kirill
Dmitriev, Konstantin Korovin, Evghenia Stegantova, Andrey Rybalchenko, Dalibor
Topic and my old Russian friends. Probably I have forgotten to mention somebody.
Apologies to those.

And of course this thesis would not be possible without the permanent and warm
support of my family.

Thank you all.



Biographical Sketch

Yevgeny Leonidovich Kazakov (Евгений Леонидович Казаков) was born in the city
of Chelyabinsk, Russia on April 13th, 1977. Since his early childhood he showed
interest in mathematics, which resulted in that he was accepted to a specialised High
School for Physics & Mathematics (Lyceum No. 31), where he studied from 1990 to
1994. During this period he participated in many competitions on mathematics and
physics and won several awards (most notably, the 1st place in the central Russian
mathematical Olympiad).

In 1994 he was accepted to the Moscow State University on the Faculty of Me-
chanics and Mathematics where he took a series of courses on algebra, calculus,
functional analysis, math statistics, optimisation theory and discreet mathematics.
In 1996 he specialised in mathematical logic and worked on “logics of proofs” in the
Department of Mathematical Logic and Theory of Algorithms under the supervi-
sion of Prof. Sergei N. Artemov and Prof. Vladimir N. Krupski. In June 1999 he
graduated with honours. The title of his diploma thesis was: “Logics of Proofs for
S5”.

From 1999 to 2001 he worked in a company specialised on development and
distribution of software solutions for accounting as a chief project manager. He
obtained several specialist certificates on Russian software products for accounting.

In October 2001 he returned to research by joining the Programming Logics
Group of the Max Planck Institute for Informatics in Saarbücken, Germany within
the PhD programme of the International Max Planck Research School for Computer
Science (IMPRS). He shifted his interests to automated deduction and later focused
his research to saturation-based decision procedures and description logics. He is an
author of several publications on these topics which include a solution of some open
problem from description logics.

The following list gives in chronological order the refereed conference publica-
tions:1

1an up-to-dated list of publications, technical reports and drafts with respective links can be
found in http://www.mpi-sb.mpg.de/~ykazakov/publications.html

xv

http://www.mpi-sb.mpg.de/~ykazakov/publications.html


xvi Ausführliche Zusammenfassung

Yevgeny Kazakov and Hans de Nivelle. Subsumption of concepts in FL0 for (cyclic)
terminologies with respect to descriptive semantics is PSPACE-complete. In Diego
Calvanese, Giuseppe De Giacomo, and Enrico Franconi, editors, Description Log-
ics, volume 81 of CEUR Workshop Proceedings, 2003.

Yevgeny Kazakov and Hans de Nivelle. A resolution decision procedure for the
guarded fragment with transitive guards. In David A. Basin and Michaël Rusi-
nowitch, editors, IJCAR, volume 3097 of Lecture Notes in Computer Science,
pages 122–136. Springer, 2004. ISBN 3-540-22345-2.

Yevgeny Kazakov. A polynomial translation from the two-variable guarded fragment
with number restrictions to the guarded fragment. In José Júlio Alferes and
João Alexandre Leite, editors, JELIA, volume 3229 of Lecture Notes in Computer
Science, pages 372–384. Springer, 2004. ISBN 3-540-23242-7.



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, daß ich die vorliegende Arbeit selbständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 5. Oktober 2005

xvii



Contents

Contents xviii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
List of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

1 Introduction 1
1.1 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Saturation-Based Decision Procedures . . . . . . . . . . . . . . . . . . 3
1.3 The Guarded Fragment and Its Extensions . . . . . . . . . . . . . . . 5
1.4 Theories of Compositional Binary Relations . . . . . . . . . . . . . . 5
1.5 Outline and Structure of this Thesis . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Engineering Logical Algorithms using S.B.T.P. 10
2.1 Description Logic EL . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Resolution-Based Decision Procedures . . . . . . . . . . . . . . . . . 15

2.2.1 The Ordered Resolution Calculus . . . . . . . . . . . . . . . . 16
2.3 A Resolution Decision Procedure for EL . . . . . . . . . . . . . . . . 19

2.3.1 Enforcing Termination . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Making It Simple . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Extensions of DL EL . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 GCIs, Bottom Concept and Extended Role Hierarchies . . . . 29
2.4.2 Cross-Products of Concepts . . . . . . . . . . . . . . . . . . . 32
2.4.3 Nominals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 DL EL and Restricted Role-Value Maps . . . . . . . . . . . . . . . . 35
2.5.1 Undecidability for Some Extensions of EL with Role-Value Maps 35
2.5.2 A Resolution Strategy for EL with Restricted Role-Value Maps 38

2.6 First Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xviii



CONTENTS xix

2.8 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Preliminaries 53
3.1 Logical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 First-Order Clause Logic . . . . . . . . . . . . . . . . . . . . . 55
3.1.3 Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.4 Substitutions And Unification . . . . . . . . . . . . . . . . . . 59

3.2 Modal and Description Logics . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 Propositional Modal Logics . . . . . . . . . . . . . . . . . . . 61
3.2.2 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Reasoning in Modal and Description Logics . . . . . . . . . . 69

3.3 Decidable Fragments of First-Order Logic . . . . . . . . . . . . . . . 71
3.3.1 Prefix-vocabulary Classes . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Two-Variable Fragments . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Guarded Fragments . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Domino Problems and Undecidability . . . . . . . . . . . . . . . . . . 76
3.5 A Framework of Saturation-Based Theorem Proving . . . . . . . . . . 77

3.5.1 Saturation-Based Theorem Proving . . . . . . . . . . . . . . . 77
3.5.2 The Ordered Resolution Calculus . . . . . . . . . . . . . . . . 78
3.5.3 Equational Reasoning . . . . . . . . . . . . . . . . . . . . . . 80
3.5.4 Chaining Calculi . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.5 Variations of Inference Systems . . . . . . . . . . . . . . . . . 87
3.5.6 The Theorem Proving Process . . . . . . . . . . . . . . . . . . 89
3.5.7 Clause Normal Form Transformation . . . . . . . . . . . . . . 92

4 Saturation-Based Decision Procedures 97
4.1 Decision Procedures Based on Ordered Resolution . . . . . . . . . . . 99

4.1.1 Deciding the Guarded Fragment without Equality . . . . . . . 99
4.1.2 Deciding the Two-Variable Fragment without Equality . . . . 108
4.1.3 Deciding the Monadic Fragments without Equality . . . . . . 114

4.2 Combinations of Decidable Fragments . . . . . . . . . . . . . . . . . . 118
4.2.1 Deciding the Combination of Guarded and Two-Variable Frag-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2.2 Deciding Combinations with the Monadic Fragment . . . . . . 124
4.2.3 Undecidability Results . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Paramodulation-based Decision Procedures . . . . . . . . . . . . . . . 127
4.3.1 Guarded Fragment with Equality . . . . . . . . . . . . . . . . 127
4.3.2 Guarded Fragment with Constants . . . . . . . . . . . . . . . 130
4.3.3 Guarded Fragment and Functionality . . . . . . . . . . . . . . 137



xx CONTENTS

4.3.4 Guarded Fragment with Counting . . . . . . . . . . . . . . . . 145
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Guarded Fragment over Compositional Theories 152
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.1 Examples and Applications of Compositional Theories . . . . 153
5.1.2 A Short History of the Guarded Fragment with Transitivity . 160
5.1.3 Undecidability of the Guarded Fragment with Transitivity . . 161
5.1.4 On the Modal Fragment with Transitivity . . . . . . . . . . . 165

5.2 Extensions without Equality . . . . . . . . . . . . . . . . . . . . . . . 169
5.2.1 Deciding the Guarded Fragment with Transitive Guards . . . 169
5.2.2 Deciding the Guarded Fragment with Compositional Guards . 177
5.2.3 Undecidability of the Guarded Fragment over Relational Al-

gebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.3 Extensions with Equality . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.3.1 Undecidability for Associative Compositional Axioms . . . . . 185
5.3.2 Undecidability for Conjunctions of Transitive Guards . . . . . 187
5.3.3 A Decision Procedure for the Guarded Fragment with Tran-

sitive Guards and Equality . . . . . . . . . . . . . . . . . . . . 188
5.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . 189

6 Summary 192

A DL EL and Its Extensions 196
A.1 Evaluation of Queries in DL EL Using Ordered Resolution . . . . . . 196
A.2 An Example for Query Evaluation in DL EL Using Datalog . . . . . 199
A.3 Additional Rules for Querying Subsumption in DL EL . . . . . . . . 201
A.4 Extensions of DL EL with Cross-Products of Concepts . . . . . . . . 203
A.5 Extensions of DL EL with Nominals . . . . . . . . . . . . . . . . . . 208
A.6 Extensions of DL EL with Restricted Role-Value Maps . . . . . . . . 217
A.7 Prolog Programs for Reasoning in DL EL . . . . . . . . . . . . . . . . 221

B Schemes of Expressions and Clauses 226
B.1 Signature Parameters and the Choice Operator . . . . . . . . . . . . 227
B.2 Sets of Terms and Literals . . . . . . . . . . . . . . . . . . . . . . . . 228
B.3 Variable-Vectors and Scheme definitions . . . . . . . . . . . . . . . . 229
B.4 The Formal Semantics for Clause Schemes . . . . . . . . . . . . . . . 231
B.5 Scheme Contexts and Defined Parameters . . . . . . . . . . . . . . . 233
B.6 Indexing of Signature Elements and Parameters . . . . . . . . . . . . 234
B.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



CONTENTS xxi

C Complexity of Saturation-Based Decision Procedures 236
C.1 Resolution-Based Decision Procedures . . . . . . . . . . . . . . . . . 236

C.1.1 Complexity of the Procedure for GF . . . . . . . . . . . . . . 236
C.1.2 Complexity of the Procedure for FO2 . . . . . . . . . . . . . . 240
C.1.3 Complexity of the Procedure forMf . . . . . . . . . . . . . . 242

C.2 Paramodulation-Based Decision Procedures . . . . . . . . . . . . . . 243
C.2.1 Complexity of the Procedure for GF≃ . . . . . . . . . . . . . . 243
C.2.2 Complexity of the Procedure for GF≃ with Constants . . . . . 244

D GF with Compositional Guards 246
D.1 Redundancy Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
D.2 Deciding GF [TG] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
D.3 Deciding GF [CG] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D.4 A Sketch of a Decision Procedure for GF≃[TG] . . . . . . . . . . . . . 256

Bibliography 265

Index 278



List of Tables

2.1 An EL-terminology of human relations . . . . . . . . . . . . . . . . . 12
2.2 Some reasoning problems for description logics . . . . . . . . . . . . . 14
2.3 A first-order translation and CNF-translation for EL-terminologies . 17
2.4 A CNF-translation for some reasoning problems in description logics 18
2.5 Clause types for EL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Summary for inferences between clauses for EL . . . . . . . . . . . . 22
2.7 A datalog program for reasoning problems in EL . . . . . . . . . . . . 23
2.8 A datalog translation for terminology of human relations . . . . . . . 24
2.9 An extension of the datalog program for instance and retrieval prob-

lems in EL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 A datalog program for classification of EL-terminologies . . . . . . . 26
2.11 CNF-translation for (extended) role hierarchies . . . . . . . . . . . . 30
2.12 Summary of inferences for (extended) role hierarchies in EL . . . . . 31
2.13 Additional datalog rules for reasoning with role hierarchies in EL . . 32
2.14 CNF-translation for cross-products of concepts . . . . . . . . . . . . 33
2.15 CNF-translation for nominals . . . . . . . . . . . . . . . . . . . . . . 34
2.18 CNF-translation for restricted role-value maps . . . . . . . . . . . . 41

3.1 Frame correspondence properties for some modal axioms . . . . . . . 64
3.2 Some constructors for description logics . . . . . . . . . . . . . . . . . 67

4.1 Types of clauses resulted form CNF transformation for guarded for-
mulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 A clause class for the guarded fragment without equality . . . . . . . 104
4.3 Possible inferences between clauses for the guarded fragment . . . . . 106
4.4 Types of clauses resulted form CNF transformation for two-variable

formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5 A clause class for the two-variable fragment without equality . . . . . 110
4.6 Possible inferences between clauses for the two-variable fragment . . . 113
4.7 Types of clauses resulted form CNF transformation for monadic for-

mulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xxii



LIST OF TABLES xxiii

4.8 A clause class for the monadic fragment without equality . . . . . . . 117
4.9 Possible inferences between clauses for the two-variable fragment . . . 117
4.10 Possible inferences between the clauses of the guarded and two-variable

fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.11 Possible inferences between the clauses from (M) and from (G) ∪ (T) 125
4.12 A clause class for the guarded fragment with equality . . . . . . . . . 128
4.13 Possible inferences between clauses for the guarded fragment with

equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.14 A clause class for the guarded fragment with eliminated constants . . 133
4.15 A decision procedure using elimination of constants from GF . . . . . 134
4.16 A clause class for the guarded fragment with constants . . . . . . . . 135
4.17 A direct decision procedure for the guarded fragment with constants . 136
4.18 Clause types for guarded formulas with functional guards . . . . . . . 140
4.19 A clause class for the guarded fragment with functional guards . . . . 141
4.20 Possible inferences between clauses for GF [FG] . . . . . . . . . . . . . 143
4.21 Additional clause types for guarded formulas with number restrictions 147

5.1 Encoding of GRID in the guarded fragment with transitivity . . . . . 162
5.2 A clause class for the guarded fragment with transitive guards . . . . 175
5.3 A clause class for the guarded fragment with compositional guards . . 182

A.3 A deductive closure for the database correspondent to TBox and ABox199
A.4 Answering of the queries ?-Grandfather ⊑ Father and ?- John : Grandfather200
A.5 Additional clause types for the extension of DL EL with cross-products

of concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.6 Summary of inferences for cross-products of concepts in EL . . . . . . 203
A.7 A datalog program for reasoning with cross-products of concepts in EL206
A.8 Clause types for extensions of EL with nominals . . . . . . . . . . . . 208
A.9 Summary of inferences for nominals in EL . . . . . . . . . . . . . . . 209
A.10 An extension of the datalog program for reasoning with nominals in

EL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
A.11 Clause types for extensions of EL with for restricted role-value maps 218
A.12 Summary of inferences for restricted role-value maps in EL . . . . . . 219
A.13 A datalog program for reasoning with restricted role-value maps in EL220

B.1 Summary for the usage of signature parameters in schemes . . . . . . 228
B.2 Summary for the usage of the set constructor in schemes . . . . . . . 230
B.3 Summary for the usage of variable-vectors and scheme definitions in

schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
B.4 Recursive definitions for schemes of expressions and clauses . . . . . . 231



xxiv LIST OF TABLES

B.5 The formal semantics for schemes of expressions and clauses . . . . . 232
B.6 Summary for the usage of context parameters in schemes . . . . . . . 234
B.7 Summary for the usage of clause schemes . . . . . . . . . . . . . . . . 235

D.1 Possible inferences between clauses for GF [TG] . . . . . . . . . . . . . 250
D.2 Possible inferences between clauses for GF [CG] . . . . . . . . . . . . . 253
D.3 A clause class for the guarded fragment with transitive guards and

equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262



List of Figures

2.1 The ordered resolution calculus with selection and simplification . . . 18
2.2 The ordered paramodulation calculus with selection . . . . . . . . . . 34
2.3 Performance comparison w.r.t. the number of roles . . . . . . . . . . 45
2.4 Detailed performance comparison w.r.t. DP and CP . . . . . . . . . . 46
2.5 Performance comparison w.r.t. the definition probability . . . . . . . 47
2.6 Performance comparison for very hard problems . . . . . . . . . . . . 48

3.1 Encoding of tiling conditions in the first-order logic . . . . . . . . . . 76
3.2 The merging paramodulation rule . . . . . . . . . . . . . . . . . . . . 81
3.3 The simultaneous paramodulation and superposition rules . . . . . . 87
3.4 The hyper-resolution rule . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.5 A hyper- extension of the Negative Chaining rule . . . . . . . . . . . . 88
3.6 Some simplification rules used in saturation-based theorem provers . . 89
3.7 A model of a prover with eager simplification rules . . . . . . . . . . 91
3.8 Negation normal form transformation for first-order formulas . . . . . 93
3.9 The structural transformation for a recursively defined set of formulas 94
3.10 Skolemization for first-order formulas in NNF . . . . . . . . . . . . . 95
3.11 Clausification for quantifier-free first-order formulas . . . . . . . . . . 96

4.1 The Literal Projection rule . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Undecidability of GF3[functional(r)] . . . . . . . . . . . . . . . . . . . 139
4.3 The outline of decision procedures for ALCQIb and GFN . . . . . . 149

5.1 Spatial relations of RCC8 . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2 Allen’s [1983] relations between intervals . . . . . . . . . . . . . . . . 158
5.3 Undecidability of GF2 with two transitive relations . . . . . . . . . . 162
5.4 The general Transitive Closure rule . . . . . . . . . . . . . . . . . . . . 173
5.5 The Compositional Closure rule . . . . . . . . . . . . . . . . . . . . . . 178
5.6 An optimised variant of the Compositional Closure rule . . . . . . . . . 180
5.7 An extension of the Compositional Closure rule to several composi-

tional relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xxv



xxvi LIST OF FIGURES

5.8 Undecidability of GF2 with guards over a relational algebra . . . . . . 184
5.9 Undecidability of GF2

≃ with compositional guards . . . . . . . . . . . 186
5.10 Undecidability of GF2

≃ with conjunctions of transitive guards . . . . . 188
5.11 Summary of (un)decidabile extensions of GF with compositional the-

ories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.1 The Equivalence Closure rule . . . . . . . . . . . . . . . . . . . . . . . 259



List of Systems

1 Tableau expansion rules for MLs K and K4 . . . . . . . . . . . . . . 70
2 Tableau expansion rules for DL ALC . . . . . . . . . . . . . . . . . . 71
3 The ordered resolution calculus with selection OR≻

Sel . . . . . . . . . 79
4 The ordered paramodulation calculus OP≻

Sel
. . . . . . . . . . . . . . 80

5 The superposition calculus SP≻
Sel

. . . . . . . . . . . . . . . . . . . . 82
6 The ordered chaining calculus for compositional binary relations OC≻Sel 84
7 The subterm chaining calculus SC≻

Sel
. . . . . . . . . . . . . . . . . . 86

xxvii





Chapter 1

Introduction

One of the major areas of present day research is concerned with the development
of systems for automated processing of information. The demand for such systems
grows constantly along with the number of accessible information resources, espe-
cially for such huge ones as the World Wide Web.

One branch of the research in this area led to the development of so-called knowl-
edge representation languages. The purpose of such language is to represent infor-
mation in a rigorous and formally definable manner, and to be able to reason about
it in a systematic and logical way, preferably with a minimal human interaction.
Often such languages can be seen as fragments of first-order logic.

In this thesis we revisit the basic reasoning problems for such languages and look
at them from the viewpoint of first-oder logic. We demonstrate that for many of
these reasoning problems, it is possible to come up with decision procedures based
on the theory of saturation-based theorem proving used in automated deduction.

The main part of this thesis is devoted to the development of such decision pro-
cedures for different fragments of first-oder logic (mainly extensions of the guarded
fragment) that capture respective knowledge-representation formalisms. We argue
that our approach has several principal advantages over the conventional tableau-
based methods commonly used for reasoning in knowledge representation languages,
which makes it more suitable for the development of reasoning procedures for very
expressive languages such as the ontology language for the Semantic Web OWL.

1.1 Description Logics

Description logics (short DL) [Baader, Calvanese, McGuinness, Nardi & Patel-
Schneider, 2003] is a family of formalisms for representation of and reasoning about
knowledge. The basic blocks in description logics are concepts and roles. Concepts

1



2 Introduction

are thought as sets of entries (or unary relations). Roles represent binary relations
on entries.

For example we can consider concepts Human, Male, Father which intuitively
represent the set of all humans, respectively, male beings (including animals), and
fathers. One can use formulas Human(x), Male(x), Father(x) to express the basic
statements like “x is a human”, “x is male” or “x is a father ”. Similarly, one can
consider a role has-child, and use has-child(x, y) to express “y is a child of x”.

Although for us these concepts and roles carry already a certain meaning, for
a computer they are not more than just words. This is because humans implicitly
assume certain relationships between concepts, like, for instance:

“x is a Father if and only if

x is Male, x is a Human, and x has-a-child y who is a Human” (1.1)

These relationships are formalized in description logics by means of so-called con-
structors. For example, most of description logics allow for conjunction of concepts:
(concept)⊓ (concept). This constructor can be used for defining, say, a new concept:

Man
·
= Human ⊓Male (1.2)

as the intersection for the sets of Human and Male beings. Binary relations partici-
pate in role constructors, using which, say, (1.1) can be formalized as follows:

Father
·
= Human ⊓Male ⊓ ∃has-child.Human (1.3)

Here role has-child is used in a constructor ∃(role).(concept) called existential re-
striction. Concept ∃has-child.Human represents the set of all elements x such that
there exists some y related to x by role has-child such that Human(y) holds.

Different description logics typically use different sets of constructors. The more
constructors there are in a description logic—the more expressive the logic is.

A collection of definitions of the above form is called a terminology and represents
a basic knowledge about concepts. In order to process knowledge on a computer, it
is not enough to provide constructors for writing terminologies; one should also be
able to reason about concepts. For example, a computer must be able to conclude
that the following simplified definition describes the same concept as (1.3):

Father
·
= Man ⊓ ∃has-child.Human (1.4)

Such reasoning is possible using dedicated procedures that are designed for descrip-
tion logics of interest. These algorithms typically address the following questions
about a terminology : “are concepts C and D equivalent?” , or “is every element of



1.2. Saturation-Based Decision Procedures 3

C belongs to D?” . Such questions are harder to answer for expressive description
logics.

Originally ontologies have been developed in order to provide meanings to in-
formation entries. In description logics, this can be done using so-called assertions
which annotate entries with relevant concepts. For example, the assertion:

Bill : Father

describes individual Bill as an instance of concept Father. This assignment has
implicit consequences, for example that Bill must be Male, that has-child, etc.

1.2 Saturation-Based Decision Procedures

Historically, the research in expressive description logics went into two separate
directions. One line of research has been concerned with complexity issues for de-
scription logics [see Donini, 2003; Tobies, 2001]. The other line has been focused
on the development of practical procedures for solving reasoning tasks in description
logics [see e.g., Horrocks et al., 2000]. Such procedures typically exhibit suboptimal
worst-case complexity, however they were proven to behave good in practice because
of numerous optimisation techniques employed.

The difference between these two approaches is that they are often based on
different reasoning paradigms: practical procedures typically employ tableau-based
procedures that (attempt to) construct a model; optimal algorithms often apply
automata-theoretic arguments to extract complexity results. Although there have
been some attempts to bring these two approaches under the same roof [see e.g.,
Baader, Hladik, Lutz & Wolter, 2003], so far there is no practical reasoner for
expressive description logics, which has a provably optimal complexity. In this thesis
we argue that saturation-based theorem proving could serve this unifying rôle by
providing theoretically optimal procedures that are amenable to optimisation.

What are the saturation-based procedures? Procedures based on satura-
tion are general methods for checking satisfiability/validity of first-order formulas
[Bachmair & Ganzinger, 2001]. These procedures have been implemented in many
automated theorem provers like Spass [Weidenbach, Brahm, Hillenbrand, Keen,
Theobalt & Topić, 2002] and Vampire [Riazanov & Voronkov, 2002]. Saturation
procedures work by producing inferences from formulas using special inference rules
like:

Resolution

R :
C ∨ A D ∨ ¬A

C ∨D



4 Introduction

This process of producing new formulas from existing ones is called saturation.
There are three possible outcomes of the saturation procedure: either (1) a “con-
tradiction” is obtained or (2) a set of formulas (the saturation) is computed which
is closed under all rules, or (3) the procedure does not terminate. The first two
outcomes correspond to “Yes/No” answers for the input problem (is formula satisfi-
able/valid ?).

How do description logics relate to first-order logic? The major advantage
of description logics over the previous languages for knowledge representation, is
the presence of well-defined formal semantics [Levesque & Brachman, 1987]. This
means, in particular, that there is a native correspondence between constructors
of description logics and first-order formulas, for example: Human ⊓ Male 99K

Human(x) ∧ Male(x), ∃has-child.Human 99K ∃y.[has-child(x, y) ∧ Human(y)], etc.
This translation opens possibilities of using general first-order theorem provers for
reasoning in description logics: one simply applies this translation, and runs a prover
on the resulted formulas.

Unfortunately, a general prover does not terminate in general. Yet, for formulas
of certain restricted forms (say, for formulas that correspond to a particular descrip-
tion logic) it is often possible to insure termination by “tweaking” certain parameters
of a prover. In other words, a prover can be turned into a decision procedure for
a specific class of formulas, and hence, can be used for solving reasoning tasks in
particular description logics.

What is the advantage of saturation-based procedures? All procedures
need to be shown correct (at least once). In order to prove correctness, one generally
needs to show three things: (1) soundness, (2) completeness and (3) termination of
the procedure. The first two mean that whenever a “Yes/No” answer is computed
by a procedure then this is the right answer.

In order to prove soundness and completeness for tableaux algorithms, one often
needs to deal with a rather non-trivial analysis of models. Such analysis is hard to
formalise, and, what is more important, all proofs must be reconsidered every time
the procedure is changed (say, in order to cope with new constructors).

In contrast to tableaux-based procedures, soundness and completeness of a gen-
eral saturation procedure is proven once-and-for-all. Every specific strategy for a
particular class of formulas is an instance of the general procedure, which means that
it is automatically sound and complete. Hence proving correctness of saturation-
based procedures is essentially reduced to proving (3) termination.



1.3. The Guarded Fragment and Its Extensions 5

1.3 The Guarded Fragment and Its Extensions

As has been pointed out, description and modal logics correspond to fragments of
first-order logics via their standard semantical translation. Andréka et al. [1996]
have noticed that most formulas from such fragments are guarded.

The guarded formulas are constructed as usual first-order formulas, with one
exception: all quantification in such formulas must be bounded, i.e., of the form:

∀y.[G→F ] or ∃y.[G ∧ F ]

where G is an atom-guard for F , meaning that G contains all free variables of F .
For example the formula ∃y.[has-child(x, y)∧Human(y)] that corresponds to concept
∃has-child.Human, has a guard has-child(x, y). The set of all guarded formulas forms
the guarded fragment.

The guarded fragment has been extensively studied in literature. Grädel [1999]
has demonstrated that this fragment has many nice model-theoretic properties,
which make it more “close” to modal and description logics than the two-variable
fragment, considered previously. He has also described a decision procedure for the
guarded fragment and characterised its complexity. Ganzinger & de Nivelle [1999]
have found an elegant saturation-based decision procedure for the guarded fragment,
which opened possibilities for the practical usage of this fragment. In this thesis we
generalise and extend this procedure in various ways.

Although many description logics can be expressed in the guarded fragment,
there are some constructors which do not correspond directly to guarded formulas,
like nominals, functional restrictions for roles and (qualified) number restrictions.
In this thesis we discuss how to extend the guarded fragment in order to cope with
these constructors, and how to obtain saturation-based decision procedures for these
extensions.

1.4 Theories of Compositional Binary Relations

One particular type of constructors in description logics which is especially hard to
deal with, is characterised by compositional axioms of form:

S ◦ T ⊆ H 99K ∀xyz.[(xSy) ∧ (yTz)→(xHz)] (1.5)

Such axioms are often required when we want to speak about relations with com-
plex dependencies, such as temporal relations, orderings, geometrical or topological
relations. For example, the following properties can be seen as instances of (1.5):

• If (x happened before y) and (y happened before z)
then (x happened before z)



6 Introduction

• If (x < y) and (y ≤ z) then (x < z)

• If (x is a part-of y) and (y is located-in z) then (x is located-in z)

• If (the distance between x and y is ≥ 5) and
(the distance between y and z is < 2)

then (the distance between x and z is ≥ 3)

Integration of such compositional theories into description logics is often required
for medical applications [Schulz & Hahn, 2001; Rector, 2002], and would open new
perspectives for terminological reasoning about ordered domains, temporal processes,
and geographical data.

The difficulty is that compositional axioms often lead to undecidability of logical
formalisms. Already the transitivity axiom T ◦ T ⊆ T when added to the guarded
fragment, makes it undecidable [Grädel, 1999]. Many simple description logics loose
decidability with general compositional axioms of form (1.5) [Schmidt-Schauß, 1989;
Baader, 2003; Donini, 2003].

In this thesis we study several extensions of the guarded fragment with com-
positional theories and identify the decidability barrier for these extensions. The
crucial observation which allows us to establish many decidability results, is that
compositional theories from the “real world” are not “general”, but admit many reg-
ular algebraic properties (for example associativity of composition), which can be
exploited in decision procedures.

1.5 Outline and Structure of this Thesis

This thesis is devoted to application of the Bachmair & Ganzinger’s [1990; 1994]
framework of saturation-based theorem proving to the decision problem for exten-
sions of the guarded fragment that are relevant for description logics and other
knowledge representation languages. The main points of this thesis can be put as
follows:

• We give a uniform account of many known and new saturation-based decision
procedures. We introduce a special scheme notation which facilitates descrip-
tion of such procedures. We also show that our procedures give the best known
complexities in most cases.

• We argue that many fragment-specific strategies used in saturation-based pro-
cedures, can be naturally formulated as simplification rules. Simplification
rules have an advantage that they do not affect refutational completeness of



1.5. Outline and Structure of this Thesis 7

saturation-based calculi and may be combined with each other in arbitrary
ways.

• We introduce a new form of combination of first-order fragments which natu-
rally corresponds to combining of constructors in description logics. We argue
that such combinational approach makes it possible to design decision proce-
dures in a modular way.

• Finally, we introduce a new class of simplification rules, which unlike standard
simplification rules affect inferences and not clauses. We use such simpli-
fication rules for obtaining decision procedures for several extensions of the
guarded fragment with compositional theories.

The main material of this thesis is organized as follows:

In chapter 2 we give a preview of our methods on the example of a small
terminological language EL. Despite its introductory status, this chapter describes
several new (un)decidability and complexity results for extensions of EL, and pro-
vides an empirical comparison of saturation and tableaux-based procedures. This
gives a strong motivation for our subsequent theoretical studies.

In chapter 3 we give standard technical preliminaries to the material of this
thesis. We introduce logical terminology, non-classical logics, decidable fragments
of first-order logic and domino problems. Then we introduce the framework of refu-
tational theorem proving which is the theoretical basis of our decision procedures.

In chapter 4 we describe several saturation-based decision procedures for the
guarded, two-variable and monadic fragments, their combinations and extensions.

First, we are concerned with resolution-based decision procedures: we refine the
known procedures for the guarded, two-variable and monadic fragments without
equality and demonstrate that our procedures have the best known complexity.

Then we introduce a new type of combination of fragments which composes their
recursive definitions, and argue that such combination is useful for modular develop-
ment of decision procedures: we demonstrate how resolution decision procedures for
combinations of the guarded, two-variable and monadic fragments can be obtained
by reusing the procedures for their components.

After that, we focus on extensions of the guarded fragment with equality. We
consider several extensions that correspond to constructors frequently used in de-
scription loigc: the guarded fragment with constants, functionality and number
restrictions, and extend the procedure of Ganzinger & de Nivelle [1999] for the
guarded fragment with equality, to these fragments.



8 Introduction

In chapter 5 we focus on extensions of the guarded fragment with compositional
theories characterised by axioms of form S ◦ T ⊆ H . This chapter presents case
studies of (un)decidability/complexity results for many of these extensions.

First we consider extensions of the guarded fragment without equality. From
[Grädel, 1999; Ganzinger, Meyer & Veanes, 1999] it is known that the guarded
fragment with transitivity is in general undecidable. We sharpen both of these
undecidability results by proving that already two transitive relations make the
two-variable version of the guarded fragment undecidable.

Following Szwast & Tendera [2001] we consider a restricted version of the guarded
fragment with transitivity—the guarded fragment with transitive guards—in which
transitive relations are restricted to occur only as guards. Inspired by a translation
of modal formulas over transitive frames proposed in [de Nivelle, 1999], we formulate
a special simplification rule which makes certain dangerous inference with transi-
tive atoms redundant. This additional rule makes it possible to obtain a decision
procedure for the guarded fragment with transitive guards based on the chaining
calculus.

After that, we generalise our procedure to a larger class of compositional axioms
which admit associativity property and relax restrictions on usage of compositional
relations in guarded formulas. We show then that further possible extensions of the
guarded fragment with “regular ” compositional axioms of form S ◦T ⊆ H1∪· · ·∪Hn

are not decidable in general.
Finally we reconsider our results for the case when equality is allowed, and

demonstrate that most decidability results are no longer valid. The only exception is
the guarded fragment with transitive guards and equality [Szwast & Tendera, 2001],
for which we sketch a saturation-based procedure based on special simplification
rules.

In chapter 6 we summarise all results obtained in this thesis and outline possible
direction for future works.

Some technical material from chapters 2, 4 and 5 is postponed to Appendixes A,
B, C and D. This thesis tries to be self-contained, however the necessary references
to the related literature are also provided to complement the material of the thesis.
Some results mentioned in this thesis have been previously published in [Kazakov
& de Nivelle, 2003, 2004; Kazakov, 2004].

1.6 Contributions

The following original results have been presented in this thesis:



1.6. Contributions 9

1. Polynomial-time saturation-based procedures for solving subsumption and in-
stance problems in extensions of DL EL with GCIs, role hierarchies, conjunc-
tions of roles, cross-products of concepts, nominals and restricted role-value
maps.1 Empirical evaluation of the procedures for EL on randomly generated
TBoxes. [chapter 2]

2. Undecidability for DL EL with restricted role-value maps extended with one
of the following constructors: conjunction of roles, disjunction of concepts,
universal value restriction, and inverse roles. [chapter 2]

3. Resolution-based decision procedures for the guarded, two-variable and full
monadic fragments without equality, of best known complexities.2 [chapter 4]

4. The notion of structural combination of recursively defined fragments of first-
oder logic. Resolution-based decision procedures for combinations of the guar-
ded, two-variable and full monadic fragments without equality. Undecidability
for some combinations of these fragments in the case with equality. [chapter 4]

5. Paramodulation-based decision procedures for extensions of the guarded frag-
ment with equality, constants and counting guards. A related result has been
published in [Kazakov, 2004]. [chapter 4]

6. Undecidability for the two-variable guarded fragment without equality with
two transitive relations. [chapter 5]

7. Complexity-optimal chaining-based decision procedures for the guarded frag-
ment without equality with conjunctions of compositional guards. A similar
resolution-based procedure that covers a part of this result has been published
in [Kazakov & de Nivelle, 2004]. [chapter 5]

8. Undecidability for: the two-variable guarded fragment without equality, with
guards from a relational algebra; the two-variable guarded fragment with
equality and compositional guards; and the two-variable guarded fragment
with equality and conjunctions of transitive guards. [chapter 5]

1polynomial-time subsumption algorithms for some of these DLs were known from [Baader,
2003; Brandt, 2004a; Baader et al., 2005]

2decidability of these fragments by resolution was known from other works, however the com-
plexities of such procedures were either not known or not optimal for some cases



Chapter 2

Engineering Logical Algorithms using

Saturation-Based Theorem Proving

In this chapter we demonstrate how the framework of saturation-based theorem
proving of [Bachmair & Ganzinger, 1994, 1990] can be applied for solving certain
problems in the area of knowledge representation and reasoning (KR&R). We con-
sider a simple description logic EL and show how standard reasoning problems for
this description logic can be solved using the ordered resolution calculus. We also
discuss how these procedures can be extended to more expressive languages. The
goal of this chapter is to give some motivations and to make an overview of the tech-
niques that will be used and justified throughout this thesis. Despite its introductory
status, this chapter presents new results for description logics.
EL is a simple description logic that allows for concept construction using only

conjunctions and existential restrictions. Despite its limited expressive power, EL
can be practically used for conceptual modelling, in particular, over a widely used
medical terminology Snomed [Spackman, Campbell & Cote, 1997]. Baader [2002]
made a surprising observation, that the concept subsumption problem for this de-
scription logic is only polynomial even w.r.t. cyclic terminologies – a quite unex-
pected result for such expressive languages as description logics. Even for a similar
description logic FL0 that allows for conjunctions and universal restrictions, or its
dual variant that allows for disjunctions and existential restrictions, reasoning is
already PSPACE-hard [Baader, 1996; Kazakov & de Nivelle, 2003].

It is well-known that modal and description logics can be seen as fragments
of first-order logic via the standard semantical translation. This makes it possible
to apply first-order theorem provers for solving reasoning problems associated with
these logics, in particular, satisfiability of modal formulas or subsumption of concepts
in description logics. It has been observed quite long ago that theorem provers based
on ordered resolution, a refinement of Robinson’s [1965] resolution calculus, can be

10



2.1. Description Logic EL 11

turned into a decision procedure for many fragments of first order logic [Joyner Jr.,
1976; Fermüller, Leitsch, Tammet & Zamov, 1993] and first-order counterparts of
modal logics [see e.g., Schmidt & Hustadt, 2003].

The question, we are going to answer in this chapter is, can these methods
based on theorem provers explain tractability of EL, and if so, which extensions this
description logic might have that retain its low complexity? It is well-known that
first-order translations often destroy the structure of modal formulas, which results
in higher complexity for resulted decision procedures. Indeed, the basic modal logic
K is PSPACE-complete, whereas most of the known resolution decision procedures
for K require exponential space and time.1 Fortunately, this does not happen with
EL. We were able to explain tractability of EL and many of its extensions found in
[Baader, 2002, 2003; Brandt, 2004a; Baader et al., 2005]. Moreover, we have found
new polynomial extensions of EL.

Our method uses the ordered resolution calculus for obtaining decidability and
complexity results. Surprisingly, it turns out that no resolution-based theorem
prover is actually required to implement these decision procedures. We have found
out that our procedures can be specified more concisely as datalog programs. As
a consequence, EL-knowledge bases can be turned into conventional (relational)
databases, so that all standard reasoning tasks for description logic are reduced to
query evaluation in datalog . This, on one hand, provides us “for free” with efficient
implementations for these description logics, since any optimised “off-the-shelve” de-
ductive database system (say, XSB-prolog [Sagonas, Swift & Warren, 1994]) can do
the hard job. On the other hand, translation to datalog allows one to extract upper
complexity bounds for the worst case running times for our procedures by known
techniques from static analysis of logical programs [McAllester, 2002]. Importantly,
our reduction to datalog is almost mechanical, which means that correctness of our
decision procedures relies only on refutational completeness of the ordered resolution
calculus, which is proven “once and for all”.

2.1 Description Logic EL

The syntax of the description logic (short DL) with existential restrictions EL con-
sists of a set CN of concept names and a set RN of role names which are the
primitive constructors. Intuitively, every concept name A ∈ CN stands for a set and
every role name R ∈ RN stands for a binary relation. Description logic EL reasons
about compound concepts (= sets) that are constructed from these base elements
as follows:

1Except for hyper-resolution strategies with splitting and backtracking that essentially simulate
tableau procedures for K [see Hustadt, 1999; Schmidt & Hustadt, 2003]



12 Engineering Logical Algorithms using S.B.T.P.

• top concept ⊤ is a concept, which intuitively represents the set of all elements;

• every concept name A ∈ CN is a concept;

• if C1 and C2 are concept then so is (C1 ⊓C2), which intuitively represents the
intersection of the sets C1 and C2;

• if C1 is a concept and R ∈ RN is a role name then ∃R.C1 is a concept for the
set of all elements that are related to some element from C1 via R.

In abstract syntax, we often write this definition as follows:

EL ::= ⊤ | A | C1 ⊓ C2 | ∃R.C1 . (2.1)

where A ∈ CN, R ∈ RN and C1, C2 ∈ EL.

The language of description logics is used to formulate logical descriptions for
deferent notions by their mutual relationship. For example, we can define a concept
Man by writing Man

·
=Human ⊓ Male, which means that every Man is a Male and

Human, and vice versa. Note that this is not a definition in the usual sense, since
concepts Human and Male are not (yet) defined and might be not defined at all. To
continue our example, suppose we additionally have a role name has-child which we
think of, as describing the parent–child relation: (x, y) ∈ has-child iff “y is a child
of x”. Using this role name, we can define a concept Parent as those Humans that
have a Human offspring: see Table 2.1. Similarly, we define a concept Father as a

Table 2.1 An EL-terminology of human relations

TBox ABox

Man
·
= Human ⊓Male

Parent
·
= Human ⊓ ∃has-child.Human

Father
·
= Man ⊓ ∃has-child.Human

Grandfather
·
= Man ⊓ ∃has-child.Parent

John : Man
Bill : Father

(John, Bill) : has-child

Man that has a Human child, and a concept Grandfather as a Man that has a child
who is a Parent. In general, a concept definition has a form A

·
= C where A ∈ CN is

a concept name and C ∈ EL is a concept constructed according to (2.1).
A collection of concept definitions forms a terminology , or TBox (abbreviated

from terminological box ) and represents the general knowledge about different no-
tions = concepts. In addition, one can provide more specific information by speci-
fying instances of concepts, which are called individuals, and role relations between



2.1. Description Logic EL 13

them. For example, we can specify an individual John as an instance of concept
Man, and an individual Bill as a Father and a child of John (see the right column
of Table 2.1). Assertions can be of two forms: either (i) a : C called a concept
assertion, where a is an individual and C is a concept, or (ii) (a, b) : R called a
role assertion, where a and b are individuals and R is a role name. A collection of
assertions of these forms is called an assertion box , or short ABox.

Apart from the information stated in definitions, terminologies and assertions
imply implicit relationships between individuals and concepts. It is logically clear
from the definitions in Table 2.1 that every Father must be a Parent since every
Man is a Human according to the first definition. In this case, we say that con-
cept Parent subsumes concept Father (or Father is subsumed by Parent) and write
Father ⊑ Parent. Intuitively, subsumption of concepts means inclusion for the sets
of elements, that correspond to these concepts. Returning to our example, one can
show that concept Grandfather is subsumed by concept Father (in other words, ev-
ery Grandfather is a Father), since every Parent is a Human according to the second
definition from Table 2.1, and hence, every Man that has a Parent child, has auto-
matically a Human child. Now looking at ABox, we can observe that Bill is a Parent,
since we have proved that Father ⊑ Parent. So John must be a Grandfather because
he is a Man and has a child Bill who is a Parent.

Grandfather

Father

Parent Man

Human MaleDescription logic systems (DL-systems) are specially de-
signed to carry out such reasoning about implicit information
present in knowledge bases. The main reasoning task for ter-
minologies is classification of concepts, whose purpose is to
arrange the concepts in a hierarchical structure, called a tax-
onomy , according to subsumption relation. The graph to the
right represents a taxonomy of concepts defined in Table 2.1, where each concept
subsumes all connected concepts that are situated lower in the graph. Classification
of concepts is useful for optimisation of queries about individuals. For example, our
terminology can be queried by asking “?- x : Human” for all instances of concept
Human. The answer to this query is {John, Bill}, which can be easily obtained using
the computed taxonomy. Apart from classification, description logic systems provide
for other reasoning services, the most important of which are listed in Table 2.2.

For the particular description logic EL, the concept satisfiability and concept
disjointness problems are trivial, i.e., the answers are always “Yes” and “No” re-
spectively: basically, it is always possible that all concepts consist of all elements
and every role is a total relation. However, for certain extensions of EL, that we
consider, these reasoning problems make sense. Concept equivalence can be reduced
to concept subsumption by an easy observation that C ≡ D iff C ⊑ D and D ⊑ C.
Taxonomy of concepts can be also reconstructed using concept subsumption queries
by (roughly) checking subsumption relation between every pair of concepts. Hence,



14 Engineering Logical Algorithms using S.B.T.P.

Table 2.2 Some reasoning problems for description logics
TBox-reasoning:

Concept satisfiability: Given a concept C, check whether C may contain some element: ?-A = ⊥;

Concept subsumption: Given two concepts C and D, check whether C is always a subset of D:
?-C ⊑ D;

Concept equivalence: Given two concepts C and D check whether they stand for the same set:
?-C ≡ D;

Concept disjointness : Given two concepts C and D check if they are disjoint: ?-C ⊓D ≡ ⊥;

ABox-reasoning:

Instance problem: Given an individual a and a concept C check if a is an instance of C:
?- a : C;

Given two individuals a and b and a role name R, check if a and b are
connected with R: ?- (a, b) : R;

Retrieval problem: Given a concept C find all individuals a that are instances of C: ?-x : C.

concept subsumption is a central reasoning problem in description logics.
Baader [2002] came up with an algorithm for checking subsumption between con-

cepts using a certain graph-theoretic characterisation. He showed that subsumption
between two concepts is equivalent to existence of a simulation relation between
so-called description graphs that correspond to terminological axioms in a normal
form. The last can be computed in polynomial time in the size of graphs, yielding,
a polynomial subsumption algorithm. Subsumption algorithms based on such kind
of characterisation are usually called structural subsumption algorithms, because
they compare the syntactical structure of definitions.2 Such subsumption algorithms
have been employed in the first generation of DL-systems for families of Kl-One

knowledge representation languages [Brachman & Schmolze, 1985]. Although the
structural subsumption algorithms were quite efficient, they were complete only for
very restrictive languages.

Starting from the work of Schmidt-Schauß & Smolka [1991], the majority of
modern DL-systems employed so-called tableau-based procedures. These procedures
attempt to construct a model step-by-step that satisfies all terminological axioms
and assertions. Tableau procedures have been extended to a variety of expressive
description logics and found to be amenable to optimisations [see Horrocks et al.,
2000]. Nowadays there are several efficient implementations of tableau procedures
for very expressive description logics available, notably, Fact [Horrocks, 1998] and
Racer [Haarslev & Möller, 2001].

2See [Baader & Nutt, 2003] for an overview and comparison of different algorithms for reasoning
in description logics



2.2. Resolution-Based Decision Procedures 15

2.2 Resolution-Based Decision Procedures

Tableau-based decision procedures for expressive description logics have become
rather involved: they do no longer construct a model explicitly, but search for a
model in some representation. Because of this, correctness of the procedures is hard
to justify formally, especially for those description logics with many constructors.
There are some well-known examples where a subtle interaction between different
constructors3, or not appropriate understanding of their semantics4 cause incorrect-
ness of straightforward tableau algorithms. To avoid possible pitfalls of that kind,
a formal analysis of these algorithms is required. However, there is an obvious lack
of formal tools to carry out such analysis, which, although, not crucial for simple
description logics, might become a serious problem for more expressive languages
with many constructors, like SHIQ, OWL DL and their extensions.

In this thesis we advocate another approach for engineering of reasoning pro-
cedures in DLs, that might help to overcome these difficulties, namely by using
saturation-based theorem proving. The advantage of saturation-based procedures
over tableau-based algorithms for description logics is that (1) they utilise the se-
mantics of DL-constructors directly, and (2) employ general sound and complete
calculi.

The idea of using first-order theorem provers, in particular those based on or-
dered resolution for deciding modal and description logics, is not new and there
have been quite a large body of works on this topic (see e.g., [Schmidt & Hustadt,
2003] for an overview). However, to the best of our knowledge, there are only few
implementations of systems based on resolution and only for limited classes of modal
and description logics (notably MSpass [Hustadt, Schmidt & Weidenbach, 1999]).
These systems are currently not efficient enough and cannot cope with expressive
languages. In this thesis we present theoretical and imperial evidences that this
picture might change.

A distinguished feature of description logics from previous generations of knowl-
edge representation languages (like semantic networks and frames), is the presence
of well-defined formal semantics for all constructors. Semantics formulates the pre-
cise meaning for concept descriptions and reasoning problems. For the purpose of
our presentations, we do not define semantics of EL, but give a first-order coun-
terparts for all of its elements. Then semantics of EL is a standard semantics for
first-order logic.

A correspondence between description logic concepts and first-order formulas, is
defined by associating a unary atom A(x) with every concept name A ∈ CN, and a

3See, for example, [Horrocks et al., 2000] demonstrating how the usage of non-simple roles in
number restrictions leads to undecidability of subsumption in SHIQ

4See examples and related discussion in [Tobies, 2001, Chapter 4]



16 Engineering Logical Algorithms using S.B.T.P.

binary atom R(x, y) with every role name R ∈ RN. This mapping is extended over
definition (2.1) to arbitrary EL-concept as follows:

FO(EL) ::= ⊤ | A(x) | C1(x) ∧ C2(x) | ∃y.[R(x, y) ∧ C1(y)] . (2.2)

where A ∈ CN, R ∈ RN and C1(x), C2(x) ∈ FO(EL).

For example, a concept in the right hand side of the definition for Parent from
Table 2.1 is translated to formula Human(x) ∧ ∃y.[has-child(x, y) ∧ Human(y)]. As
seen from (2.2), every EL concept corresponds to a first-order formula with one free

variable. The translation maps a TBox-definition A
·
= C to an axiom ∀x.(A(x) ↔

C(x)). Every ABox-assertion a : C and (a, b) : R, yields axiom C(a) and R(a, b)
respectively, where individuals a and b are treated as constants. Consequently, TBox
and ABox correspond to conjunction of first-order formulas of the above forms.

To simplify the upcoming exposition of our procedures for EL, we assume that
every definition in a TBox and every assertion from an ABox is simple, i.e., for
every definition A

·
= C1 ⊓ C2 or A

·
=∃R.C1, concepts C1 and C2 are concept names,

and for every concept assertion a : C, concept C is a concept name either. This is
not a severe restriction, since every TBox can be translated in linear time into an
equivalent TBox with only simple definitions, by introducing new concept names
for every compound concept. For example, definitions from terminology given in
Table 2.1 can be pre-processed as follows:

Man
·
= Human ⊓Male

A
·
= ∃has-child.Human

Parent
·
= Human ⊓ A

Father
·
= Man ⊓ A

B
·
= ∃has-child.Parent

Grandfather
·
= Man ⊓ B

(2.3)

In Table 2.3 (please ignore the last two columns for now), we have summarised the
first-order translation for simplified EL-terminologies and assertions (definitions of
form A

·
=C are split into two concept inclusion axioms: A ⊑ C and A ⊒ C).

2.2.1 The Ordered Resolution Calculus

A resolution-based theorem prover does not work with first-order formulas directly,
but with clauses. A clause is an expression of form C = L1 ∨ · · · ∨ Ln, where
each literal Li with 1 ≤ i ≤ n is either an atom A(x1,.., xk) or a negation of
an atom ¬A(x1,.., xk). Intuitively, a clause corresponds to a first-order formula
∀x1 · · ·xk.[L1 ∨ · · · ∨Ln], where {x1,.., xk} are all variables that occur in the clause.
In other words, all variables in clauses are implicitly universally quantified. A set of
clauses is understood as conjunction of the formulas that correspond to clauses.

Transformation of a formula into a clause normal form (short CNF), is a routine
consisting of propositional simplifications and elimination of quantifiers from the



2.2. Resolution-Based Decision Procedures 17

Table 2.3 A first-order translation and CNF-translation for EL-terminologies
TBox-definition FO − translation CNF− translation clause type

A
·
=⊤ ∀x.[A(x)↔ ⊤] A(x) C3(A)

A ⊑ (B ⊓C) ∀x.[A(x)→(B(x) ∧ C(x))] ¬A(x) ∨B(x) D4(A, B)
¬A(x) ∨ C(x) D4(A, C)

A ⊒ (B ⊓C) ∀x.[(B(x) ∧ C(x))→A(x)] ¬B(x) ∨ ¬C(x) ∨A(x) D5(B, C, A)

A ⊑∃R.B ∀x.[A(x)→∃y.(R(x, y) ∧B(y))] ¬A(x) ∨R(x, fA(x)) C5(A, R, fA)
¬A(x) ∨B(fA(x)) C4(A, B, fA)

A ⊒∃R.B ∀x.[∃y.(R(x, y) ∧B(y))→A(x)] ¬R(x, y) ∨ ¬B(y) ∨A(x) D6(R, B, A)

ABox-assertion FO − translation CNF− translation clause type

a : A A(a) A(a) C1(A, a)
(a, b) : R R(a, b) R(a, b) C2(R, a, b)

formula. Universal quantifiers are simply dropped (like in the first three cases from
Table 2.3), whereas existential quantifiers result in Skolem functions: a formula
of the form ∀x.∃y.F (x, y) expressing that for every x there exists y that satisfies
F (x, y) is replaced with F (x, f(x)), where f(x) is a fresh function which makes this
dependence between x and y explicit. In Table 2.3 we apply Skolemisation only for
the first-order formulas that originate from inclusion axioms of form A ⊑ ∃R.B,
since those are the only formulas containing the existential quantifier positively.
Skolem functions fA(x) introduced in this transformation, must be unique for every
definition of this form. We make use of this property by indexing fA(x) with concept
name A, meaning that fA(x) determines the atom A uniquely. In symbols, whenever
fA = gB, then A = B (here “=” denotes the syntactic equality).

Proof search in resolution is based on refutation. In order to prove that a set
of axioms S implies a conjecture F , resolution tries to obtain a contradiction from
S ∪ {¬F}. When we apply this principle for reasoning problems in description
logics, we should (1) treat formulas that correspond to TBox and ABox as axioms
and (2) negate the formula corresponding to a query: see Table 2.4. To derive a
contradiction from such hypothesis, a resolution-based prover performs inferences
from clauses using special inference rules that form a calculus. This iterative process
of deriving new clauses from old ones is called saturation. New clauses are derived
until either the empty clause � is obtained (that is a clause containing no literals),
or all possible inferences are performed. In the first case, we say that a refutation
has been found and so, the initial clause set is unsatisfiable, which means that our
conjecture F is provable from axioms S. In the letter case, we say that a saturation
is computed which indicates that the initial clause set is satisfiable and therefore,



18 Engineering Logical Algorithms using S.B.T.P.

Table 2.4 A CNF-translation for some reasoning problems in description logics
Concept Subsumption: CNF− translation clause type

?-A ⊑B ¬(∀x.[A(x)→B(x)]) A(c) C1(A, c)
¬B(c) D1(B, c)

Instance Problem: CNF− translation clause type

?- a : A ¬A(a) ¬A(a) D1(A, a)
?- (a, b) : R ¬R(a, b) ¬R(a, b) D2(R, a, b)

hypothesis F is not provable from S.
The ordered resolution calculus consists of two inference rules: Ordered Resolution

and Ordered Factoring, given in Figure 2.1. For our procedures we will use an
additional optional simplification rule Elimination of Duplicate Literals. The Ordered

Figure 2.1 The ordered resolution calculus with selection and simplification

Ordered Resolution Ordered Factoring

OR :
C ∨A⋆ D ∨¬B

Cσ ∨Dσ
OF :

C ∨B ∨A

Cσ ∨Aσ

where (i) σ = mgu(A, B); (ii) A is eligible strictly
maximal in the clause C∨A, and (iii) ¬B is eligible
in the clause D ∨ ¬B.

where (i) σ = mgu(A, B); (ii) A is eligible
in clause C ∨B ∨A.

Elimination of Duplicate Literals

ED :
[[C ∨ L ∨ L ]]

C ∨ L

where the premise of the rule is deleted

Resolution rule allows one to derive a new clause by resolving two clauses with
complementary literals. For example, clause ¬A(x) ∨ B(fA(x)) might be resolved
with clause ¬B(x) ∨ C(x) producing ¬A(x) ∨ C(fA(x)). Whether an inference
can be carried out or not, depends on the conditions of the inference rule. The
first condition of Ordered Resolution requires that the resolved atoms (which are
underlined) must be unifiable. The last two conditions require that the resolved
atoms must be eligible (written in bold) in the clauses.

Eligible atoms are determined by two parameters of the resolution calculus,
namely a selection function and an ordering . These parameters are used as fol-
lows. For every clause it is allowed to select one of its negative literals. Then
resolution must be carried out on one of the selected literals. If no literal is selected
in a clause, then this clause must be resolved upon its maximal literals, which are
determined using the ordering. For our purpose, we take an ordering ≻ such that



2.3. A Resolution Decision Procedure for EL 19

L1 ≻ L2 whenever (i) L1 contain more symbols than L2 and (ii) this property is
preserved under substitutions of terms for variables in clauses (more precisely, we
use the Knuth-Bendix ordering with equal weights for all symbols). A literal L is
(strictly) maximal in a clause C if there is no other literal L1 in C such that L1 ≻ L
(L1 � L). We will indicate the literals in rules that are required to be strictly
maximal by star. For example, it is easy to see that literal B(fA(x)) on which we
have resolved the clause ¬A(x)∨B(fA(x)) above, is strictly maximal in this clause.
To summarise, a literal is eligible in a clause if it is either selected in this clause, or,
otherwise, nothing is selected in this clause and this literal is maximal.

Please see an example in Appendix A.1 demonstrating how subsumption and
instance relations can be established formally using the ordered resolution calculus.
This example shows how to process queries ?- Father ⊑ Parent, ?-Grandfather ⊑
Father and ?- John : Grandfather for the terminology given in Table 2.1.

2.3 A Resolution Decision Procedure for EL

Computing finite saturations is the key point of using resolution as a decision proce-
dure. The ordered resolution calculus given in Figure 2.1 is sound and refutationally
complete. Soundness ensures that a contradiction (the empty clause) cannot be de-
rived from a satisfiable clause set, whereas completeness means that the empty clause
is always derivable from every unsatisfiable clause set. Soundness and completeness
mean that resolution can be used as a semi-decision procedure for the full first-order
logic. In order to turn resolution into a decision procedure for a particular class of
formulas, one has to ensure that this procedure always terminates for this class. Our
goal now, is to describe a resolution strategy according to which inferences from a
finite set of clauses for EL produce only finitely many different clauses.

2.3.1 Enforcing Termination

It is not surprising that subsumption or instance relations between concepts and
individuals can be proven using the ordered resolution calculus. Resolution, as any
other complete calculus for first-order logic, is (theoretically) capable of proving any
conjecture. It is more tricky to prove anti-subsumption, i.e., that one concept does
not subsume the other. For this, one has to show that the correspondent set of
clauses is satisfiable, that is, the empty clause is not derivable from this clause set
using resolution inferences. A naïve solution, is to apply all possible inferences and
compute a saturation of a clause set, and afterwards check, if the empty clause is
there. However, the saturation process might not terminate in general. Fortunately,
for EL we are able to give a resolution strategy that is guaranteed to produce only



20 Engineering Logical Algorithms using S.B.T.P.

finitely many clauses.
In Table 2.5 we have listed all possible types of clauses that can be produced by

resolution from clauses for EL obtained according to Table 2.3 and Table 2.4. Every

Table 2.5 Clause types for EL
C1 A(a);

C2 R(a, b);

C3 A(x);

C4 ¬A(x) ∨B(fA(x));

C5 ¬A(x) ∨R(x, fA(x));

D1 ¬A(a);

D2 ¬R(a, b);

D3 ¬A(a) ∨B(b);

D4 ¬A(x) ∨B(x);

D5 ¬A(x) ∨ ¬B(x) ∨C(x);

D6 ¬R(x, y) ∨ ¬B(y) ∨A(x);

D7 ¬A(x) ∨ ¬B(fA(x)) ∨C(x);

D8 ¬A(x) ∨ ¬B(fA(x)) ∨C(fA(x));

⊥ �;

bold symbol A, R, fA, a, etc... in these clause types is a parameter of a clause
type. Parameters can be instantiated with any predicate symbol (= concept name or
role name), functional symbol (= Skolem function) or constant (= individual) that
occurs in initial clauses resulted from CNF-transformation of TBox and ABox. It is
only required that the obtained clause should be meaningful, i.e., it is not allowed to
substitute, say, a functional symbol for A, or a concept name for R. There are only
finitely many clauses that can be obtained in this way for a fixed TBox and ABox.
Hence, if we prove that every clause derived by resolution from EL-TBox and ABox
must be one of them, this would mean that a finite saturation is computed for every
input, and so, resolution can decide reasoning problems in EL.

In order prove that resolution for EL can produce only clauses from Table 2.5,
we demonstrate that (1) every clause resulted from CNF translation for EL has
one of these types, and (2) the conclusion of every resolution inference from clauses
of these types is again a clause of these types. The first property is easy to observe:
in the last column of Table 2.3 and Table 2.4 we have already indicated the types
of the clauses resulted from a CNF-translation. For showing the second property,
we enumerate all possible inferences between clauses in Table 2.5.

The Ordered Factoring rule cannot be applied to any of these clauses, because
they contain at most one positive literal. Ordered Resolution inferences are only
possible between clauses C1 – C5 with a positive eligible literal, and clauses D1 –
D8 with a negative eligible literal. For conciseness, we describe resolution inferences
only between clauses C3 – C5 and D4 – D6, and later, sketch inferences between
other clauses. Clauses C3 – C5 and D4 – D6 (below the dashed line) originate from
EL-TBoxes and, in certain sense, correspond to purely terminological reasoning:

(C3) A clause of type C3 can be resolved with a clause of type D4, D5, D7 or D8.
It is not possible to resolve a clause of type C3 with a clause of type D6 since the



2.3. A Resolution Decision Procedure for EL 21

number of arguments in eligible literals does not match. The remaining inferences
are written below:

OR[C3; D4] : A(x); ¬A(x) ∨B(x) ⊢ B(x), which is a clause of type C3;

OR[C3; D5] : A(x); ¬A(x) ∨ ¬B(x) ∨C(x) ⊢ ¬B(x) ∨C(x), which is a clause of

type D4;
OR[C3; D7] : A(x); ¬B(x) ∨ ¬A(fB(x)) ∨ C(x) ⊢ ¬B(x) ∨ C(x), which is again

a clause of type D4. Note that we have renamed clause parameters in the second
clause to match the unified expressions. Clause parameters are, essentially, treated
as meta-variables;

OR[C3; D8] : A(x); ¬B(x)∨¬A(fB(x))∨C(fB(x)) ⊢ ¬B(x)∨C(fB(x)), ⇒ C4;

(C4) A clause of type C4 can be resolved with a clauses of types D4, D5, D7, D8:

OR[C4; D4] : ¬A(x) ∨ B(fA(x)); ¬B(x) ∨ C(x) ⊢ ¬A(x) ∨ C(fA(x)), which is a

clause of type C4;
OR[C4; D5] : ¬A(x)∨B(fA(x)); ¬B(x)∨¬C(x)∨D(x) ⊢ ¬A(x)∨¬C(fA(x))∨

D(fA(x)), which is a clause of type D8;

OR[C4; D7] : ¬A(x) ∨B(fA(x)); ¬A(x) ∨¬B(fA(x)) ∨C(x) ⊢ ¬A(x) ∨¬A(x) ∨

C(x) ⊢ ¬A(x) ∨ C(x), which is a clause of type D4. Note that we have used a
property according to which functional symbol fA uniquely determines atom A in
its index. Hence, if clauses of the above form can be resolved, then they must have
the same negative literal ¬A(x) and so, duplicate occurrences of this literal in the
conclusion of this rule can be removed;

OR[C4; D8] : ¬A(x)∨B(fA(x)); ¬A(x)∨¬B(fA(x))∨C(fA(x)) ⊢ ¬A(x)∨¬A(x)∨

C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)), which is a clause of type C4. The same argument
as in the previous case allows us to simplify the conclusion of this inference;

(C5) A clause of type C5 can be resolved only with a clause of type D6, since
otherwise the number of arguments in the unified literals does not match:

OR[C5; D6] : ¬A(x)∨R(x, fA(x)); ¬R(x, y)∨¬B(y)∨C(x) ⊢ ¬A(x)∨¬B(fA(x))∨

C(x), which is a clause of type D7.

In Table 2.6 we have summarised all possible inferences between clauses from
Table 2.5. Inferences T1 – T9 corresponding to terminological reasoning have been
considered in more details above. Inferences A1 – A8 correspond to reasoning with
individuals, i.e., they involve clauses that result from translation of ABox-es, queries
or are derived from such clauses. Note that no inference A1 – A8 uses clause types
C4, C5, D7 or D8. So, clauses of the remaining types: C3 and D4 – D6 can be seen
as extended taxonomy of concepts: only these clauses computed for a TBox, are
needed to answer queries about individuals.



22 Engineering Logical Algorithms using S.B.T.P.

Table 2.6 Summary for inferences between clauses for EL
A1. OR[C1; D1]: A(a); ¬A(a) ⊢ � : ⊥

A2. OR[C1; D3]: A(a); ¬A(a) ∨B(b) ⊢ B(b) : C1

A3. OR[C1; D4]: A(a); ¬A(x) ∨B(x) ⊢ B(a) : C1

A4. OR[C1; D5]: A(a); ¬A(x) ∨ ¬B(x) ∨ C(x) ⊢ ¬B(a) ∨ C(a) : D3

A5. OR[C2; D2]: R(a, b); ¬R(a, b) ⊢ � : ⊥

A6. OR[C2; D6]: R(a, b); ¬R(x, y) ∨ ¬B(y) ∨A(x) ⊢ ¬B(b) ∨A(a) : D3

A7. OR[C3; D1]: A(x); ¬A(a) ⊢ � : ⊥

A8. OR[C3; D3]: A(x); ¬A(a) ∨B(b) ⊢ B(b) : C1

T1. OR[C3; D4]: A(x); ¬A(x) ∨B(x) ⊢ B(x) : C3

T2. OR[C3; D5]: A(x); ¬A(x) ∨ ¬B(x) ∨ C(x) ⊢ ¬B(x) ∨ C(x) : D4

T3. OR[C3; D7]: A(x); ¬B(x) ∨ ¬A(fB(x)) ∨ C(x) ⊢ ¬B(x) ∨C(x) : D4

T4. OR[C3; D8]: A(x); ¬B(x) ∨ ¬A(fB(x)) ∨ C(fB(x)) ⊢ ¬B(x) ∨ C(fB(x)) : C4

T5. OR[C4; D4]: ¬A(x) ∨B(fA(x)); ¬B(x) ∨ C(x) ⊢ ¬A(x) ∨C(fA(x)) : C4

T6. OR[C4; D5]: ¬A(x) ∨B(fA(x)); ¬B(x) ∨ ¬C(x) ∨D(x) ⊢

⊢ ¬A(x) ∨ ¬C(fA(x)) ∨D(fA(x)) : D8

T7. OR[C4; D7]: ¬A(x) ∨B(fA(x)); ¬A(x) ∨ ¬B(fA(x)) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ C(x) ⊢ ¬A(x) ∨ C(x) : D4

T8. OR[C4; D8]: ¬A(x) ∨B(fA(x)); ¬A(x) ∨ ¬B(fA(x)) ∨ C(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

T9. OR[C5; D6]: ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(fA(x)) ∨ C(x) : D7

2.3.2 Making It Simple

In the previous section we have demonstrated how reasoning problems in EL can
be solved using the ordered resolution calculus. This means that any resolution
theorem prover can, in principle, be used as a complete EL-classifier. It comes to
our surprise, that no theorem prover is actually required to implement our decision
procedure. If we look carefully in Table 2.6, we may notice that all inferences T1
– T9 and A1 – A8 can be formulated as very simple instructions. For example,
inference T1 says: “given a clause of type C3 with parameter A and a clause of
type D4 with parameters A and B, produce a clause of type C3 with parameter B”.
These instructions can be written in a form of datalog rules (Horn clauses with
no functional symbols, which are usually written right-to-left), where clause types
are treated as atoms and clause parameters are treated as variables: see Table 2.7
(please, ignore the underlying and bold marks for now).

So, the overall procedure for reasoning in EL can be seen as follows. Given



2.3. A Resolution Decision Procedure for EL 23

Table 2.7 A datalog program for reasoning problems in EL
A1. ⊥ ← C1(A, a), D1(A, a).

A2. C1(B, b) ← C1(A, a), D3(A, B, a, b).

A3. C1(B, a) ← C1(A, a), D4(A, B).
A4. D3(B, C, a, a) ← C1(A, a), D5(A, B, C).

A5. ⊥ ← C2(R, a, b), D2(R, a, b).

A6. D3(B, A, b, a) ← C2(R, a, b), D6(R, B, A).

A7. ⊥ ← C3(A), D1(A, a).

A8. C1(B, b) ← C3(A), D3(A, B, a, b).

T1. C3(B) ← C3(A), D4(A, B).
T2. D4(B, C) ← C3(A), D5(A, B, C).

T3. D4(B, C) ← C3(A), D7(B, A, C, fB).

T4. C4(B, C, fB) ← C3(A), D8(B, A, C, fB).

T5. C4(A, C, fA) ← C4(A, B, fA), D4(B, C).
T6. D8(A, C, D, fA) ← C4(A, B, fA), D5(B, C, D).

T7. D4(A, C) ← C4(A, B, fA), D7(A, B, C, fA).

T8. C4(A, C, fA) ← C4(A, B, fA), D8(A, B, C, fA).

T9. D7(A, B, C, fA) ← C5(A, R, fA), D6(R, B, C).

a terminology TBox, a set of assertions ABox and a query Q, one translates this
input data to a set of ground facts according to Table 2.3 and Table 2.4 (now, please
pay attention to their last columns). After that, one computes a deductive closure
of this database, by exhaustively applying all rules from Table 2.7. The query Q
is answered positively if ⊥ is obtained in the result, and otherwise, the query is
evaluated negatively.

For example, our terminology of human relations (2.3) with correspondent as-
sertions and queries is translated to the set of ground facts given in Table 2.8.
Please, take a look at Appendix A.2, where we have demonstrated how to compute
a deductive closure for this set of ground facts, and evaluate the queries.

A datalog program in Table 2.7 can be seen as a compiled representation of
our resolution decision procedure for EL, in the sense that we have specialised a
resolution theorem prover on our particular class of clauses C1 – C5, D1 – D8 and
classified inferences between them. Hence a system performing inferences according
to our scheme, should not spend time on unification attempts and computation of
inferences. Moreover, evaluation of a datalog program need not necessary proceed
by saturation of the input database, in other words, bottom-up. And indeed, most of
deductive database systems evaluate queries top-down in depth-first manner, start-
ing from the goal and applying SLD-resolution with datalog clauses. This makes
query evaluation goal-oriented and space efficient, since backtracking is employed.

The rules for implication sets, also called completion rules, proposed in recent



24 Engineering Logical Algorithms using S.B.T.P.

Table 2.8 A datalog translation for terminology of human relations
TBox-definition 99K Clause Types

Man
·
=Human ⊓Male 99K D4(Man, Human), D4(Man, Male), D5(Human, Male, Man)

A
·
=∃has-child.Human 99K C5(A, has-child, f), C4(A, Human, f), D6(has-child, Human, A)

Parent
·
=Human ⊓ A 99K D4(Parent, Human), D4(Parent, A), D5(Human, A, Parent)

Father
·
= Man ⊓ A 99K D4(Father, Man), D4(Father, A), D5(Man, A, Father)

B
·
=∃has-child.Parent 99K C5(B, has-child, g), C4(B, Parent, g), D6(has-child, Parent, B)

Grandfather
·
=Man ⊓ B 99K D4(Grandfather, Man), D4(Grandfather, B), D5(Man, B, Grandfather)

ABox-definition 99K Clause Types

John : Man 99K C1(Man, John)
Bill : Father 99K C1(Father, Bill)
(John, Bill) : has-child 99K C2(has-child,John,Bill)

Query 99K Clause Types

?-Grandfather ⊑ Father 99K C1(Grandfather, c) D1(Father, c)
?- John : Grandfather 99K D1(Grandfather, John)

papers [Brandt, 2004a; Baader et al., 2005] for reasoning in EL and its extensions,
can be also naturally formulated as datalog programs. For example, a subset of rules
CR1 – CR4 from [Baader et al., 2005], which corresponds to terminological reasoning
in EL, can be seen as the following datalog program:

IR1 C ∈ s(C) ← .

IR2 ⊤ ∈ s(C) ← .

CR1 D ∈ s(C) ← C ′ ∈ s(C), C ′ ⊑ D.

CR2 D ∈ s(C) ← C1 ∈ s(C), C2 ∈ s(C), C1 ⊓ C2 ⊑ D.

CR3 (C, D) ∈ r(R) ← C ′ ∈ s(C), C ′ ⊑ ∃R.D.

CR4 E ∈ s(C) ← (C, D) ∈ r(R), D′ ∈ s(D), ∃R.D′ ⊑ E.

(2.4)

where “D ∈ s(C)”, “(C, D) ∈ r(R)”, “C ⊑ D”, “C1 ⊓ C2 ⊑ D”, “C ⊑ ∃R.D” and
“∃R.D ⊑ E” shall be thought of as datalog atoms with correspondent parameters-
variables. For example, “D ∈ s(C)” is an atom having two variables C and D,
which expresses that concept D subsumes concept C. Using these rules, the sub-
sumption relation for EL can be computed explicitly and directly from simplified
terminological axioms.

There is, however, an important difference between our approach and the ap-
proach of Brandt [2004a], Baader et al. [2005]. According to our method, we do
not postulate the completion rules, but we rather derive them from the semantics of
constructors using the ordered resolution calculus. This has an advantage that the



2.3. A Resolution Decision Procedure for EL 25

proof of correctness for the resulted algorithm comes “for free”. I.e., the only thing
we rely on, is the completeness of general ordered resolution calculus. This is not a
big issue for the particular logic EL, but it will become important for extensions of
EL for which correctness proofs are more involved.

To prove a correctness of an algorithm, one should generally prove three things:
(1) soundness, (2) completeness and (3) termination of the procedure. For us,
soundness and – the most difficult part – completeness, are implied by soundness
and completeness of ordered resolution. What usually remains to be shown for
resolution decision procedures, is termination, which is obvious in our case, since a
deductive closure under datalog rules can be always computed in finite time.

The usage of deductive database systems for reasoning in EL, has another ad-
vantage, namely, that one can utilise their native capabilities of query evaluation.
Consider, for example, the retrieval problem: ?- x : C asking for all instances of a
concept C (w.l.o.g. we assume that C is a concept name). We know, that in order to
check whether an individual a is an instance of C (which is the instance problem),
we need to derive ⊥ from ground datalog atoms for TBox, ABox, and atom D1(C, a)
(see Table 2.4). We may assume that this is the only atom of form D1(∗, ∗) and
there is no atom of form D2(∗, ∗, ∗), since we process only one query at a time. Atom
⊥ can be derived only by rules A1, A5 and A7, each of which contains either atom
D1(∗, ∗) or D2(∗, ∗, ∗) in the body. So, for proving instance a : C, we have to derive
either C1(C, a) or C3(A). This can be reformulated explicitly using two additional
rules I1 and I2 given in Table 2.9. Now the retrieval problem: ?- x : C can be solved

Table 2.9 An extension of the datalog program for instance and retrieval problems
in EL

I1. Instances(a, C) ← C1(C, a); .
I2. Instances(a, C) ← C3(C); .

R1. Relations(a, R, b) ← C2(R, a, b); .

using a datalog query ?- Instances(X, C). One can compute other queries for ABox
and TBox, for example ?- Instances(a, X) will print all concept names for individual
a. Similarly, an extension of our datalog program with rule R1 from Table 2.9 allows
one to query role relations between individuals.

Using such transformation of queries, we can derive rules for the explicit sub-
sumption relation similar to those in (2.4). Please see Appendix A.3 to find details
of how we derive datalog rules in Table 2.10 for computation of the explicit sub-
sumption relation subsumes(B, A). Using this extension, we can query TBox, say
by asking ?- subsumes(B, X) for a list of all concept names subsumed by B.



26 Engineering Logical Algorithms using S.B.T.P.

Table 2.10 A datalog program for classification of EL-terminologies
S0 sb(A, A) ← .
S1 subsumes(B, A) ← C3(B).
S2 subsumes(B, A) ← sb(B, A).
S3 sb(E, A) ← sb(C, A), D4(C, E).
S4 sb(E, A) ← sb(C, A), sb(D, A), D5(D, C, E).

S5 sb(E, A) ← C3(C), sb(D, A), D5(D, C, E).

2.3.3 Complexity Analysis

It is well-known that a datalog query can be evaluated in polynomial time in the
size of the initial database (see, for instance [Dantsin, Eiter, Gottlob & Voronkov,
2001]). This means that the reasoning problems for EL can be decided in polynomial
time using our reduction to datalog. In this section we demonstrate how to extract
more exact complexity bounds for our procedures.

Given a datalog program P and a database of facts D, a closure P (D) of D
under rules of P , can be computed in time O(|D|k), where k is the maximal number
of different variables in each rule from P , and |D| is the size of D. Applying this
estimation to the program in Table 2.7, we conclude that the considered reasoning
problems for EL can be decided in time O(n5), where n bounds the size of TBox
and ABox, since every rule in our program contains at most 5 variables. This is not
a very exciting result. Now we demonstrate how this estimation can be improved
to O(n3) using more careful calculations.

We will use a well-known technique from optimisation of logical programs and
estimation of their running times, which is elegantly formulated in [McAllester,
2002]. One of the theorems from this paper says that a deductive closure P (D) of a
database D by a datalog program P with range-restricted rules can be computed in
time O(|D| + |PFP (P (D))|), where PFP (D′) is the set of prefix firings of program
P w.r.t. a database D′. Let us explain what a range restricted rule is and how to
compute prefix firings for a program.

A datalog rule is called range-restricted if every variable occurring in the head
of this rule, also occurs in the body of this rule. It is easy to observe that all rules
in Table 2.7 are range restricted. A prefix firing for a datalog rule B ← A1, . . . , An

w.r.t. a database D′ is a vector A′
1, . . . , A

′
k with A′

i ∈ D′, 1 ≤ i ≤ k ≤ n, which
can be matched to first k atoms in the body of this rule (see [McAllester, 2002] for
more details). Intuitively, a prefix firing of a rule is a partial evaluation of this rule
for first k atoms in the body. A set of prefix firings PFP (D′) for a datalog program
w.r.t. a database D′ is the union of all prefix firings for all rules in P w.r.t. D′.

The number of prefix firings for a rule, clearly depends on the order of atoms
in the body of this rule. Let us look more carefully at the rules in Table 2.7. We



2.3. A Resolution Decision Procedure for EL 27

may notice that some atoms may never be produced as conclusions of these rules, in
particular atoms of forms C2(∗, ∗, ∗), D1(∗, ∗), D2(∗, ∗, ∗), D5(∗, ∗, ∗) and D6(∗, ∗, ∗).
Now take a look at the rules that contain these atoms in the body (underlined with
a single line), say rule T6. Let us estimate the number of prefix firings of this rule
w.r.t. the closure P (D) of the initial database D, when we reverse the order the
atoms in the body of T6:

T6. D8(A, C, D, fA) ← D5(B, C, D), C4(A, B, fA). (2.5)

The number of prefix firings for the first atom D5(B, C, D) is bounded by |D|, since
atoms of this type cannot be produced by any inference. In order to estimate the
number of prefix firings for both atoms, note that each firing for the first atom
grounds the shared variable B contained in both atoms of this rule. Hence, each
candidate for the second atom is determined by the values for the remaining variables
A and fA. However, we know that every value of fA uniquely determines the value
of A. Hence, there are at most |D| choices for the second atom left, since there are
at most |D| symbols fA. Consequently, we have at most |D| prefix firings for the
first atom and for each of them, at most |D| firings for the second atom, so the total
number of prefix firings for this rule is at most |D|+ |D|2.

A similar analysis can be carried out for rules A1, A4 – A7, T2, T6 and T9, which
shows that there are at most O(|D|2) prefix firing for these rules. To estimate the
number of prefix firings for other inferences, we note that all above rules produce at
most O(|D|2) different conclusions. In particular, since atoms of form D8(∗, ∗, ∗, ∗)
can be produced only by rule T6, there are at most quadratically many of these in
the closure P (D) of our database D. So, we can estimate the number of prefix firings
in rules that contain such atoms in the body (we underline them with a dashed line).
For example, consider rule T8:

T8. C4(A, C, fA) ← D8(A, B, C, fA), C4(A, B, fA). (2.6)

As we have figured out, the number of prefix firings for the first atom is at most
O(|D|2). However, for each choice of the first atom there is at most one choice for
the second atom, since all variables of this rule are contained in the first atom. To
conclude, there are at most O(|D|2) prefix firings for this rule. The same can be
shown for rules A2, A8, T3, T4, T7 and T8.

The remaining rules from Table 2.7, like T5 cause a cubic complexity:

T5. C4(A, C, fA) ← C4(A, B, fA), D4(B, C). (2.7)

For any order of the atoms in the body of this rule, we have O(|D|2) prefix firings for
the first atom and one variable that is not bounded in the second atoms for which



28 Engineering Logical Algorithms using S.B.T.P.

we have at most O(|D|) choices. Hence, the total number of prefix firings for this
rule is bounded by O(|D|3).

Applying the theorem from [McAllester, 2002] formulated in the beginning of
this section, we conclude that the closure P (D) of our initial database D under the
program from Table 2.7 can be computed in cubic time in |D|. Consequently, all our
reasoning problems for EL can be decided in a cubic time in the size of TBox and
ABox. In fact, computation of all instances and subsumption relations can be done
in cubic time as well, if we consider the extension of our program with rules from
Table 2.9 and Table 2.10. Although the number of prefix firings for these rules can
be similarly shown to be at most cubic, we cannot directly apply the above theorem,
since not all rules are range-restricted: each rule I2, S0 and S1 has a variable in the
head that does not occur in the body. However, this can be easily fixed since these
variables must be instantiated with either a concept name or an individual name
from the initial database, and we can assume that those are simply listed as ground
facts ConceptName(Father), or Individual(John). Using these additional “dummy”
atoms, the above rules can be modified to range-restricted rules as follows:

I2′ Instances(a, C) ← C3(C), Individual(a).
S0′ sb(A, A) ← ConceptName(A).
S1′ subsumes(B, A) ← C3(B), ConceptName(A).

(2.8)

Can one do better?

The cubic time algorithm for reasoning in EL that we have presented, is sufficient
for a quite efficient prototypic implementation (see section 2.6). However, there is
an natural desire to improve this algorithm somehow, since there are only few rules
that cause the cubic complexity. At the moment, we do not see how to lower down
this complexity.

It seems to be not clear, whether subsumption of concepts w.r.t. EL-terminology
can be decided in quadratic time. Baader [2002] has demonstrated that subsumption
w.r.t. normalised TBoxes can be solved in quadratic time using a reduction to a
graph simulation problem. A TBox is in normal form if it contains only definitions
of form A

·
= B1 ⊓ · · · ⊓ Bk ⊓ ∃R1 .A1 ⊓ · · · ⊓ ∃Rl .Al, where (i) each Bi and Aj with

1 ≤ i ≤ k and 1 ≤ j ≤ l is a concept name, and (ii) every Bi with 1 ≤ i ≤ k
is a primitive concept, i.e., there is no definition for it in TBox. Baader [2002]
has described a transformation that normalises every TBox. However, in contrast
to simplification of TBoxes (see section 2.2), which can be done in linear time,
normalisation process might yield a quadratic blowup in the size of TBox, which



2.4. Extensions of DL EL 29

can be demonstrated in a simple example below:

A1
·
= B ⊓ C1

· · · · · ·

An
·
= B ⊓ Cn

B
·
= ∃R1.B1 ⊓ · · · ⊓ ∃Rn .Bn

=⇒

A1
·
= ∃R1.B1 ⊓ · · · ⊓ ∃Rn .Bn ⊓ C1

A2
·
= ∃R1.B1 ⊓ · · · ⊓ ∃Rn .Bn ⊓ C2

· · · · · ·

An
·
= ∃R1.B1 ⊓ · · · ⊓ ∃Rn .Bn ⊓ Cn

(2.9)

Hence, a direct complexity estimation of the procedure described in [Baader, 2002],
seems to give only O(n4)-time algorithm for checking subsumption in EL. How to
avoid this blowup and to find a quadratic time algorithm for subsumption in EL, is
one of the challenges for the future work.

2.4 Extensions of DL EL

Although EL is a relatively simple description logic, it can be already applied for
reasoning in existing and widely used commercial terminology Snomed [Spackman,
2001]. However it is always desirable to identify some other commonly used con-
structors, adding which would preserve tractability of reasoning. In this section we
apply our method to obtain polynomial algorithms for some known and new exten-
sions of EL. We also try to explain this nice computational behaviour of EL and its
extensions from resolution point of view.

2.4.1 GCIs, Bottom Concept and Extended Role Hierarchies

Brandt [2004a] has observed that reasoning in EL remains polynomial even with
general inclusion axioms (short GCIs) of form C ⊑ D, where C and D might be
arbitrary concepts. Surprisingly, we get this result for free, since we haven’t really
used that our TBox consists only of definitions.5

In presence of GCIs, one can use an additional bottom concept ⊥, which intu-
itively denotes the empty set. This concept, also called the empty concept, is not
needed, if EL-TBox-es contain only definitions.6

By allowing GCIs and the empty concept, we definitely extend the expressive
power of EL. For example, let us define concepts Woman, Mother and Grandmother
analogously to Man, Father and Grandfather. Then we can express that concepts

5Recall that we replace each definition A
·
=C with two inclusion axioms A ⊑ C and C ⊑ A

6Indeed, ⊥ can be eliminated from such TBox by a sequence of simple transformations: A⊓⊥ ⇒
⊥, ∃R.⊥ ⇒ ⊥ and TBox ∪ (A

·
=⊥)⇒ TBox[A/⊥]



30 Engineering Logical Algorithms using S.B.T.P.

Male and Female are disjoint:

Woman
·
= Human ⊓ Female Male ⊓ Female ⊑ ⊥

Mother
·
= Woman ⊓ Parent ∃has-child.Human ⊑ Human

Grandmother
·
= Woman ⊓ ∃has-child.Parent

Child ⊑ Human Child ⊓ ∃has-child.⊤ ⊑ ⊥
(2.10)

This implies disjointness for concepts Father and Mother, as well as for concepts
Grandmother and Father. If we add inclusion axiom ∃has-child.Human ⊑ Human
saying that Humans can be children of only Humans, then, instead of stating John :
Man in our ABox, we could equivalently write John : Male. In presence of the
above axiom, this would imply the first assertion since John has a child Bill who
was proven to be Human.

GCIs might be used not only for restricting existing concepts, but also for spec-
ifying new concepts partially. For example, in (2.10), we have partially defined a
new concept Child by saying that those are Humans and they do not have their own
children. (Of course, it is not appropriate to say that children are exactly those
Humans that have no children). See [Brandt, 2004a] for more examples of using
GCIs for conceptual modelling.

Baader et al. [2005] have demonstrated that reasoning in EL with GCIs and the
empty concept, remains tractable. Moreover, an extension of EL with simple role
inclusion axioms (or role hierarchies), remains polynomial as well [Brandt, 2004a;
Baader et al., 2005]. A role inclusion axiom is an axiom of form R ⊑ S, where R and
S are role names. We also show that adding conjunction of roles, i.e., definitions of
form R

·
=S ⊓H , does not make reasoning in EL harder.

Table 2.11 CNF-translation for (extended) role hierarchies
TBox FO − translation CNF− translation clause type

A
·
=⊥ ∀x.[A(x)↔ ⊥] ¬A(x) D9(A)

R ⊑S ∀xy.[R(x, y)→S(x, y)] ¬R(x, y) ∨ S(x, y) DH1(R, S)
R ⊓ S ⊑T ∀xy.[((R(x, y) ∧ S(x, y))→T (x, y)] ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y) DHX1(R, S, T )

D9 ¬A(x);

DH1 ¬R(x, y) ∨ S(x, y);

DHX1 ¬R(a, b) ∨ S(a, b);

DHX2 ¬S(x, y) ∨ ¬R(x, y) ∨ T (x, y);

DHX3 ¬A(x) ∨ ¬S(x, fA(x)) ∨ T (x, fA(x));

In order to extend our resolution decision procedure for EL described in Table 2.6,
it suffices to enumerate all inferences between clause types from Table 2.5 and new
clause types obtained in Table 2.11. These inferences are listed in Table 2.12.



2.4. Extensions of DL EL 31

Table 2.12 Summary of inferences for (extended) role hierarchies in EL
A9. OR[C1; D9] : A(a); ¬A(x) ⊢ � : ⊥

T10. OR[C3; D9] : A(x); ¬A(x) ⊢ � : ⊥

T11. OR[C4; D9] : ¬A(x) ∨B(fA(x)); ¬B(x) ⊢ ¬A(x) : D9

AH1. OR[C2; DH1] : R(a, b); ¬R(x, y) ∨ S(x, y) ⊢ S(a, b) : C2

TH1. OR[C5; DH1] : ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨ S(x, y) ⊢ ¬A(x) ∨ S(x, fA(x)) : C5

AHX1. OR[C2; DHX1]: R(a, b); ¬R(a, b) ∨ S(a, b) ⊢ S(a, b) : C2

AHX2. OR[C2; DHX2]: R(a, b); ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y) ⊢ ¬S(a, b) ∨ T (a, b) : DHX1

THX1. OR[C5; DHX2]: ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y) ⊢

⊢ ¬A(x) ∨ ¬R(x, fA(x)) ∨ T (x, fA(x)) : DHX3

THX2. OR[C5; DHX3]: ¬A(x) ∨R(x, fA(x)); ¬A(x) ∨ ¬R(x, fA(x)) ∨ S(x, fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ S(x, fA(x)) ⊢ ¬A(x) ∨ S(x, fA(x)) : C5

So, let us now compute a datalog program for reasoning in the above mentioned
extensions of EL. W.l.o.g. we may assume that (i) the empty concept occurs only in
TBox-definitions of form A

·
=⊥, where A is a concept name, and (ii) role inclusion

axioms are either of two forms: R ⊑ S or R ⊓ S ⊑ T , where R, S and T are role
names. In Table 2.11 we have listed CNF-translations for these new axioms and new
clause types that result from it.7 Encoding them as datalog rules, similarly as has
been done for EL, we obtain an extension of a datalog program given in Table 2.13,
using which reasoning in EL with empty concept and extended role hierarchies can
be performed.

Complexity bounds for the extension of our datalog program with the rules from
Table 2.13, can be extracted using a similar analysis as has been performed in sub-
section 2.3.3. It is easy to see that the deductive closure of the initial database, can
contain at most linear number of underlined atoms and at most quadratic number of
dashed-underlined atoms. Hence a cubic bound on the number of prefix firings can
be extracted for all rules given in Table 2.13 except for rule AHX2. For rule AHX2
we have a linear number of prefix firings for atom DHX2(R, S, T ), however, for every
choice of such prefix firing, there are two free variables left in the first atom: a and
b. Hopefully, there are only linear number of pairs (a, b) which may occur in atoms
of form C2(R, a, b), since, as can be easily seen, those must occur together in some
initial atom. To summarise, reasoning in EL augmented with the empty concept
and extended role hierarchies, can be performed in cubic time in the size of TBox

7We add postfix H to indicate that a clause originates from a simple role inclusion axiom (role
hierarchy), and HX to indicate that a clause originates from an extended inclusion axiom



32 Engineering Logical Algorithms using S.B.T.P.

Table 2.13 Additional datalog rules for reasoning with role hierarchies in EL
A9. ⊥ ← C1(A, a), D9(A);

T10. ⊥ ← C3(A), D9(A);
T11. D9(A) ← C4(A, B, f), D9(B);

AH1. C2(S, a, b) ← C2(R, a, b), DH1(R, S);

TH1. C5(A, S, fA) ← C5(A, R, fA), DH1(R, S);

AHX1. C2(S, a, b) ← C2(R, a, b), DHX1(R, S, a, b);

AHX2. DHX1(S, T, a, b) ← C2(R, a, b), DHX2(R, S, T );

THX1. DHX3(A, R, T, fA)← C5(A, R, fA), DHX2(R, S, T );

THX2. C5(A, S, fA) ← C5(A, R, fA), DHX3(A, R, S, fA);

and ABox.

2.4.2 Cross-Products of Concepts

Let us try to understand and explain why reasoning in EL and its mentioned ex-
tensions is tractable, whereas it is not for most other description logics. If we look
carefully at the result of CNF transformations for EL-TBox-es, we observe that we
obtain only Horn clauses, i.e., clauses with at most one positive literal. However
Horn logic, has the same expressive power as logic programming, thus is undecidable
in general (see e.g., [Dantsin et al., 2001]). Hence, this fact does not even explain de-
cidability for EL and its extensions. However, satisfiability for Horn clauses without
functional symbols is decidable and even polynomial when the number of different
variables in clauses is bounded. We can see that extensions described in the pre-
vious section result in clauses of this form. So, it might be reasonable to search
for tractable extensions of EL among those constructors, which correspond to Horn
clauses without functional symbols.

In literature on description logics [e.g., in Borgida, 1996], we find a role forming
operator called a cross-product of concepts. This constructor allows one to form a
role expression C1×C2 from two concepts C1 and C2, which intuitively corresponds
to the Cartesian product of the sets correspondent to C1 and C2. For example, in
our terminology of human relations we can write an axiom:

Grandmother× Child ⊑ likes (2.11)

expressing that every Grandmother likes every Child. Now, if we look at the CNF-
translation for such axioms given in Table 2.14, we notice that they correspond to
Horn clauses without functional symbols (again, we may assume that only concept
names and role names are used in definitions). It is possible to show that resolution



2.4. Extensions of DL EL 33

Table 2.14 CNF-translation for cross-products of concepts
TBox FO − translation CNF− translation clause type

R ⊑A×B ∀xy.[R(x, y)→(A(x) ∧B(y))] ¬R(x, y) ∨A(x) DP7(R, A)
¬R(x, y) ∨B(y) DP8(R, B)

R ⊒A×B ∀xy.[(A(x) ∧B(y))→R(x, y)] ¬A(x) ∨ ¬B(y) ∨R(x, y) DP10(A, B, C)

for EL and these new clauses produces only finitely many clauses. Please find in
Appendix A.4 the full list of inferences (there are quite many of those) and the
resulted datalog program.

The extension of EL with cross-products, remains tractable even if the empty
concept and simple role hierarchies are allowed. However, it becomes PSPACE-
hard for conjunction of roles. The reason is that using extended role hierarchies,
it is possible to express inclusion axioms with universal value restrictions of form
C ⊑ ∀R.D, or equivalently, inclusion axioms with inverse roles of form ∃R− .C ⊑ D,
which were shown to cause intractability in [Baader et al., 2005]. Indeed, these
axioms are expressible using three inclusion axioms: C × ⊤ ⊑ S, S ⊓ R ⊑ H and
H ⊑ ⊤×D, where S and H are fresh role names. However, we conjecture that EL
with conjunction of roles remains polynomial if one admits cross-products only in
axioms of form C1 × C2 ⊑ R.

2.4.3 Nominals

Nominal is a constructor that allows one to form a concept {a} from an individual
a. Intuitively, concept {a} corresponds to a single-element set consisting of a. By
combining nominals and the empty concept in EL, one can express a so-called unique
name assumption for individuals, namely that different individuals must correspond
to different elements. For example, we can express that John and Bill are different
persons using the first axiom below:

{John} ⊓ {Bill} ⊑ ⊥

{John} × {Bill} ⊑ has-child
{John} × Child ⊑ likes

(2.12)

Using cross-products of roles considered in the previous section, it is possible to
express and generalise role assertions: the second axiom above is equivalent to
a role assertion (John, Bill) : has-child, which can be also equivalently written as
{John} ⊑ ∃has-child.{Bill}, and the last axiom expresses that John likes all Children.

Nominal is another example of a constructor which corresponds to Horn clauses
without functional symbols (see Table 2.15), but this time with equality.



34 Engineering Logical Algorithms using S.B.T.P.

Table 2.15 CNF-translation for nominals
TBox FO − translation CNF− translation clause type

{a} ⊑A A(a) A(a) C1(A, a)
{a} ⊒A ∀x.(A(x)→(x ≃ a)) ¬A(x) ∨ x ≃ a DO2(A, a)

Recently Baader et al. [2005] have proved that an extension of EL with nominals
also remains polynomial. In this section we confirm and generalise this result using
the ordered paramodulation calculus, which is a general-purpose calculus for the
first-order logic with equality.

The ordered paramodulation calculus is an extension of the ordered resolution
calculus with two inference rules given in Figure 2.2. The first rule called Ordered

Figure 2.2 The ordered paramodulation calculus with selection

Ordered Paramodulation Reflexivity Resolution

OP :
C ∨ s ≃ t⋆ D ∨L[s′]

Cσ ∨Dσ ∨ L[t]σ
RR :

C ∨ s 6≃ s′

Cσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible in
clause C ∨ s ≃ t; (iii) L[s′] is eligible in clause
D∨L[s′]; (iv) tσ 6� sσ and (v) s′ is not a variable.

where (i) σ = mgu(s, s′) and (ii) s 6≃ s′ is
eligible in clause C ∨ s 6≃ s′.

Paramodulation allows one to use an eligible equational atom s ≃ t to perform
replacement of a subterm in eligible literals of other clauses. For example, using
this rule one can perform the following inference:

¬A(x) ∨ fA(x) ≃ a, ¬A(x) ∨ R(fA(x), b) ⊢ ¬A(x) ∨ ¬A(x) ∨ R(a, b) (2.13)

Two important restrictions of the Ordered Paramodulation rule are (iv), saying that
the replaced term should not be smaller than the term on which it is replaced and
(v), saying that variables should not be replaced at all. The Reflexivity Resolution rule
allows one to eliminate inequalities from clauses by unifying the respective terms.

The ordered paramodulation calculus is a sound and complete calculus for the
first-order logic with equality. Consequently, we can use it to obtain sound and
complete procedures for everything which can be expressed in this logic.

In Appendix A.5 we have applied the inference rules from Figure 2.1 and Figure 2.2
to clauses for the extensions of EL considered before, and new clauses for nominals
given in Table 2.15, and demonstrated that only finitely many clauses could be
produced. Our analysis proves that: (1) ordered paramodulation is a decision pro-
cedure for reasoning problems in the considered extensions of EL with nominals and
(2) these reasoning problems are solvable in polynomial time in the size of ABox
and TBox.



2.5. DL EL and Restricted Role-Value Maps 35

2.5 DL EL and Restricted Role-Value Maps

In the previous sections we have demonstrated how reasoning algorithms for sev-
eral extensions of EL can be uniformly constructed step-by-step, by adding clause
types for new constructors, and then closing the resulted set of clause types under
inferences of an appropriate general-purpose calculus. There is, however, one more
extension of EL considered by Baader [2003], for which, as it turns out, more so-
phisticated techniques are required to obtain even decidability results. This is an
extension of EL with restricted role-value maps.

A (global) role-value map (short RVM) is an axiom of form R1 ◦ . . . ◦ Rn ⊑
S1 ◦ . . . ◦ Sm, where n ≥ 1, m ≥ 1 and ◦ is a composition operator for roles. Axioms
involving the composition operator will be often called compositional axioms. Such
inclusion axiom expresses that for every sequence of elements a0,.., an such that
(ai−1, ai) ∈ Ri for every i = 1,.., n, there exist elements b0,.., bm such that b0 = a0,
bm = an and (bj−1, bj) ∈ Sj for every j = 1,.., m.

Description logics with role-value maps have been considered in the context of the
Kl-One system [Brachman & Schmolze, 1985]. Later it was realized in [Schmidt-
Schauß, 1989], that such axioms make reasoning in description logics undecidable
[see a related discussion in Donini, 2003], and EL is not an exception in this respect
[Baader, 2003]. More precisely, Baader [2003] has proved that: (i) concept sub-
sumption problem for EL augmented with role-value maps is undecidable, however
(ii) for restricted role-value maps of form R1 ◦ . . . ◦Rn ⊑ S, n ≥ 1, subsumption of
concepts can be decided in polynomial time. Recently in [Baader et al., 2005], this
result has been generalised to other extensions of EL.

In this section we demonstrate how decision procedures for reasoning in EL with
restricted role-value maps can be obtained using saturation-based calculi.

2.5.1 Undecidability for Some Extensions of EL with Role-

Value Maps

Before we describe a resolution strategy for an extension of EL with simple role-
value maps, let us review some further possible extensions of this description logic.
It has been demonstrated in [Brandt, 2004a; Baader et al., 2005], that reasoning
in EL becomes intractable as long as some additional constructors are added, in
particular, disjunction, universal value restrictions or inverse roles. It turns out, that
in presence of restricted role-value maps, this distinction is even more dramatical.
Not only tractability of EL with restricted RVMs is lost when these constructors
are added, but actually, the resulted description logics become undecidable.

For proving undecidability for extensions of EL with restricted RVMs, we use a
reduction from a well-known unsolvable problem about the intersection emptiness of



36 Engineering Logical Algorithms using S.B.T.P.

context-free languages. A context-free grammar in Chomsky normal form is defined
by a set of production rules of forms (1) A→ BC or (2) A→ a, where capital letters
A, B and C are called non-terminals, or variables and small letters a, b, etc., are
called terminals. A language generated by a grammar from a start symbol S, is the
set of all strings consisting of terminal symbols only, that are obtained by rewriting
S using the production rules. The following problem is undecidable [see Hopcroft
& Ullman, 1979]: Given two context-free grammars in Chomsky normal form, with
disjoint sets of non-terminals, start symbols S1 and S2, respectively, and common
terminal symbols a and b, check, if languages generated from S1 and S2 intersect.

Our reduction is close in spirit to some other undecidability proofs for logics with
compositional axioms [see e.g., Baldoni, Giordano & Martelli, 1998; Ganzinger et
al., 1999]. Given two grammars defined by sets of production rules, we introduce
new role names RA and Ra for every non-terminal A and terminal a. For every
production rule A→ BC and A→ a, we form inclusion axioms RB ◦RC ⊑ RA and
Ra ⊑ RA respectively. Finally, we add the following definition to TBox:

A
·
= ∃Ra .A ⊓ ∃Rb .A ⊓ B (2.14)

where A, B are fresh concept names and a, b are the non-terminals of our grammars.
b

b

a

b

a
b

b

b b

b

b

b

a
b

b

A, B

Si

Definition (2.14) enforces a tree-like structure illustrated in the
figure to the right: every element of concept A must be an element
of concept B and must be connected with other two elements of
concept A via roles Ra and Rb respectively. Now, if a word w =
w1w2...wk over letters wj ∈ {a, b}, 1 ≤ j ≤ k, belongs to a language
generated by Si, i = 1, 2, i.e., in symbols: Si → w1w2...wk, then
we must have Rw1 ◦ . . .◦Rwk

⊑ RSi
according to our compositional

axioms. This means that for every element x from A there exists an element y from
B, connected with a chain of roles labelled by letters from w, such that (x, y) ∈ RSi

.
Hence languages generated by our grammars have a common word w if and only if
the following property holds:

In every model of (2.14), every element from A is connected to
some element from B via both roles RS1 and RS2.

(2.15)

To complete our reduction and thereby prove undecidability, it suffices to express
the last property using additional constructors:

Conjunction of roles. First of all, property (2.15) can be easily expressed using
conjunction of roles. Indeed, subsumption ?-A ⊑ ∃(RS1 ⊓ RS2).B w.r.t. TBox
(2.14) holds if and only if (2.15) holds.



2.5. DL EL and Restricted Role-Value Maps 37

Disjunction of concepts. Now we show how to express property (2.15) using
disjunction of concepts. Let us add the following definition to TBox (2.14):

B
·
= C ⊔D (2.16)

where C and D are fresh concept names. We claim that subsumption ?-A ⊑
(∃RS1 .C⊔∃RS2 .D) w.r.t. the resulted TBox holds if and only if property (2.15) holds.
Indeed, as we have demonstrated, (2.15) implies subsumption A ⊑ ∃(RS1 ⊓ RS2).B,
which together with (2.16) yields our subsumption as follows:

A ⊑ ∃(RS1 ⊓ RS2).B = ∃(RS1 ⊓RS2).(C ⊔D) =

= ∃(RS1 ⊓RS2).C ⊔ ∃(RS1 ⊓ RS2).D ⊑ ∃RS1 .C ⊔ ∃RS2 .D.

Conversely, suppose that property (2.15) does not hold, i.e., there exists a model
M and an element x ∈ A such that for every y ∈ B we have (x, y) /∈ (RS1 ⊓ RS2).
Then we can extend this model by defining concepts C and D as follows: (i) y ∈ C
iff y ∈ B and (x, y) /∈ RS1 ; (ii) y ∈ D iff y ∈ B and (x, y) /∈ RS2 . It is easy to see
that these definitions satisfy (2.16), but our subsumption does not hold: x ∈ A, but
x /∈ ∃RS1 .C and x /∈ ∃RS2 .D.

Universal value restrictions. For universal value restrictions, we consider the
following subsumption problem: ?- (A ⊓ ∀RS2 .C) ⊑ ∃RS1 .C w.r.t. TBox (2.14).
Again, (2.15) implies this subsumption:

A⊓∀RS2 .C ⊑ ∃(RS1 ⊓ RS2).B⊓∀RS2 .C ⊑ ∃(RS1 ⊓RS2).(B⊓C) ⊑ ∃RS1 .C.

If (2.15) does not hold for some model M, then, in particular, it does not hold
for a restriction of M to elements of A. By defining x and C like in the case with
disjunction, we can notice that for every y with (x, y) ∈ RS2 , we have y ∈ A ⊑ B.
Since we must also have (x, y) /∈ RS1 , by (i), we have y ∈ C, and so x ∈ (A⊓∀RS2 .C).
However, x /∈ ∃RS1 .C, since there is no y ∈ C such that (x, y) ∈ RS1 because of (i).
Hence our subsumption relation does not hold.

Inverse roles. Finally, we make a similar construction for inverse roles using the
subsumption query: ?- (A⊓C) ⊑ (∃RS1 .∃R

−
S2

.C). This subsumption can be derived
from (2.15) as follows:

A ⊓ C ⊑ A ⊓ ∀RS2 .∃R
−
S2

.C ⊑ ∃(RS1 ⊓ RS2).B ⊓ ∀RS2 .∃R
−
S2

.C ⊑

⊑ ∃(RS1 ⊓RS2).(B ⊓ ∃R
−
S2

.C) ⊑ ∃RS1 .∃R
−
S2

.C.

Conversely, if x is defined like before, then we can take C := {x}, and so x ∈
(A ⊓ C), but x /∈ ∃RS1 .∃R

−
S2

.C, since there is no y such that (x, y) ∈ RS1 , and
(y, x) ∈ R−

S2
.



38 Engineering Logical Algorithms using S.B.T.P.

The above reductions prove that every extension of EL (without GCIs) with
restricted RVMs and either conjunction of roles, or disjunction of concepts, or uni-
versal value restrictions, or inverse roles is undecidable.

2.5.2 A Resolution Strategy for EL with Restricted Role-

Value Maps

As we have seen in the previous section, the extension of EL with restricted role-
value maps is very fragile w.r.t. decidability, as most of its extensions appear to
be undecidable. This means every resolution strategy for this description logic will
simply not work when applied for its extensions. This is a rather strong indicator
for difficulties in designing of such a resolution strategy, since it must take into
consideration that our logic does not contain certain constructors. And indeed,
difficulties with composition axioms do not hesitate to show up.

Difficulties with compositional axioms

Consider a transitivity axiom T ◦T ⊑ T for a role T , which is an instance of restricted
role-value maps. This axiom corresponds to clause of form:

T. ¬T (x, y) ∨ ¬T (y, z).......... ∨ T (x, z) (transitivity)

Although this is a Horn clause without functional symbols, we will see that it does
not behave “well” under ordered resolution. Since the positive literal of this clause
is not maximal, we have two choices for selecting its negative literal. We show that
both of these choices result in infinite number of clauses derived.

Suppose we have an additional clause resulted from axiom A ⊑ ∃T .⊤:
C.1 ¬A(x) ∨ T (x, fA(x))

If the first literal in clause T is selected, we obtain an infinite number of inferences
with the transitivity clause:

OR[C.1; T] : ¬A(x) ∨ T (x, fA(x)); ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z) ⊢

⊢ D.1 ¬A(x) ∨ ¬T (fA(x), z) ∨ T (x, z)

OR[C.1; D.1] : ¬A(x) ∨ T (x, fA(x)); ¬A(x) ∨ ¬T (fA(x), z) ∨ T (x, z) ⊢

⊢ C.2 ¬A(fA(x)) ∨ ¬A(x) ∨ T (x, fA(fA(x)))

OR[C.2; T] : ¬A(fA(x)) ∨ ¬A(x) ∨ T (x, fA(fA(x))); ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z) ⊢

⊢ D.2 ¬A(fA(x)) ∨ ¬A(x) ∨ ¬T (fA(fA(x)), z) ∨ T (x, z)

OR[C.2; D.2] : ¬A(fA(x)) ∨ ¬A(x) ∨ T (x, fA(fA(x)));

¬A(fA(x)) ∨ ¬A(x) ∨ ¬T (fA(fA(x)), z) ∨ T (x, z) ⊢

Continued on next page



2.5. DL EL and Restricted Role-Value Maps 39

⊢ ¬A(fA(x)) ∨ ¬A(x) ∨ ¬A(fA(x)) ∨ ¬A(x) ∨ T (x, fA(fA(fA(fA(x))))) ⊢

⊢ C.3 ¬A(fA(x)) ∨ ¬A(x) ∨ T (x, fA(fA(fA(fA(x)))))

. . . . . . . . . etc.

Similarly, selection of the second negative literal in T yields infinite number of
clauses:

OR[C.1; T] : ¬A(x) ∨ T (x, fA(x)); ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z) ⊢

⊢ C.2 ¬T (x, y) ∨ ¬A(y) ∨ T (x, fA(y))

OR[C.2; T] : ¬T (x, y) ∨ ¬A(y) ∨ T (x, fA(y)); ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z) ⊢

⊢ C.3 ¬T (x1, x) ∨ ¬T (x, y) ∨ ¬A(z) ∨ T (x1, fA(y))

. . . . . . . . . etc.

As we see, both strategies result in either increase in the depth or in the length of
the produced clauses, which means that the saturation process does not terminate.
It seems like nothing can be done to fix this behaviour. However, imagine for a
moment that we can select the positive literal of the transitivity clause:

T. ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z) (transitivity)

In this case, none of the above inferences is possible. But there might be other in-
ferences with clauses containing T negatively, say, with clauses resulted from trans-
lation of an inclusion axiom of form ∃T .B ⊑ C (see Table 2.3):

D.1 ¬T (x, y) ∨ ¬B(y) ∨ C(x)

Resolution between the transitivity clause and this clause results in inference:

OR[T; D.1] : ¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z); ¬T (x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ D.2 ¬T (x, y) ∨ ¬T (y, z) ∨ ¬B(z) ∨ C(x)

It looks like we have the same problem again, since now we have to select some of
the negative literals in clause D.2, which then can be resolved with the transitiv-
ity clause producing similar, but longer clauses. Now the second trick which helps
to avoid this problem is to split clause D.2 into two shorter clauses. This can be



40 Engineering Logical Algorithms using S.B.T.P.

formally done using an additional optional rule:

Splitting through New Predicate Symbol

SPP :
[[C ∨D ]]

C ∨ u
C
(x)

D ∨ ¬u
C
(x)

where (i) x are the shared variables of subclauses C and D; and
(ii) u

C
(x) is a fresh atom introduced for C.

(2.17)

Rule (2.17) introduces a “definition” u
C
(x) for the negation of a subclause C, which

is then used for splitting this clause into smaller ones. The splitting rule (2.17)
was argued to be useful for speeding-up a saturation process in theorem provers
[Riazanov & Voronkov, 2001; de Nivelle, 2001]. Here we demonstrate that using
this rule, termination of a saturation process can be regained.

Let us see how the Splitting through New Predicate Symbol can be applied to
clause D.2 above. This clause can be partitioned into two subclauses:

D.2 = [¬T (y, z) ∨ ¬B(z)] ∨ [¬T (x, y) ∨ C(x)], with a common variable y.

Now, using a fresh atom TB(y) for the first part of the clause, we can split D.2 into
the following two clauses according to rule (2.17):

D.2.1 ¬T (y, z) ∨ ¬B(z) ∨ TB(y); D.2.2 ¬T (x, y) ∨ ¬TB(y) ∨ C(x).

Semantically, atom TB(y) represents the set of all elements from which some element
from B is reachable via T , or, writing this in DL-syntax, TB ·

=∃T .B. Speaking about
DL-syntax, note that clause D.2 expresses the inclusion axiom: ∃T .∃T .B ⊑ C, and
the splitting rule essentially replaces it with two inclusion axioms: ∃T .B ⊑ TB and
∃T .TB ⊑ C, that correspond to clauses D.2.1 and D.2.2 respectively.

The resolution strategy

Unfortunately, resolution with selection of positive literals is not complete for general
clauses. However, for the Horn clauses, which we essentially obtain for extensions of
EL, selection of positive literals is admissible (see related discussion in [de Nivelle,
1995, Section 6.7] and in [Bachmair & Ganzinger, 2001, Section 7.2]). Nevertheless,
we will not rely on this result to leave a possibility of extending EL with construc-
tors that do not correspond to Horn clauses. Instead, we make use of renaming
techniques8 to simulate the effect of positive selection. The idea is to replace the

8Renaming techniques are often used for proving completeness of different resolution strategies,
including resolution with free selection discussed here [see Bachmair & Ganzinger, 2001]



2.6. First Results 41

transitivity clause T with two clauses:

T.1 ¬T (x, y) ∨ ¬T (y, z) ∨ ¬T¬(x, z); and T.2 T¬(x, y) ∨ T (x, y),

where T¬(x, y) is a new atom that corresponds to the negation of T (x, y). Now we
are allowed to select the last literal in clause T.1. To make sure that the transitivity
clause will not be derived back from T.1 and T.2, we make atom T¬(x, y) slightly
smaller in ordering than atom T (x, y).

In the general case, we may assume that our terminologies contain only compo-
sitional axioms of form S ◦ T ⊑ H , since longer inclusion axioms can be split into
shorter ones by introducing auxiliary role names. Such axioms are translated to
clauses analogously according to Table 2.18. Please see Appendix A.6 to find the

Table 2.18 CNF-translation for restricted role-value maps
TBox FO − translation CNF− translation clause type

S ◦ T ⊑H ∀xyz.[(S(x, y) ∧ T (y, z))→ ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) DM12(S, T, H)
→H(x, z)] H¬(x, y) ∨H(x, y) CM4(H)

details of how our strategy works in this case. It is shown that resolution produces
only clauses of finitely many types, and hence, gives a polynomial decision procedure
for EL with restricted RVMs.

2.6 First Results

The algorithms for checking subsumption in description logic EL and its extensions
are quite intriguing because they have provably polynomial complexity in the worst
case. This is not true for the standard tableau-based procedures: Brandt [2004b]
gave an example showing that such procedures would require exponentially many
steps in the worst case for checking concept subsumption in EL. However these pro-
cedures are not really designed to be optimal in the worst case but rather efficient
for the average case, or for so-called “real wold problems” – it is well-known that
for many EXPTIME-complete description logics, tableau procedures might have
NEXPTIME or even 2NEXPTIME behaviour in the worst case. Still, these pro-
cedures deliver good performance in practice because of a number of sophisticated
optimisation techniques employed [Horrocks et al., 2000].

What we want to say, is that theoretical results might not be convincing enough
in favour of specialised completion-based/saturation-based procedures for EL pre-
sented in this chapter, over the standard tableau-based procedures. In order to
fully validate our approach we have performed a series of experiments, the results
of which we are proud to present in this section.



42 Engineering Logical Algorithms using S.B.T.P.

Description of the test data

For our experiments, we have generated a collection of EL terminologies, consisting
of simple concept definitions, which are possible for EL of two types:

(1) Ai
·
= Aj ⊓ Ak; and (2) Ai

·
= ∃Rj .Ak; (2.18)

where Ai are concept names and Rj are role names. These definitions were generated
according to the following parameters:

C - the number of concept names used in TBox;

R - the number of role names used in TBox;

DP - probability that a concept name is defined (definition
probability);

CP - probability that a definition is of type (1) from (2.18)
(conjunction probability).

Given a combination of these parameters, we generate a TBox by providing at
most one definition for every concept name with probability DP. This definition is
of type (1) with probability CP and otherwise is of type (2). Concept names and
role names in the right hand side of these definitions are chosen randomly from C,
respectively R candidates.

Intuitively, the large is the value for DP, the more concept dependences (sub-
sumptions) there are is the resulted TBox. On the other hand, the value for CP

corresponds to the ratio of propositional definitions in TBox. This should normally
affect the length of tableau branches.

When we have decided on the possible values for parameters C and R, we took
into account that the size of serious terminologies goes as far as up to several hundred
thousand definitions (e.g., Galen [Rector, 2002], or Snomed [Spackman et al.,
1997]). Since our implementation is only prototypical and relatively naïve, we have
decided to test TBoxes with up to 10, 000 definitions, i.e., for C ≤ 10, 000.

The number of role names used in terminologies is usually rather limited com-
pared to the number of concept names: roles often correspond to fixed attributes or
fields in records. Our conjecture was that classification becomes harder when there
are less roles in TBox (and hence more concept dependences). So, we decided to
perform tests only for R ≤ 10.

The ranges for probabilities that we have considered are: 0.5 ≤ DP ≤ 1 and
0 ≤ CP ≤ 1.



2.6. First Results 43

Description of systems and experiment conditions

We have implemented two completion-based procedures for classification of EL ter-
minologies. The first one is based on completion rules (2.4) formulated in [Brandt,
2004a; Baader et al., 2005]. The second one is based on a datalog program given in
Table 2.7 that we have derived by ordered resolution.

Both procedures have been implemented using XSB Prolog system [Sagonas et
al., 1994], which has a usual top-down depth-first evaluation but it is additionally
enhanced with so-called tabling. Tabling , also called memoing is a technique that
helps to avoid possible loops in top-down evaluation of recursive logical programs by
blocking subgoals that have been already processed. This makes the XSB system
particularly useful for evaluation of queries in datalog , since it is guaranteed to
terminate. The source codes for both programs can be found in Appendix A.7.



44 Engineering Logical Algorithms using S.B.T.P.

In our experiments we call the first program based on completion rules (2.4)
by XSB-CR, and the second program from Table 2.7 based on ordered resolution,
by XSB-OR. We have run both programs on randomly generated TBoxes and have
measured the CPU-time spent on full classification of these terminologies. For
comparison, we have also classified these TBoxes using Racer system. Racer

[Haarslev & Möller, 2001] is a highly optimised tableau-based system for reasoning
in TBoxes and ABoxes for very expressive description logics.

All tests were performed on machines equipped with 2.60GHz Intel Xeon pro-
cessors with 2GB of memory running Linux. We have used XSB version 2.7.1 and
Racer version 1.7.23. For all tests the CPU time-limit was set to 30 minutes (=
1800 seconds) and memory limit to 1GB. XSB programs where run with an option
-S that enables subsumption-based tabling.

Results of the experiments

The results of experiments turned out to be very exciting. Not only completion-
based procedures have outperformed Racer– they where actually 10 − 100 times
faster. Both XSB-programs have either computed classification within 70 seconds,
or ran out of memory. Racer turned out to be more memory efficient: none of
its runs have been killed by memory-out, but by time-out. However this did not
actually resulted in that more TBoxes have been classified.

Regarding the comparison between completion-based procedures, XSB-CR has
been generally faster than XSB-OR, for simple problems even in several times,
however for harder problems their performance were very close. This was expected,
since program (2.4) has only one rule that causes the cubic complexity (CR4), whereas
program given in Table 2.7 has two such rules (T.5 and S.3).

Now, to the detailed analysis. In Figure 2.3 we have compared performance of
our test systems with respect to the number of role names (R) used in generated
TBoxes. Recall, that our conjecture was that classification becomes harder when
there are only few role names. And indeed, for the Racer system we can observe
this behaviour: when moving from one role name to four role names, its performance
changes in an order of magnitude. Surprisingly, for completion-based systems the
difference is almost negligible, especially for big problems. Another surprise is that
with bigger values for R, timings are actually starting to grow.

In the lower part of Figure 2.3, we performed a detailed comparison between our
systems for two particular settings for the number of different roles: R = 1 in the left
graph and R = 4 in the right graph, and setting the remaining parameters to their
average values: DP = 70 and CP = 60. Again the difference for the completion-
based procedures is minimal. Racer performs considerably better in the second
case, where it was able to solve all problems.



2.6. First Results 45

Figure 2.3 Performance comparison w.r.t. the number of roles

1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

Number of Role Names (R)

C
P

U
 ti

m
e 

(s
)

(C=1000, DP=70, CP=60)

RACER
XSB+OR
XSB+CR

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

Number of Role Names (R)
C

P
U

 ti
m

e 
(s

)

(C=8000, DP=70, CP=60)

RACER
XSB+OR
XSB+CR
TimeOut

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=70, CP=60)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=4, DP=70, CP=60)

RACER
XSB+OR
XSB+CR
MemOut

In Figure 2.4 we made a detailed analysis for performance of our systems w.r.t.
the last two parameter of our tests – the probability of definition and the ratio for
the types of definitions. We made four cuts for the results of our tests: for DP = 50,
DP = 70, and CP = 40, CP = 80. The behaviour of our systems w.r.t. to these
parameters appeared to be not so determined as in the previous cases. We see that
for “sparse” knowledge bases (with DP = 50), classification is easier for Racer

with more conjunctions, but is harder for XSB-CR and there is almost no difference
for XSB-OR. In contrast, for “dence” knowledge bases with bigger ratio of concept
definitions (DP = 70) the difference w.r.t. the last parameter CP is drastic: when
there are only three problems that where not solved by some system for CP = 40,
with CP = 80 most of the problems have not been solved by every system, and this
is already for a moderate number of concepts, starting from C = 1250. Note that



46 Engineering Logical Algorithms using S.B.T.P.

Figure 2.4 Detailed performance comparison w.r.t. the definition probability and
conjunction probability

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=50, CP=40)

RACER
XSB+OR
XSB+CR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=50, CP=80)

RACER
XSB+OR
XSB+CR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=70, CP=40)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=70, CP=80)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

the timings for completion-based systems XSB-OR and XSB-CR become close with
larger values of CP. This will be also confirmed in our last comparison set.

In Figure 2.5 we have compared performance of our systems w.r.t. the values for
probability of concept definitions (DP). No surprises – performance for all systems
becomes generally worse for more concept definitions, as was expected. What is
strange is that all systems exhibit a definite exponential behaviour w.r.t. DP (the
time scale in all graphs is logarithmic).

In Figure 2.6 we have compared our systems for TBoxes with moderate number of
concept names C ≤ 3000, but for very difficult instances for other parameters: 80 ≤
DP ≤ 100 and 50 ≤ CP ≤ 100. In the first figure we see that for purely propositional
TBoxes (with CP = 100) there is no essential difference in performance w.r.t. the
number of concept definitions. However, when we fix this value to DP := 90, we



2.6. First Results 47

Figure 2.5 Performance comparison w.r.t. the definition probability

50 55 60 65 70 75 80
10

−1

10
0

10
1

10
2

10
3

10
4

Probability of Concept Definition (DP)

C
P

U
 ti

m
e 

(s
)

(C=5000, R=1, CP=60)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

50 55 60 65 70 75 80
10

−1

10
0

10
1

10
2

10
3

Probability of Concept Definition (DP)
C

P
U

 ti
m

e 
(s

)

(C=5000, R=10, CP=60)

RACER
XSB+OR
XSB+CR

notice that for all completion-based systems, the hardest TBox-es are not purely
propositional, as could be conjectured from the previous analysis, but for CP = 80

Finally, we compare general performance of our systems for very dense TBoxes
(DP = 90). We see that for TBoxes with mixed types of definitions, the systems
perform less stable than in the purely propositional case. The last sets of parameters
appeared also to be the hardest for completion-based systems (which perform here
almost identically), probably because they result in too many subsumption relations
between concepts which simply do not fit into the memory.

Conclusions

Our experiments have demonstrated that all systems that we have compared, are
suitable for classifying average-sized EL-terminologies. The completion-based sys-
tems perform uniformly much faster than Racer, sometimes in a couple of or-
ders of magnitudes, but consumes lots of memory. This is not very surprising,
since Racer solves subsumption tests one-by-one by employing depth-first search,
whereas completion-based systems classify whole TBox at once and keep all inter-
mediate results. There is no absolute “winner” for our tests: all systems were not
able to solve some problems which others did. Out of the total number of 4088
TBoxes that we have tested, Racer was not able to classify 710 TBoxes (17,4%),
XSB-OR – 828 (20,3%) TBoxes, and XSB-CR – 538 (13,2%). Among completion-
based systems, XSB-CR performed uniformly better than XSB-OR. In particular
there were no TBoxes that XSB-OR has classified but XSB-CR not.

As a conclusion, completion-based algorithms have shown to be very promising
for reasoning in EL, compared to the traditional tableau-based algorithms. They



48 Engineering Logical Algorithms using S.B.T.P.

Figure 2.6 Performance comparison for very hard problems

80 82 84 86 88 90 92 94 96 98 100
10

1

10
2

10
3

Probability of Concept Definition (DP)

C
P

U
 ti

m
e 

(s
)

(C=1000, R=1, CP=100)

RACER
XSB+OR
XSB+CR

50 55 60 65 70 75 80 85 90 95 100
10

0

10
1

10
2

10
3

10
4

Probability of Conjunction (CP)

C
P

U
 ti

m
e 

(s
)

(C=1000, R=1, DP=90)

RACER
XSB+OR
XSB+CR
TimeOut

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=90, CP=60)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Concept Names (C)

C
P

U
 ti

m
e 

(s
)

(R=1, DP=90, CP=100)

RACER
XSB+OR
XSB+CR
TimeOut
MemOut

provide an excellent time performance, but, have some issues with the memory con-
sumption, which however might be resolved by applying some memory optimisation
techniques (for example by storing only taxonomy, rather than all subsumption
relations).

The comparison of systems on a small description logic EL might seem to be
unfair, since Racer is optimised for reasoning in very expressive description logics.
However, one should take into account that conjunction and existential restrictions
are the mostly used constructors in ontologies, so it makes sense to develop opti-
misation techniques for these particular constructors within expressive description
logics as well.

It would be also nice to have a comparison for real knowledge bases rather than
for randomly generated ones. In the moment we do not have enough freely available



2.7. Conclusions 49

candidates, although the Tambis ontology seems to be expressible in EL with simple
role hierarchies, and is worth trying.

2.7 Conclusions

In this chapter we demonstrated how one can design algorithms for reasoning in de-
scription logics using saturation-based theorem proving. We derived a polynomial-
time procedure for evaluation of subsumption and instance queries in a simple de-
scription logic EL, and then extended this procedure for many other constructors.
It turned out that our procedures can be implemented as datalog programs, which
made it possible to use the standard deductive database systems for evaluation of
DL-queries, and perform more detailed complexity analysis of the procedures. The
main contributions of this chapter can be summarised as follows:

1. We derived saturation-based reasoning procedures for the following DLs: (1)
EL + GCIs + role hierarchies (cubic time); (2) DL from (1) + conjunctions
of roles (cubic time); (3) DL from (1) + cross-products of concepts; (4) DL
from (2) and DL from (3) + Nominals; (5) EL + restricted role-value maps
(O(n5)-time).

2. We demonstrated undecidability for extensions of DL EL with restricted role-
value maps and one of the following constructors: conjunction of roles, dis-
junction of concepts, universal value restriction, or inverse roles.

3. We implemented two procedures for EL (the one that we derived and the
one from [Brandt, 2004a; Baader et al., 2005]) within XSB Prolog system,
and demonstrated that they outperform the highly optimised tableau-based
reasoner Racer.

2.8 Related Works

The idea of using general-purpose theorem provers for reasoning in description log-
ics is probably as old as description logics themselves. Schild [1991] has observed a
direct correspondence between the basic description logic ALC and a multi-modal
version of modal logic K. This opened possibilities for reasoning in description logics
through the first-order logic, using relational and functional translations proposed,
say, by Ohlbach [1991] for modal logics. Independently, Fermüller et al. [1993] fol-
lowing works of Joyner Jr. [1976], proposed several resolution-based strategies for
fragments of first-order logic, including the fragment induced by relational trans-
lation of ALC. These and other ideas have been implemented in system MSpass



50 Engineering Logical Algorithms using S.B.T.P.

[Hustadt et al., 1999], which is an extension of the general-purpose theorem prover
Spass with different translations for modal formulas. Although MSpass was primar-
ily aimed at modal logics, it can be used for checking satisfiability of ALC-concepts.

Resolution is not the only general theorem-proving method which has been tried
for modal and description logics. Paramasivam & Plaisted [1998] argued that the-
orem provers based on search of finite models can be used for checking concept
subsumption in virtually every description logic with a finite model property (and
there are surprisingly many of those).

Recent trends towards more expressive description logics like SHIQ [Horrocks
et al., 2000] forced to revisit usage of theorem provers for description logics. Two
directions can be observed in recent works. One of them [Hustadt, Motik & Sat-
tler, 2004] describes a particular strategy based on a basic superposition calculus
using which subsumption of concepts in SHIQ can be decided. However, it is not
straightforward to implement such a strategy using existing theorem provers, since
they provide only for a limited control over the saturation process. In particular it
is not possible to specify custom orderings, selection functions or inference rules.

Another approach exemplified with a work of Tsarkov, Riazanov, Bechhofer &
Horrocks [2004], suggests to use theorem prover “as is”. Instead of trying to design
special saturation strategies for a theorem prover, they suggest to put an effort
towards finding good preprocessing techniques (e.g., removing of irrelevant axioms),
which allow one to solve most of the subsumption tests in practice. Using this
approach, a best state-of-the-art theorem prover (Vampire [Riazanov & Voronkov,
2002] in their tests) can be used to reason in whatever-expressive description logic
which can be translated to first-order logic. Of course, this approach does not give a
decision procedure for the concept subsumption problem, however, a prover can be
used as an incomplete classifier for languages in which subsumption is undecidable
(like Kl-One family), or for which no complete subsumption algorithm is known so
far (like the ontology web language OWL).

The key difference between the above works and the approach presented in this
chapter is that we, by no means, suggest to use a general theorem prover for reason-
ing in description logic. Instead of this, we advocate to use the theory of resolution
and its extensions to design such reasoning algorithms.

As we have seen, some resolution strategies can be expressed in a more concise
and efficient way, as datalog programs. This correspondence bridges description
logic and logical programs, which allows one to apply all spectrum of formal tools
available for logical programs – like query evaluation, optimisation and complexity
analysis – to description logics. For example, one could try to prove formally that a
datalog program specified by rules in Table 2.7 and Table 2.10 computes the same



2.8. Related Works 51

subsumption relation as the one given in (2.4)9. This would provide a correctness
proof for the last program which is more efficient.

There have been many works on integration of description logics and database
reasoning [see Borgida, Lenzerini & Rosati, 2003], however, most of them were
concerned with extensions of description logics with some features from logical pro-
grams. Grosof, Horrocks, Volz & Decker [2003] suggest to identify common parts of
logical programs and description logics which can be used as interfaces between these
formalisms. However the fragment of description logic that can be embedded into
datalog, called description Horn logic (short DHL), differs from EL. In particular,
inclusion axioms of form A ⊑ ∃R.B are not allowed, but axioms of form A ⊑ ∀R.B
(but not ∀R.B ⊑ A) are admissible. Basically, this fragment admits all inclusion
axioms that can be translated to functional-free Horn clauses. However, DHL can
be hardly used for expressing concept definitions because of this asymmetry in the
usage of constructors in inclusion axioms.

Note that, although extensions of ELwith many constructors become not tractable,
some inclusion axioms involving them can be expressed in EL, for example the fol-
lowing ones:

C ⊔D ⊑ E 99K C ⊑ E, D ⊑ E;

C ⊑ ∀R−.D 99K ∃R.C ⊑ D;

C ⊑ ∀R.⊥ 99K C ⊓ ∃R.⊤ ⊑ ⊥;

C ⊓ ∀R.D ⊑ ⊥ 99K C ⊑ ∃R.D1, D1 ⊓D ⊑ ⊥;

C ⊑ ∃R≥n.D 99K C ⊑ ∃R.(D ⊓Bi), Bi ⊓Bj ⊑ ⊥, 1 ≤ i < j ≤ n; 10

. . . . . . . . . etc.
(2.19)

It is well-known that simplification rules can dramatically improve the behaviour
of saturation-based theorem provers. Simplification rules like Elimination of Duplicate
Literals or Splitting through New Predicate Symbol, delete clauses that are no longer
needed in a saturation process. For example, a resolution decision procedure for EL
can be enchanted with Subsumption Deletion as follows:

SD[D4, D5]: ¬A(x) ∨ C(x), [[¬A(x) ∨ ¬B(x) ∨ C(x) ]] ⊢
SD[D4, D5]: ¬A(x) ∨ C(x), [[¬B(x) ∨ ¬A(x) ∨ C(x) ]] ⊢

These rules express that a clause is deleted if there is a proper subclause derived.

9Although the last problem, which is known as query equivalence, is undecidable for datalog
programs in general [see Dantsin et al., 2001]

10Here correctness of the translation relies on the tree-model property for the description logic.
It is also possible to give a similar translation which uses only ⌈log n⌉ new concept names



52 Engineering Logical Algorithms using S.B.T.P.

Such inferences correspond to logical programs with deletion:

← D4(A, C), [[D5(A, B, C) ]].
← D4(A, C), [[D5(B, A, C) ]].

(which might be implemented using default negation). Logical programs with priori-
ties and deletion were studied in [Ganzinger & McAllester, 2001, 2002], where certain
complexity characterisations similar those of McAllester [2002] were derived.

As the next step, it might be reasonable to focus on PSPACE extensions of EL
(with inverse roles, functionality and, partially, universal value restrictions), whose
axioms correspond to Horn clauses, possibly with functional symbols. In fact, first-
order translation of many ontologies, such as Galen and Tambis correspond to
such clauses [see Tsarkov et al., 2004].



Chapter 3

Preliminaries

This chapter introduces the standard material that will be used throughout this
thesis. In section 3.1 we give an account on first-order logic and term rewriting,
which underly the theory of saturation-based theorem proving. Then we give a
brief introduction to modal languages (section 3.2) and first-order fragments (sec-
tion 3.3) which will be the main sources of problems that we are going to address.
In section 3.4 we introduce Domino problems which are the most common tool for
proving undecidability results. Finally, in section 3.5, we introduce the framework
of saturation-based theorem proving, where we formulate the most commonly used
calculi in automated deduction and their variants. We make a particular emphasis
on the usage of these calculi for decision procedures: we give a computational model
of a theorem prover and estimate complexity of clause normal form transformations.

3.1 Logical Preliminaries

We assume the reader to have a background knowledge on first-order logic and term
rewriting. A comprehensive introduction to these areas could be found in textbooks
[Fitting, 1996] and [Baader & Nipkow, 1998]. Below we give some necessary nota-
tions and facts. In [Kazakov, 2005] the reader may find an extended version of the
material given in this section.

3.1.1 First-Order Logic

Syntax of first-order logic

A first-order signature is a triple Σ = (Pre, Fun, Var) consisting of a set of predicate
symbols Pre, a set of functional symbols Fun and a set of variables Var. For every
p ∈ Pre and f ∈ Fun, there is a unique integer ar(p), respectively ar(f) called the

53



54 Preliminaries

arity of the symbol. The sets of (first-order) terms TmΣ and (first-oder) atoms AtΣ

over Σ are defined inductively as follows:

TmΣ ::= x | f(t1,.., tn) . AtΣ ::= p(t1,.., tm) . (3.1)

where x ∈ Var, f ∈ Fun, p ∈ Pre, n = ar(f), m = ar(g), and ti, tj ∈ TmΣ for
1 ≤ i ≤ n, 1 ≤ j ≤ m. The set of first-order formulas FmΣ over Σ is defined using
Boolean connectives and quantifiers as usual:

FmΣ ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀y.F1 | ∃y.F1 . (3.2)

where A ∈ AtΣ, Fi ∈ FmΣ, i = 1, 2, and y ∈ Var. For conciseness we sometimes
write ∧∨ to denote either conjunction or disjunction, and Q to denote a quantifier.
We also use x to represent a vector of variables x1,.., xk for k ≥ 0. For example,
Qx.F denotes a first-order formula with some prefix of quantifiers.

A signature Σ may contain a distinguished binary predicate ≃ which is called
the equality predicate. In this case we deal with the first-order logic with equality .
We use the infix notation for equational atoms: s ≃ t, which is not distinguished
from t ≃ s. The negation of an equational atom is denoted by s 6≃ t.

The size |t|, |A|, |F |, of a term t, atom A and formula F is its length. We use
symbol E to denote the subterm and subformula relations on terms and formulas:
by writing s E t and s E F we mean that s is a subterm of t, respectively of F ,
and G E F means that G is a subformula of F . Similarly ⊳ denotes the strict
subterm and subformula relations, and D and ⊲ are their inverses. Given a first-
order formula F we denote by free[F ] the set of free variables of F and by vars[F ]
the set of all variables from F (free[F ] ⊆ vars[F ]). The width width(F ) of a formula
F is the maximal number of free variables in a subformula of F .

We write F [G] (F [s], h[s]) to denote a respective formula or a term with indicated
occurrences of its subformula G (or its subterm s). F [G/H ] (F [s/t], h[s/t]) denotes
the result of replacing all these occurrences by a formula H (term t). When replaced
occurrences are clear from the context, we shorten this to F [H ] (F [t], h[t]).

Semantics of first-order logic

Given a signature Σ, a first-order interpretation (sometimes called a Σ-structure) is a
pair I = (D, ·I), where D is a non-empty set called the domain of the interpretation,
and ·I is a mapping that associates (i) to every functional symbol f ∈ Fun with
n = ar(f) a function fI : Dn → D; (ii) to every non-equality predicate symbol
p ∈ Pre \ {≃} with m = ar(p) a relation pI ⊆ Dm. A (variable) valuation is a
mapping η : Var → D. For any x ∈ Var and d ∈ D, let {x 7→ d}·η denote the
valuation for which η′(x) = d and η′(y) = η(y) for x 6= y. The value [t]Iη ∈ D of



3.1. Logical Preliminaries 55

a term t ∈ TmΣ and the truth value [F ]Iη ∈ {true, false} of a formula F ∈ FmΣ

under an interpretation I with a valuation η are defined as usual.
A first-order formula F is satisfiable in an interpretation I, if there exists a

valuation η such that [F ]Iη = true. In this case I is a model for F . A formula F is
satisfiable if there is a model M for F . A formula F is valid in an interpretation
I (notation: I � F , if [F ]Iη = true for every valuation η. A formula F is valid
(� F ) if F is valid in every interpretation I. A formula G is a logical consequence
of a formula F (notation: F � G), if for every interpretation I and valuation η,
[F ]Iη = true implies that [G]Iη = true. A formula G is (logically) equivalent to F
(notation: G ≡ F ) if both formulas are logical consequences of each other. Formulas
F and G are equisatisfiable when F is satisfiable iff G is satisfiable.

A theory T is a collection of first-order formulas that are called the theory axioms.
A T -interpretation is an interpretation that satisfies all axioms of T . We say that
a formula F is T -satisfiable (T -valid) if F is satisfiable in some (respectively all)
T -interpretations.

We will often extend signatures by adding new predicate or functional symbols.
This requires modification of interpretations in such a way that satisfiability of
formulas over the old signature is preserved.

Definition 3.1.1 (Conservative). A signature Σ′ = (Pre′, Fun′, Var′) is called an
extension of a signature Σ = (Pre, Fun, Var), if Pre ⊆ Pre′, Fun ⊆ Fun′ and Var ⊆
Var′. In such situation, we say that a Σ′-interpretation I ′ = (D′, ·I

′

) is an expansion
of a Σ-interpretation I = (D, ·I), if (i) D = D′ and (ii) fI′

= fI , pI
′

= pI for
every functional symbol f ∈ Fun ⊆ Fun′ and every predicate symbol p ∈ Pre ⊆ Pre′.

We say that a formula F ′ is conservative over a formula F if (i) F is a logical
consequence of F ′ and (ii) every model of F can be expanded to a model of F ′. 33

3.1.2 First-Order Clause Logic

Most automated theorem provers (ATPs) for first-order logic do not operate directly
with formulas, but with their simpler clause normal forms. A (first-order) literal L
is an atom A or a negation of an atom ¬A. Two literals A and ¬A are said to be
complementary. LtΣ denotes the set of all literals constructed over a signature Σ. A
clause is a disjunction of literals C = L1 ∨···∨ Lk. The set of all clauses is denoted
by ClΣ. A clause C is interpreted as the first-order formula ∀x.C, where x are all
variables of C: x = vars[C]. In other words, all variables of a clause C are implicitly
universally quantified. Hence, C is true in an interpretation I, if I � ∀x.C. A
clause set N ⊆ ClΣ is true in an interpretation I if every clause C from N is true
in I.

A term/atom/literal or a clause is called ground if it contains no variables. We



56 Preliminaries

assume that a first-order signature Σ = (Pre, Fun, Var) contains at least one constant
(otherwise we add some fixed constant c0), so the set Tm0

Σ of ground terms over Σ
is not empty: {} 6= Tm0

Σ
⊆ TmΣ. The sets of ground atoms and ground literals are

denoted respectively by At0

Σ
and Lt0

Σ
.

By an expression E we mean a term or a literal. An expression symbol e is
either a functional symbol f or a predicate symbol p or a negated predicate symbol
¬p. In the last two cases we deal with a literal symbol l. Sometimes we will form
expressions by attaching a sequence of arguments (t1,.., tn) to an expression symbol
e: E = e(t1,.., tn), where ti ∈ TmΣ, 1 ≤ i ≤ n = ar(e). In this case we say also that
(t1,.., tn) are the arguments of E.

The size |E|, |C| of an expression E or a clause C is determined by treating them
as appropriate terms or formulas. The depth depth(E) of an expression E is defined
as follows: depth(x) := 1; depth(e(t1,.., tn)) := 1 + max{0, depth(t1),.., depth(tn)}.

An expression E is shallow , if depth(E) ≤ 2, i.e., all arguments of the expression
are variables or constants. A literal L is simple if depth(L) ≤ 3, i.e., all its arguments
are shallow. An expression E or a clause C is functional if it contains at least one
functional symbol.

3.1.3 Orderings

A (strict partial) ordering (or order) ≻ on a set D is a transitive and irreflexive
binary relation on D. If ≻ is a strict ordering then its reflexive closure is denoted
by �. An ordering ≻ is total or linear if every two different elements are comparable
by ≻, i.e., for every d1, d2 ∈ D, d1 6= d2 implies that either d1 ≻ d2 or d2 ≻ d1.
An ordering ≻ is well-founded or Noetherian if there is no infinite descending chain
d1 ≻ d2 ≻ · · · of elements di ∈ D, i ≥ 1. A total well-founded order is called a
well-order .

A quasi-ordering % on D is any reflexive and transitive relation on D. An
equivalence relation induced by a quasi-ordering % is the symmetrical part ∼ of %:
d1 ∼ d2 iff d1 % d2 and d2 % d2. A strict part ≻ of a quasi-ordering % is the
difference between % and ∼: d1 ≻ d2 iff d1 % d2 and d2 6% d1. Note that the strict
part ≻ of % is the greatest ordering contained in %.

Multiset and lexicographic extensions of orderings

A multiset of elements from D is a function M : D → N. The number M(d) is
called the multiplicity of an element d in M , d ∈ D. The size |M | of a multiset M
is defined by |M | :=

∑

d∈D M(d). A multiset M is finite if |M | <∞.
Any ordering ≻ on D can be extended to an ordering ≻

mul
on finite multisets

of D as follows: M1 ≻mul
M2 iff (i) M1 6= M2 and (ii) for every element d ∈ D,



3.1. Logical Preliminaries 57

either M1(d) ≥ M2(d), or, otherwise there exists for some d′ ≻ d, d′ ∈ D, such
that M1(d

′) > M2(d
′) . The ordering ≻

mul
is called the multiset extension of of the

ordering ≻.
Any ordering ≻ on D can be extended to an ordering ≻n

lex
on Dn called the

lexicographic extension of of ≻ as follows: (d1,.., dn) ≻n

lex
(d′

1,.., d
′
n) iff there exists i

with 1 ≤ i ≤ n such that di ≻ d′
i, and for all j with 1 ≤ j < i, we have dj = d′

j.

Reduction orderings

Let ≻ be an ordering on ground expressions over a signature Σ (i.e., on ground
terms and ground literals). We say that ≻ is a rewrite ordering if ≻ admits the
monotonicity property: for every ground terms s0, t0 and a ground expression E0

with s0 ⊳ E0, s0 ≻ t0 implies E0[s0] ≻ E0[t0/s0]. A reduction ordering is a well-
founded rewrite ordering. An ordering ≻ has the subterm property if for every
t0 ⊳ E0 we have E0 ≻ t0. A simplification ordering is any reduction ordering with
the subterm property.

Most term orderings used in applications nowadays are variations of either Knuth-
Bendix ordering [Knuth & Bendix, 1970] or a lexicographic path ordering [Kamin
& Lévy, 1980]. Both orderings are based on a precedence ≫, which is a strict order
on functional symbols Fun of a signature Σ.

The Knuth-Bendix ordering A weight function is any function weight : Fun→N that assigns a non-negative integer1 to every functional symbol from Fun. A
weight function weight(·) is admissible for a precedence ≫ iff (i) weight(c) > 0 for
every constant c and (ii) for every unary functional symbol f ∈ Fun, weight(f) = 0
implies that f is ≫-greatest element in Fun (i.e., for every g ∈ Fun \ {f}, we have
f ≫ g). The weight function is recursively extended to the set of ground terms Tm0

Σ

as follows: weight(f(t0
1,.., t

0
n)) := weight(f)+weight(t0

1)+···+weight(t0
n). Note, that

if weight(f) = 1 for every functional symbol f ∈ Fun, then weight(t) = |t|, where
|t| is the size of t.

Definition 3.1.2. The Knuth-Bendix ordering (short KBO), induced by a prece-
dence≫ and an admissible weight function weight(·) is defined as follows: For every
pair of ground terms s0 = f(s0

1,.., s
0
n) and t0 = g(t0

1,.., t
0
m) we have s0 ≻kbo t0 iff one

of the following conditions holds:

(1) weight(s0) > weight(t0), or
(2) weight(s0) = weight(t0), but f ≫ g, or

1some definitions, e.g., in [Baader & Nipkow, 1998], allow for non-negative real weights, however
the advantage of this is doubtful



58 Preliminaries

(3) weight(s0) = weight(t0), f = g (and hence m = n), and (s0
1,.., s

0
n) ≻kbo

lex
(t0

1,.., t
0
n),

where ≻kbo
lex

is the lexicographic extension of ≻kbo. 33

Theorem 3.1.3 ([see Baader & Nipkow, 1998, Theorem 5.4.20]). Let ≫ be a prece-
dence on functional symbols Fun of a signature Σ and weight(·) be an admissi-
ble weight function for ≫. Then the Knuth-Bendix order ≻kbo induced by ≫ and
weight(·) is a simplification ordering.

Proposition 3.1.4 ([see Kazakov, 2005, Proposition 2.18]). Let ≻kbo be the Knuth-
Bendix order induced by a total precedence≫ and a weight function weight(·). Then
≻kbo is a total ordering.

The lexicographic path ordering A reduction ordering can be defined based
on a precedence of functional symbols only:

Definition 3.1.5. The lexicographic path ordering (short LPO), induced by a prece-
dence ≫ is defined as follows: For every pair of ground terms s0 = f(s0

1,.., s
0
n) and

t0 = g(t0
1,.., t

0
m) we have s0 ≻lpo t0 iff one of the following conditions holds:

(1) s0
i �lpo t0 for some i with 1 ≤ i ≤ n, or

(2) f ≫ g and s0 ≻lpo t0
j for all j with 1 ≤ j ≤ m, or

(3) f = g (and hence m = n), and (s0
1,.., s

0
n) ≻lpo

lex
(t0

1,.., t
0
n),

where ≻lpo
lex

is the lexicographic extension of ≻lpo.
33

Analogs of Theorem 3.1.3 and Proposition 3.1.4 can be shown for LPO-orderings:

Theorem 3.1.6 ([see Baader & Nipkow, 1998, Theorem 5.4.14]). For any precedence
≫ on functional symbols Fun, the ordering ≻lpo induced by ≫ is a simplification
ordering on Tm0

Σ
.

Proposition 3.1.7 ([see Kazakov, 2005, Proposition 2.21]). Let ≫ be a total prece-
dence on Fun, then the ordering ≻lpo induced by ≫ is a total ordering on Tm0

Σ
.

KBO and LPO orders can be used for ground expressions by treating predi-
cate symbols and negation as functional symbols (i.e., by defining precedence and
weight functions on them). In the following example, we demonstrate a difference
between KBO and LPO-orderings, that is important for saturation-based decision
procedures.

Example 3.1.8. Consider two atoms: p(t0, t0) and q(f(t0)), where p and q are pred-
icate symbols, f is a functional symbol and t0 is some ground term. Let ≫ be a
precedence on predicate and functional symbols such that f≫ p and let ≻lpo be the



3.1. Logical Preliminaries 59

LPO-ordering induced by≫. Then we have q(f(t0)) ≻lpo p(t
0, t0). Indeed, t0 �lpo t0,

therefore by condition (1) from Definition 3.1.5 we have f(t0) ≻lpo t0. Since f≫ p,
by condition (2) we have f(t0) ≻lpo p(t

0, t0) which yields again by condition (1) that
q(f(t0)) ≻lpo p(t

0, t0). Note, that this holds for every ground term t0.
However it is not possible to have q(f(t0)) ≻kbo p(t0, t0) for all terms t0 using a

KBO-ordering ≻kbo. Indeed, for every admissible weight function weight(·), one can
construct a term t0 with a large enough weight so that weight(p(t0, t0)) = weight(p)+
2·weight(t0) > weight(q) + weight(f) + weight(t0) = weight(q(f(t0))). 33

3.1.4 Substitutions And Unification

A substitution is a function that maps variables to terms σ : Var → TmΣ, which is
denoted by σ = {x1/t1, x2/t2,.., xn/tn,..}, or, shortly σ = {x/t} (hereby σ(xi) = ti).
The domain of a substitution Dom(σ) := {xi ∈ Var | σ(xi) 6= xi}. The range of a
substitution Ran(σ) := {σ(xi) | xi ∈ Dom(σ)}. A substitution σ is a renaming , if
(i) Ran(σ) ⊆ Var and (ii) x 6= y implies σ(x) 6= σ(y). A substitution σ0 is ground
iff σ(x) ∈ Tm0

Σ
for every x ∈ Var.2

Given an expression E and a substitution σ, we denote by E·σ the application
of σ to E which is computed by simultaneously applying all replacement of the
substitution. A composition of substitutions σ1 and σ2 is a new substitution denoted
by σ1·σ2 that is defined by (σ1·σ2)(x) := (σ1(x))·σ2.

A unification problem3 is a set P = {E1=E ′
1,.., En=E ′

n} of equations between
expressions, n ≥ 0. A solution for a unification problem P, called a unifier is a
substitution σ such that Ei·σ = E ′

i·σ for every i with 1 ≤ i ≤ n. A most general
unifier (or, shortly mgu) for the unification problem P is a unifier σ such that for any
other unifier σ′ we have σ′ = σ·τ for some substitution τ. Note that this definition
implies that a most general unifier is unique up to a renaming. There is an effective
procedure that given a unification problem P, computes its most general unifier
mgu(P). See e.g., [Baader & Nipkow, 1998] or [Kazakov, 2005] for further details.
When P consists of one equation P = {E=E ′}, we usually write mgu(E, E ′) instead
of mgu({E=E ′}).

Covering Expressions and Atomic Substitutions

The notion of covering expressions has been introduced by Fermüller et al. [1993]
to describe resolution decision procedures for certain clause classes. The following

2It is generally assumed that every substitution has a finite domain, which we do not require
in this thesis, since otherwise it is more tricky to define the notion of a ground substitution

3In this thesis we are concerned only with the syntactic unification problems



60 Preliminaries

notions and results originate from [Fermüller et al., 1993]. Full proofs for the given
propositions can be found in [Kazakov, 2005].

Definition 3.1.9 (Atomic). A term is atomic if it is either a constant or a variable.
A substitution σ is atomic on a set of variables V , if for every x ∈ V , σ(x) is atomic.
A substitution σ is atomic if σ is atomic on Var (equivalently on Dom(σ)). 33

The nice property of atomic substitutions is that they do not change the depth
of the expression when applied to it:

Proposition 3.1.10. Let E be an expression and σ be a substitution that is atomic
on vars[E]. Then depth(E·σ) = depth(E).

Definition 3.1.11 (Covering). An expression E covers a set of variables V (nota-
tion: E ∝ V ) iff every non-atomic subterm t of E contains all variables form V
(V ⊆ vars[t]). An expression E1 covers an expression E2 (or a clause C) (notation:
E1 ∝ E2, E1 ∝ C) iff E1 covers vars[E2] (vars[C]). An expression E is covering iff
E ∝ E. A clause C is covering iff all literals from C cover C. 33

Example 3.1.12. The following expressions cover the set of variables V = {x, y}:
a(c, f(x, y)); a(h(x, x, c, y), y); a(h(x, x, f(x, y), f(y, x)), c); a(x, c); x; c;
z; a(x, z); a(c, h(x, z, c, y), y) and a(f(x, y), z).
All expressions in the first line cover each other. Every expression in the second
line covers every expression in the first line. The last expression covers none of the
expressions in the last line. The expression before, covers all expressions. All but
the last expressions are covering.

The following expressions do not cover V = {x, y}: a(g(x), x); a(c, f(y, c));
a(x, f(x, z)); a(f(x, y), g(z)); a(g(c), f(x, y)); and a(f(x, x), y).
However first three of them are covering. First two and last two expressions are
covered by every expression from the first group. 33

Covering expression typically appear in the result of Skolemization for relational
first-order formulas. The class of covering expressions can be extended to so-called
weakly covering expressions. This notion has been used for defining many decidable
clause classes, including E+ [Fermüller et al., 1993] and a clause class for the guarded
fragment [de Nivelle, 1998; de Nivelle & de Rijke, 2003]. We will not make use of
weakly covering expressions in this thesis, but we include their definition for the
sake of completeness.

Definition 3.1.13 (Weakly Covering). An expression E weakly covers a set of
variables V , iff every non-ground subterm t of E contains all variables from V
(V ⊆ vars[t]). An expression E1 weakly covers an expression E2 (or a clause C),



3.2. Modal and Description Logics 61

iff E1 weakly covers vars[E2] (vars[C]). An expression E is weakly covering iff E
weakly covers E. A clause C is weakly covering iff all literals in C weakly cover
C. 33

The following lemma plays an important role for proving decidability of some
clause classes by resolution:

Lemma 3.1.14. Let E1 and E2 be covering expressions such that depth(E1) ≥
depth(E2). Let σ = mgu(E1=E2). Then σ is atomic on vars[E1].

The lemma essentially says that unification of covering expressions does not en-
large their maximal depth, since by Proposition 3.1.10, depth(E2·σ) = depth(E1·σ) =
depth(E1). This argument can be used in saturation-based decision procedures for
showing that the depth of generated clauses does not grow beyond a certain limit.

3.2 Modal and Description Logics

3.2.1 Propositional Modal Logics

In this section we give a brief introduction to propositional modal logic. There
are numerous introductory books on this topic [e.g., Goldblatt, 1987; Hughes &
Cresswell, 1996; Chagrov & Zakharyaschev, 1997; Blackburn, de Rijke & Venema,
2001].

Modal logics have their roots in works of philosophers, starting from Aristotle,
who were trying to axiomatise different kinds of truth. Formal treatment of non-
classical logics began in the beginning of 20th century from works of Lewis, who
proposed several axiomatic system for a notion of strict implication. Modal logics
in their modern syntax are known after Gödel [1933a].

Modal logic extends propositional logic with additional operator 2(·), where
formula 2F is read, depending on application, as “F is necessarily true”, or “F is
always true” or “F is known” or “F is provable”. Formally, the set of modal formulas
can be defined by an abstract grammar:

MF ::= A | ⊥ | ¬F1 | F1 ∧ F2 | 2F1 . (3.3)

where A is a propositional atom, and F1, F2 ∈ MF are modal formulas. Other
Boolean operators, e.g.,→, ∨,and ↔ can be expressed in the usual way. In addi-
tion, one usually introduces an operator ♦(·) that is dual to 2(·), i.e., ♦F is an
abbreviation for ¬2¬F .

The basic modal logic K is defined by augmenting a set of axioms for proposi-
tional logic with an additional axiom schemata:



62 Preliminaries

K. 2(X→Y )→(2X→2Y )

where X and Y are arbitrary modal formulas. This axiom is often called normality
axiom and modal logics that contain it are called normal modal logics. The resulted
axiom system is closed under two inference rules:

Modus Ponens (MP): X; X→Y ⊢ Y

Necessitation (NEC): X ⊢ 2X

A modal formula F that can be derived in this system (in symbols K ⊢ F ) is called
a theorem of K. Depending on reading of the modal operators, different axiom
schemata have been proposed that extend the basic modal logic K. The most com-
mon from them are listed below:

D. 2X→♦X

T. 2X→X

B. X→2♦X 4. 2X→22X

5. ♦X→2♦X
(3.4)

Extensions of modal logics are usually called by listing their axiom names, for ex-
ample, modal logic KT4 is an extension of K with axioms T and 4, which has an
alternative name S4.

The main reasoning problem for modal logics is to decide whether a given modal
formula F is provable in the respective system. The most widely used tableau
procedures for solving this problem originate from works of Kripke [1959], who
introduced models for modal logics.

Definition 3.2.1. A Kripke interpretation for modal logic is a triple I = (W, R, v),
where W is a non-empty set of possible worlds, R ⊆W×W is a binary relation on W
called an accessibility relation, and v : W → 2At is a function that assigns to every
world w ∈ W , a set of propositional atoms. A truth value [F ]Iw ∈ {true, false} of
a modal formula F in world w under an interpretation I is computed inductively
over (3.3) as follows:

[F ]Iw := [A]Iw = true iff A ∈ v(w) |

[⊥]Iw = false |

[¬F1]
I
w = true iff [F1]

I
w = false |

[F1 ∧ F2]
I
w = true iff [F1]

I
w = true and [F2]

I
w = true |

[2F1]
I
w = true iff [F1]

I
w′ = true for all w′ with (w, w′) ∈ R .

A formula F is satisfiable in an interpretation I = (W, R, v), if there exists w ∈W
such that [F ]Iw = true. F is valid in I (notation I �F ), if for every w ∈ W , we
have [F ]Iw = true. 33

The semantics for modal logic given in Definition 3.2.1 is called Kripke, or pos-
sible world semantics. It is complete for modal logic K in the following sense:



3.2. Modal and Description Logics 63

Proposition 3.2.2 (Completeness of K). A model formula F is a theorem of K
if and only if F is valid in every Kripke interpretation I (in symbols: K ⊢ F iff
I � F for every I).

Kripke semantics for modal formulas can be naturally encoded in first order
logic, using a so-called relational translation. To define this translation, we assign
to every propositional atom A, a unary relation A(x), which is understood as “A is
true in world x”. A reachability relation R corresponds to a binary relation R(x, y).
This assignment is extended using Definition 3.2.1, to arbitrary modal formulas: for
every modal formula F , we inductively define a first-order formula τ(F, x) which
expresses that “F is true in wold x”:

τ(F, x) := τ(A, x) = A(x) |

τ(⊥) = ⊥ |

τ(¬F1, x) = ¬τ(F1, x) |

τ(F1 ∧ F2, x) = τ(F1, x) ∧ τ(F2, x) |

τ(2F1, x) = ∀y.[R(x, y)→τ(F1, y)] .

(3.5)

For example, an instance 2(A → B) → (2A → 2B) of axiom scheme K is
translated according to definition (3.5) to a valid first-order formula:

∀y.[R(x, y)→(A(y)→B(y))] → (∀y.[R(x, y)→A(y)] → ∀y.[R(x, y)→B(y)])

(assuming the convention for implication). In general, it can be observed that
function (3.5) maps modal formulas into a modal fragment of FO, which is defined
as follows:

FO(MF) ::= A(x) | ⊥ | ¬F1 | F1 ∧ F2 | ∀y.[R(x, y)→F1[y]] . (3.6)

where A(x) is a unary atom, R(x, y) is a binary atom and F1, F2 ∈ FO(MF).
To define models for extensions of basic modal logic K, one usually restricts

reachability relations to those that satisfy certain properties called frame correspon-
dence properties. In Table 3.1 we have listed the correspondence properties for
modal axioms (3.4). Not every modal axiom schemata corresponds to a first-order
definable property of the reachability relation, and obtaining such properties is a
non-trivial task [see Ohlbach, 1996; Ohlbach & Schmidt, 1997].

Apart from the relational translation, a variety of other translational methods for
modal formulas have been proposed in literature, notably the (optimized) functional
translation [Ohlbach, 1996; Schmidt, 1997] (see also [Ohlbach, Nonnengart, de Rijke
& Gabbay, 2001] for an overview of those methods).



64 Preliminaries

Table 3.1 Frame correspondence properties for some modal axioms
Axiom Correspondence Property First-order axiom

D. 2X→♦X Serial ∀x.∃y.R(x, y)

T. 2X→X Reflexive ∀x.R(x, x)

B. X→2♦X Symmetric ∀xy.[R(x, y)→R(y, x)]

4. 2X→22X Transitive ∀xyz.[R(x, y) ∧R(y, z)→R(x, z)]

5. ♦X→2♦X Euclidean ∀xyz.[R(x, y) ∧R(x, z)→R(y, z)]

The language of modal logics can be extended to several modalities 2i with i ∈ I
for some set of indices I. A multi-modal version Kn of the basic modal logic K,
is defined by taking the normality axiom and necessitation rule for every 2i. The
possible world semantics for Kn is defined using several reachability relations that
correspond to each modality. The first-order translation (3.5) can be straightfor-
wardly extended to such multi-modal case.

del Cerro & Panttonen [1988], Baldoni et al. [1998] and Demri [2001] have con-
sidered classes of so-called inclusion multi-modal logics characterised by interaction
axioms of form 2i1 . . .2inX→2j1 . . .2jm

X (which are equivalent to♦j1 . . .♦jm
X→

♦i1 . . .♦inX). These axioms correspond to frame properties Rj1 ◦ · · · ◦ Rjm
⊆

Ri1 ◦ · · · ◦ Rin , where ◦ is a usual composition of binary relations. Most of these
modal logics appear to be undecidable, however Baldoni et al. [1998] and Demri
[2001] identified some decidable classes of inclusion modal logics, whose interac-
tion axioms correspond to production rules for regular languages. In this thesis we
cover some of these results using relational translation and saturation-based theorem
proving.

3.2.2 Description Logics

In chapter 2 we already gave a brief introduction to description logics and related
notions on the example of a simple terminological language EL. In this section we
repeat some general definitions for description logics and define their semantics and
first-order translation. A comprehensive introduction to description logics can be
found in the description logic handbook [Baader, Calvanese, McGuinness, Nardi &
Patel-Schneider, 2003].

Description logics (short DL) originate from semantic networks and frames [see
Brachman, 1979], which were developed to support a (schematic) representation of
information. Although such kinds of systems are still popular (e.g., UML-diagrams
for software development), it has been soon realised that those systems are inap-
propriate for formal reasoning because of the ambiguity in interpretation of such



3.2. Modal and Description Logics 65

information, or, in other words, the lack of formal semantics. Consequently, pres-
ence of well-defined formal semantics, became the main distinguished feature of
description logics [Levesque & Brachman, 1987].

We introduce a basic description logic ALC [Schmidt-Schauß & Smolka, 1991],
which is traditionally assumed to be the minimal language required for conceptual
reasoning.4 A language of ALC is defined from a set of concept names CN and a
set of role names RN by the following grammar:

ALC ::= A | - concept name (atomic concept)
⊥ | - bottom concept
¬C1 | - negation

C1 ⊓ C2 | - conjunction
∀R.C1 . - (universal) value restriction

(3.7)

where A ∈ CN is a concept name, R ∈ RN is a role name, and C1, C2 ∈ ALC are
already constructed (general) concepts. Often, ALC is formulated with additional
constructors: top concept ⊤, disjunction C1 ⊔ C2 and existential restriction ∃R.C1,
which are dual to the bottom concept, conjunction and value restriction respectively.
We prefer to treat these constructors as abbreviations for ¬⊥, ¬(¬C1 ⊓ ¬C2) and
¬(∀R.¬C1) respectively.

Definition 3.2.3 (Semantics of ALC). The semantics of ALC is defined by means
of interpretations. An interpretation I = (∆I , ·I) is a pair consisting of a non-empty
set ∆I called the domain of interpretation and a mapping ·I that assigns to every
concept name A ∈ CN, a subset AI ⊆ ∆I , and to every role name R ∈ RN, a binary
relation RI ⊆ ∆I×∆I . This assignment is extended inductively over definition (3.7)
to general concepts as follows:

CI := AI = given |

⊥I = {} |

(¬C1)
I = ∆I \ C1

I |

(C1 ⊓ C2)
I = C1

I ∩ C2
I |

(∀R.C1)
I = {a ∈ ∆I | (∀b.(a, b) ∈ RI)⇒ b ∈ C1

I} .

There are several reasoning problems for description logics, most of them have
been discussed in chapter 2. We say that a concept C is satisfiable if there exists an
interpretation I such that CI 6= {}. We say that a concept C1 subsumes a concept
C2 (notation C2 ⊑ C1) if for every interpretation I, we have C2

I ⊆ C1
I . Concepts

C1 and C2 are equivalent (C1
·
= C2) if C1 ⊑ C2 and C2 ⊑ C1. Finally, we say that

4Although this has been recently reconsidered, see discussion in chapter 2



66 Preliminaries

concepts C1 and C2 are disjoint (C1⊓C2
·
=⊥) if for every interpretation I, we have

C1
I ∩ C2

I = {}. The reasoning problem is then: given some input concepts, check
whether they enjoy the respective property? 33

It is easy to see that for ALC all reasoning problems can be reduced to concept
satisfiability. Indeed, it is easy to show that C2 ⊑ C1 iff C2 ⊓ ¬C1 is unsatisfiable.
Similarly, C1⊓C2

·
=⊥ if and only if concept C1⊓C2 is unsatisfiable [Schmidt-Schauß

& Smolka, 1991].
It was observed by Schild [1991] that ALC is a syntactical variant of the multi-

modal logic Kn considered in the previous section, where modal formulas 2iA cor-
respond to universal value restrictions ∀Ri.A. Hence, one can mirror the relational
translation (3.5) defined for modal formulas to ALC concepts as follows:

τ(C, x) := τ(A, x) = A(x) |

τ(⊥, x) = ⊥ |

τ(¬C1, x) = ¬τ(C1, x) |

τ(C1 ⊓ C2, x) = τ(C1, x) ∧ τ(C2, x) |

τ(∀S.C1, x) = ∀y.[τ(S, x, y)→τ(C1, y)] .

τ(S, x, y) := τ(R, x, y) = R(x, y) .

(3.8)

This translation maps ALC-concepts to the following fragment of first-order logic:

FO(ALC) ::= A(x) | ⊥ | ¬F1 | F1 ∧ F2 | ∀y.[R(x, y)→F1[y]] . (3.9)

where A(x) is a unary atom, R(x, y) is a binary atom and F1, F2 ∈ FO(ALC).
It is easy to show that the first-order translation (3.8) preserves satisfiability, i.e.,

a concept C is satisfiable (according to Definition 3.2.3) if and only if its translation
τ(C, x) is satisfiable (as a first-order formula). This correspondence can be used
to solve reasoning problems for ALC through the first-order logic, i.e., using an
algorithm that decides satisfiability of fragment (3.9). In chapter 4 we demonstrate
how to construct such decision procedures.

One is usually interested not in solving a reasoning problem alone, but with re-
spect to some background terminology. A terminology (or short TBox) is a collection
of (general) concept inclusions axioms (short GCIs) of form C1 ⊑ C2 and possibly
some role inclusion axioms (RIAs) of form R1 ⊑ R2 also called role hierarchies . We
say that an interpretation I is a model of TBox if for every concept inclusion axiom
(C1 ⊑ C2) ∈ TBox and for every role inclusion axiom (R1 ⊑ R2) ∈ TBox, we have
C1

I ⊆ C2
I and R1

I ⊆ R2
I . A concept C1 is satisfiable w.r.t. a TBox, if C1

I 6= {} for
some model I of TBox. Concept subsumption and concept disjointness w.r.t. to a



3.2. Modal and Description Logics 67

TBox are defined similarly, and can be reduced to the concept satisfiability problem
in the case of description logic ALC.

From the first-order point of view, inclusion axioms correspond to implications
between formulas constructed for concepts and roles: C1 ⊑ C2 is translated to
∀x.[τ(C1, x)→τ(C2, x)] and R1 ⊑ R2 is translated to ∀xy.[τ(R1, x, y)→τ(R2, x, y)].
Hence, in order to check satisfiability of a concept C w.r.t. a TBox, one has to check
satisfiability of the following first-order formula:

∧

(C1 ⊑ C2) ∈ TBox

∀x.[τ(C1, x)→τ(C2, x)] ∧

∧
∧

(R1 ⊑ R2) ∈ TBox

∀x.[τ(R1, x, y)→τ(R2, x, y)] ∧ τ(C, x) (3.10)

Since we have introduced a basic description logic, there must be some other
extensions. Actually, we have already described an extensions of ALC with role
hierarchies, which is usually denoted by ALCH. Other extensions are obtained
by adding additional constructors for concepts and roles. In Table 3.2 we sketch

Table 3.2 Some constructors for description logics
Constructor FO − translation - Name Not.

S− τ(S, y, x) - inverse roles I, (−)

S ⊓ T τ(S, x, y) ∧ τ(T, x, y) - conjunction of roles (⊓)

¬S ¬τ(S, x, y) - negation of roles (¬)

S ◦ T ∃z.[τ(S, x, z) ∧ τ(T, z, y)] - composition of roles (◦)

(6 n S) ∀y1...yn.[ (
∧

1 ≤ i ≤ n

τ(R, x, yi) )→
∨

1 ≤ i < j ≤ n

(yi ≃ yj)] - number restrictions N

(6 n S.C) ∀y1...yn.[ (
∧

1 ≤ i ≤ n

τ(R, x, yi) ∧ τ(C, yi) )→
∨

1 ≤ i < j ≤ n

(yi ≃ yj)] - qualified num. restr. Q

S ⊆ T ∀y.[τ(S, x, y)→τ(T, x, y)] - role-value maps (⊆)

S ⊑ T ∀xy.[τ(S, x, y)→τ(T, x, y)] - role hierarchies H

Transitive(T ) ∀xyz.[τ(T, x, y) ∧ τ(T, y, z)→τ(T, x, z)] - transitive roles Sa

Functional(S) ∀xyz.[τ(S, x, y) ∧ τ(S, x, z)→(y ≃ z)] - functional roles F

Nominal(C) ∃x.[τ(C, x)] ∧ ∀xy.[τ(C, x) ∧ τ(C, y)→(x ≃ y)] - nominals O

aAn extension of ALC with transitive roles is denoted by S

some well-known constructors for description logics, and provide their first-order
translation. We distinguish DL-constructors of three types: (1) role constructors
(2) concept constructors and (3) TBox-declarations.



68 Preliminaries

Role constructors: For ALC we did not allow construction of compound roles.
In the first part of Table 3.2, we introduce additional operations that allow to
construct new role expressions (we denote them by S or T ), from atomic roles
R ∈ RN. Since a role S intuitively corresponds to a binary relation S(x, y), the
simplest operation would be to inverse this relation by swapping its arguments:
S`(x, y) := S(y, x). This gives rise to so-called inverse roles : S− is the inverse of role
S. By analogy to construction of concepts, one can introduce Boolean combinations
of roles : conjunction of roles S ⊓ T and negation of roles ¬S, which also make
it possible to express a disjunction of roles S ⊔ T as ¬(¬S ⊓ ¬T ). The last role
constructor that we introduce here is composition of roles S ◦ T which allows to
chain (or compose) two or more roles. If we look at the first-order translation for
role compositions given in Table 3.2 this would probably remind us the first-order
translation for existential restrictions ∃S.C (by analogy, S ◦ T must probably be
written as ∃S.T ).

Concept constructors: Additional concept constructors that we consider, ex-
press so-called counting in description logics. First constructor (6n S) called at
most number restriction represents a set of elements that are related to at most n
other elements by means of role S. The dual at least number restriction (>n S) is
an abbreviation for ¬(6 (n − 1) S).5 These number restrictions can be generalised
to qualified number restrictions of form (6n S.C) and (>n S.C), denoting the sets
of elements that are S-connected to at most, respectively at least, n elements from
C. Note that (6n S) and (>n S) are equivalent to (6n S.⊤) and (>n S.⊤) respec-
tively. The last concept constructor we introduce here is role-value map: S ⊆ T
represents a set of elements x such that every element y that is S-connected with x,
is also T -connected with x. Note that in presence of Boolean role operations, this
constructor is equivalent to ∀(S ⊓ ¬T ).⊥.

TBox-declarations: In the lower part of Table 3.2 we have listed some TBox-
declarations. We have already discussed role inclusion axioms (role hierarchies)
S ⊑ T . Note the difference between this declaration and a role-value map S ⊆ T .
The last describes a concept, whereas the first expresses that role S is a subrole of
T . For example, it is easy to show that (S ⊆ T )

·
=⊤ w.r.t. every TBox containing

S ⊑ T . Declarations Transitive(T ) and Functional(S) restrict role expressions T and
S to be interpreted by transitive and functional relations respectively. Nominal(C)
expresses that concept C must be interpreted with a one-element set. In chapter 2
we have used another notation for nominals: expression {a} denotes a nominal
formed from an individual a. These notations are essentially equivalent: declaration

5Here and everywhere else expressions n and (n − 1) in number restrictions are fixed positive
integers and not arithmetical expressions



3.2. Modal and Description Logics 69

Nominal(C) is equivalent to C
·
={a}, where a is a fresh individual for C.

Different description logics combine different sets of the constructors which is
indicated by the correspondent letters given in the last column of Table 3.2. For
example, description logic ALC(−) also denoted by ALCI is an extension of the
basic description logic with inverse roles. Similarly, ALC(−,⊓,¬) is the extension
of ALCI with the Boolean combinations of roles. A very expressive description
logic SHIQ [see Horrocks et al., 2000], is an extension of ALC with transitive roles
(S), role hierarchies (H), inverse roles (I) and qualified number restrictions (Q)6.
Description logic SHOIN is an extension of SHI with nominals (O) and number
restrictions (N ), which corresponds to the ontology language for the Semantic Web
OWL DL [Horrocks & Patel-Schneider, 2004].

Not every combination of constructors listed in Table 3.2 results in a description
logic with decidable subsumption problem. It is well-known that SHIQ becomes
undecidable when non-simple roles are allowed in number restrictions [see Horrocks
et al., 2000]. A role is simple if it does not contain a transitive subrole in w.r.t. a
role hierarchy. Another well-known example of undecidable description logic, is an
extension of ALC with composition of roles and role-value maps ALC(◦,⊆). In fact
even much simpler description logics from Kl-One-family [Brachman & Schmolze,
1985] become undecidable [see Schmidt-Schauß, 1989] when composition of roles is
allowed (see also section 2.5 of this thesis and [Donini, 2003]).

We see that extensions of description logics with transitive roles and role compo-
sitions in many cases lead to undecidability of the subsumption problem. However,
compositional axioms are often indispensable for conceptual modelling, in particular
for development of medical terminologies [see Spackman, 2000; Rector, 2002]. There
are not many know decidable description logics known that can admit role composi-
tions in some form. A notable exception is a description logic EL and its extensions,
which were discussed in chapter 2 and a recent result by Horrocks & Sattler [2004],
describing a tableau-based procedure for SHIQ with so-called acyclic compositional
axioms. In this thesis we try to understand this problem from first-order point of
view using the translations given above, and propose some new solutions.

3.2.3 Reasoning in Modal and Description Logics

The possible world semantics for modal logics (see Definition 3.2.1) led to the devel-
opment of so-called tableau-based procedures. Given a modal formula F , a procedure
tries to construct a Kripke model for F . It starts with the initial wold w0 in which
the formula F must be satisfied (notation w0 : F ) and applies an expansion rule

6although, see a restriction below



70 Preliminaries

corresponding to the top symbol of the formula. In System 1 we give a collection of

α :
w : F1 ∧ F2

w : F1 w : F2

β :
w : ¬(F1 ∧ F2)

w : ¬F1 || w : ¬F2

dneg :
w : ¬¬F

w : F
clash :

w : F w : ¬F

⊥

K :
w : 2F wRw′

w′ : F
π :

w : ¬2F

wRw′ w′ : ¬F

where w′ is fresh

4 :
w : 2F wRw′

w′ : 2F

System 1: Tableau expansion rules for MLs K and K4

expansion rules for modal logics K and K4. The tableau system for K consists of
rules α, β, K, π, dneg and clash. The tableau system for K4 is obtained by adding
rule 4. Rule β is nondeterministic and causes branching of the inference procedure.
An input formula is satisfiable iff there exists a branch which is closed under all
inferences and does not contain the contradiction ⊥. See e.g., [Massacci, 2000] for
descriptions of other tableau-based systems for modal logics.

The development of reasoning procedures for description logics has been affected
by the fact that the first description logics, like Kl-One [Brachman & Schmolze,
1985] have been too expressive, and the reasoning problems for them were in general
undecidable [Schmidt-Schauß, 1989]. Hence, the first procedures for reasoning in
such languages were incomplete. For example, subsumption of concepts have been
mainly solved using so-called structural subsumption algorithms which were complete
only for very restrictive languages without disjunction and full negation.

The first step towards the development of reasoning procedures for expressive
terminological languages was made in [Schmidt-Schauß & Smolka, 1991], where a
sound and complete reasoning procedure for DL ALC has been found. This was the
first reasoning procedure to handle concept descriptions involving full negation and
disjunctions of concepts. As it turned out later, Schmidt-Schauß & Smolka [1991]
have essentially rediscovered the tableau procedures known for the modal logics –
Schild [1991] was the first to notice that ALC is merely a syntactical variant of well-
known multi-modal logic Kn. Since then, the tableau procedures for modal logics
have been transferred to their respective description logics, and extended to handle
additional constructors, like (qualified) number restrictions or nominals.

In System 2 we gave a tableau calculus for checking satisfiability ofALC-concepts
in the form it is usually presented today7 (recall that other reasoning problems for
ALC can be reduced to concept satisfiability). Here it is assumed that the initial

7The original algorithm by Schmidt-Schauß & Smolka [1991] used essentially the same rules,
but they were applied to a collection of so-called constraints that were generated for the input
concept, rather than to the concept directly



3.3. Decidable Fragments of First-Order Logic 71

⊓ :
w : C1 ⊓C2

w : C1 w : C2

⊔ :
w : C1 ⊔ C2

w : C1 || w : C2

⊥ :
w : A w : ¬A

⊥

∀ :
w : ∀R.C wRw′

w′ : C
∃ :

w : ∃R.C

wRw′ w′ : C

where w′ is fresh

System 2: Tableau expansion rules for DL ALC

concept is first converted into a negation normal form, e.g., negation is applied to
atomic concepts only. This basic tableau procedure has been extended to many
expressive description logics, including those mentioned in subsection 3.2.2. Despite
the fact that the tableau-based procedures have a relatively high complexity (which
is sometimes much worse than the optimal one), many sophisticated optimisation
techniques have been developed which made these procedures usable in practice
[see Horrocks et al., 2000]. In fact, the most efficient DL-reasoners today, like
Fact [Horrocks, 1998] and Racer [Haarslev & Möller, 2001], employ tableau-based
procedures.

Despite a number of positive sides, tableau-based procedures have some draw-
backs. First, such procedures require the underlying logic to possess a some form of
the tree model property, since such models are constructed in the expansion. Second,
the tableau procedures for expressive languages are rather ad-hoc, and it is often
not easy to justify their correctness. To demonstrate the second point, take a look
at the expansion rule 4 from System 1. This rule corresponds to the transitivity
condition on relation R, however there is no obvious connection between this rule
and the transitivity axiom. Moreover, unrestricted application of such rule may
cause a tableau procedure to loop, and a special loop-detection mechanism must be
provided to ensure the termination. These drawbacks could be a serious obstacle
towards development of reasoning procedures for new ontology languages which go
beyond the description logics studied so far, like the W3C-recommended ontology
language for the Semantic Web OWL [see Horrocks & Patel-Schneider, 2004].

3.3 Decidable Fragments of First-Order Logic

3.3.1 Prefix-vocabulary Classes

A “hunt” for decidable fragments of first-order logic, began shortly after Church
and Turing in 1930’s discovered undecidability of the full first-order logic. To com-
pensate this negative result, logicians aimed to identify and classify decidable and
undecidable classes of first-order formulas. In this quest, they were focused initially



72 Preliminaries

on so-called prefix-vocabulary classes – sets of first-order formulas in prenex normal
form with a given quantifier pattern and a given vocabulary of predicate and func-
tional symbols. After almost fifty years of research, such complete classification has
been found, and for most fragments optimal complexity results were obtained.

This section does not aim to (and actually cannot) give an overview of these
and related results, for which the reader is forwarded to the book [Börger, Grädel
& Gurevich, 1997]. In this section we sketch two particular first-order classes that
will be of some interest in this thesis.

The monadic classes

The monadic class of first-order logic, also called the Löwenheim class, is a set of
first-order formulas without functional symbols and containing only unary (mona-
dic) predicate symbols. Decidability of this class is known since [Löwenheim, 1915].
In abstract grammar notation, we define this class by:

M ::= A[x] | ¬M1 | M1 ∧M2 | ∀x.M1 . (3.11)

where A[x] is a unary atom and M1, M2 ∈ M.
The monadic class is known to be decidable even if equality is allowed. In this

case we deal with the monadic class with equality :

M≃ ::= A[x] | (x ≃ y) | ¬M1 | M1 ∧M2 | ∀x.M1 . (3.12)

The monadic fragment without equality can be also extended with unary functional
symbols to a so-called full monadic class (also known as Löb-Gurevich class):

Mf ::= A[x] | M1[x] · {x/f(x)} | ¬M1 | M1 ∧M2 | ∀x.M1 . (3.13)

where f(x) is a unary functional symbol. The second case means that a new monadic
formula can be formed from a monadic formula with one variable by replacing this
variable with a unary function. For example, ∃y.(b(y) ∧ ∀z.[a(z) ∨ b(f(y))] ∈ Mf ,
where existential quantifier and disjunction are expressible by means of other con-
structors as usual.

The monadic fragment with equality and the full monadic fragment are two
maximal decidable fragment of first-order logic of complexity NTIME(2O(n/ log n))
and NTIME(2O(n)) respectively. For the first fragment a matching lower bound has
been found (even without equality and with restricted quantification) [see Börger et
al., 1997].

An interest to monadic fragments has been renewed in [Bachmair, Ganzinger
& Waldmann, 1993a] where it was noticed that set constraints studied in program
analysis, correspond to the monadic class.



3.3. Decidable Fragments of First-Order Logic 73

The Gödel and Goldfarb classes

Another well-known decidable class of first-order formulas is a so-called Gödel class,
which is a set of first-order sentences of form:

∃x1. . . .∃xk.∀y1.∀y2.∃xk+1. . . .∃xn.F (3.14)

where F is a quantifier-free formula. It is usually said that such formulas have
quantifier prefix ∃∗∀2∃∗. Gödel [1933b] proved decidability for the set of sentences
of form (3.14) by establishing a finite model property : every satisfiable formula of
this form must have a finite model. Later, an exact bound on the size of finite models
has been found, which implies that the Gödel fragment is NEXPTIME-complete [see
Börger et al., 1997].

All the above results were proven for the case when formulas of form (3.14) do
not contain equality. In the original paper Gödel [1933b] has conjectured that his
results hold also for the case with equality. Only fifty years later, Goldfarb [1984]
has demonstrated that this conjecture is actually not true. In fact a Goldfarb class,
which is a set of sentences possibly with equality over a quantifier prefix ∀∀∃, is
already undecidable [see Börger et al., 1997].

3.3.2 Two-Variable Fragments

Some classes of formulas do not really fit to prefix-vocabulary classes, for example,
the modal fragment (3.6) obtained by translation (3.5) of modal formulas described
in subsection 3.2.1. Indeed, it is easy to see that a direct transformation of formulas
from (3.5) into prenex normal form may result in arbitrary quantifier prefix. Hence,
it seems that prefix vocabulary classes cannot help explaining decidability of modal
logics.

If we examine fragment (3.6) more closely, we noticed that every subformula of
formulas constructed according to this definition contains at most two free variables,
in other terms the width of these formulas is bounded by two. An intuition may
suggest us to consider a set of first-order formulas with such property. This class
of formulas is called the two-variable fragment and can be recursively defined using
the following grammar:

FO2 ::= A[x, y] | ¬T1 | T1[x, y] ∧ T2[x, y] | ∀y.T1[x, y] . (3.15)

where A is an atom (possibly equality) and T1, T2 ∈ FO
2 (here notation F [x1,.., xn]

means that free[F ] ∈ {x1,.., xn}). It is possible to generalise the two-variable frag-
ment to so-called bounded-variable fragments: FOk denotes the set of formulas
whose width is bounded by k: FOk := {F ∈ FO | width(F ) ≤ k}. Fragment FOk

can be also seen as sets of formulas that can be constructed using k variable names.



74 Preliminaries

A relationship between modal logics and the two-variable fragment has been
already observed by Gabbay [1981] who tried to explain the good computational
properties of modal logic using the first-order logic (see also [Ohlbach et al., 2001]
for a related discussion).

Scott [1962] described a translation that maps every two-variable formula to an
equisatisfiable formula of form:

∀xy.F [x, y] ∧
∧

1≤i≤n

∀x.∃y.Gi[x, y] (3.16)

where F and Gi, 1 ≤ i ≤ n are quantifier-free formulas. This form of two-variable
formulas is called the Scott normal form.8 It is easy to see that formulas of form
(3.16) belong to the Gödel class. Hence, Scott translation provides an elegant reduc-
tion from the satisfiability problem for two-variable formulas to that of the Gödel
class. However, as the Gödel class with equality was proven to be undecidable,
the Scott reduction has guaranteed only decidability for the two-variable fragment
without equality. Decidability of the full two-variable fragment has been established
later by Mortimer [1975] who showed that this fragment has a finite model prop-
erty. Grädel, Kolaitis & Vardi [1997] have improved the result of [Mortimer, 1975]
by showing that every two-variable formula (with equality) has a model of size 2O(n),
and demonstrated that FO2 is NEXPTIME-complete (see also [Börger et al., 1997,
Section 8.1]).

Many extensions of two-variable fragment have been considered. However, most
of them appear to be undecidable, in particular, an extension of two-variable frag-
ment with equivalence relations (see [Grädel & Otto, 1999] for an overview). A
notable exception is the two-variable fragment with counting C2. This fragment
extends FO2 with counting quantifiers of form ∃≤ny.F and ∃≥ny.F , which mirror
counting restrictions in modal and description logics. Decidability of this extension
has been shown by a very complicated model construction [Grädel, Otto & Rosen,
1997; Pacholski, Szwast & Tendera, 2000].

3.3.3 Guarded Fragments

From the previous section, we can conclude that, although the two-variable frag-
ment can explain decidability of modal-like languages, it does not really explain
their moderate complexity and decidability of its extensions. Indeed, as has been
noted, two-variable fragment is NEXPTIME-complete, whereas most modal logics
are merely in PSPACE.

8In subsection 3.5.7 we introduce a structural transformation which generalises the Scott re-
duction



3.3. Decidable Fragments of First-Order Logic 75

Trying to explain this phenomenon, we take an even closer look at formulas in
(3.6) of the modal fragment of first-order logic FO(MF). We may notice that every
quantification in these formulas is bounded, i.e., the range of quantified variables
is limited by an atom-guard , in that case R(x, y). Motivated by this observation,
Andréka et al. [1996] introduce the guarded fragment of first-order logic:

GF ::= A | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] . (3.17)

where A is an atom (possibly equality), F1, F2 ∈ GF , y is some vector of variables
y1,.., yn (so, ∀y.F is a shortcut for ∀y1. · · · ∀yn.F ), and G in formulas of form ∀y.[G→
F1] is an atom called guard that contains all free variables of F1 , i.e., in symbols,
vars[F1] ⊆ vars[G]. Note that the formulas of the guarded fragment are no longer
restricted to two variables.

We also admit the guarded existential quantification in guarded formulas of form
∃y.[G ∧ F1], which we view as a shortcut for ¬(∀y.[G→¬F1]). According to defi-
nition (3.17) and our convention, formula ∀x.(V(x)→∃y.[E(x, y) ∧ V(y)]) expressing
seriality of a graph is guarded (the appropriate guards are underlined), whereas a
transitivity axiom: ∀xyz.[T(x, y)∧T(y, z)..........→T(x, z)] is not, since both candidates for
a guard do not contain all variables of the remaining atoms (in fact, it can be shown
that no guarded formula can express transitivity).

Andréka et al. [1996] and Grädel [1999] have noticed that the guarded fragment
inherits many nice computational properties from modal logics, the most important
from which is the tree-model property. Vardi [1996] gives strong arguments that the
tree-model property is a key property which makes modal logics so robustly decidable.
And indeed, the guarded fragment has much better computational properties than
the two-variable fragment: although the full guarded fragment has been shown to
be 2EXPTIME-complete, its bounded variable part GFk := GF ∩ FOk is “only”
EXPTIME-complete (see [Grädel, 1999]). The guarded fragment behaves robustly
w.r.t. some extensions that were undecidable with two-variable fragments, notably,
with fixed-point constructors [Grädel & Walukiewicz, 1999].

However, there is still a gap between modal logics and the guarded fragment,
both w.r.t. complexity and robust decidability. It has been shown that extensions
of the guarded fragment with functional binary relations (which is a very restricted
form of counting) and transitive relations, are undecidable [Grädel, 1999]. For transi-
tivity, the situation does not improve even when restricting to two-variable guarded
fragment: GF2 [Ganzinger et al., 1999]9. Even when transitive relations are re-
stricted to be guards only, GF2 is 2EXPTIME-complete [Szwast & Tendera, 2001;
Kieronski, 2003].

9In this thesis we demonstrate that even two transitive relations suffice for this



76 Preliminaries

3.4 Domino Problems and Undecidability

Reduction from domino (also called tiling) problems is nowadays the most com-
monly used method for proving of undecidability results.

Domino problems have been introduced by Wang [1961]10 as a tool for proving
undecidability of some prefix-vocabulary classes. Several variations of domino prob-
lems have been proposed, which became a convenient tool for deriving the lower
complexity bounds for different problems (see [Börger et al., 1997] for a history and
an overview of domino problems). In this thesis we obtain new undecidability results
for certain fragments of first-order logic by a reduction from a most commonly used
variant of domino problems:

Definition 3.4.1 (Domino Problem). A domino system D is a triple (D, H, V ),
where D is a finite set of dominoes and H, V ⊆ D × D are two binary relations.
A tiling of a grid N × N for D is an assignment τ : N × N → D such that
for every i, j ∈ N the following conditions hold: (i) (τ(i, j), τ(i + 1, j)) ∈ V and
(ii) (τ(i, j), τ(i, j + 1)) ∈ H .

A domino problem is, given a domino system D = (D, H, V ), check whether
there exists a tiling for D of a grid N×N? 33

The domino problem formulated in Definition 3.4.1 is undecidable. For reducing
a problem to the domino problem, one usually needs to perform the following steps:
(1) encode the tiling conditions of a domino system, and (2) encode a grid structure.

The first step is usually easy. For example, let G = N ×N be a grid, H(x, y),
V (x, y) be the horizontal and vertical neighbouring relations in G and di(x) be a
unary predicate that represents the sets of nodes from G to which a tile di ∈ D
is assigned, 1 ≤ i ≤ |D|. Then the tiling conditions from Definition 3.4.1 can
be encoded using a first-order sentence TILING defined in Figure 3.1. Note that

Figure 3.1 Encoding of tiling conditions in the first-order logic

TILING :=
∧

1 ≤ i < j ≤ |D|

∀x.( di(x)→ [¬dj(x)] ) ∧ - assignment τ : G → D is functional

∧ ∀xy.(H(x, y)→
∨

(di , dj) ∈ H

[di(x) ∧ dj(y)] ) ∧ - condition (i) of Definition 3.4.1

∧ ∀xy.(V (x, y)→
∨

(di , dj) ∈ V

[di(x) ∧ dj(y)] ) - condition (ii) of Definition 3.4.1

TILING ∈ GF2, so it belongs to both the two-variable fragment and the guarded
fragment of first-order logic.

10Tiling problems are closely related to two-counter Minsky machines [Minksy, 1961]



3.5. A Framework of Saturation-Based Theorem Proving 77

H

V

H

V

The hardest part in reduction from a domino problem is to
enforce an infinite grid structure for the set G. One usually needs
to encode the following confluence property for relations H and V :
whenever we have H(x, y), V (x, z), then there should be a point u
such that V (y, u) and H(z, u) hold. Using inverse and composition,
this property can be shortly written as: H`◦V ⊆ V ◦H`. In many reduction proofs,
one often first enforces a tree structure for relations H and V and then “glues” the
appropriate nodes of this tree to obtain a grid (say by additional constraints with
equality).

There are many other variants of domino problems that are either known to be
undecidable, or complete for certain complexity classes [see Börger et al., 1997]. We
just briefly mention a periodic tiling problem. A domino system D = (D, H, V )
admits periodic tiling if there exists a tiling τ : N×N→ D, which satisfies all con-
ditions from Definition 3.4.1, and additionally condition (iii): there exist naturals
n > 0, m > 0 such that for all i ≥ 0, j ≥ 0, we have τ(i+n, j) = τ(i, j) = τ(i, j+m).
The periodic tiling problem for domino systems is undecidable as well. In fact sets
of domino systems that admit, respectively, periodic tiling, and no tiling are recur-
sively inseparable, i.e., there is no decidable set of domino problems which contain
the first sets but does not intersect with the second. By expressing the grid and
the tiling conditions within some class of formulas, one usually shows that this class
forms a conservative reduction class, i.e., the set of its formulas that admit a finite,
and respectively, no model, are recursively inseparable [see Börger et al., 1997, p.90].

3.5 A Framework of Saturation-Based Theorem Prov-

ing

In this section we introduce a framework of saturation-based theorem proving in
its modern form due to Bachmair & Ganzinger [1990, 1994]. We formulate several
calculi used in automated deduction, that will be the basis of decision procedures
that we describe afterwards. A more detailed overview for the material in this section
can be found in [Bachmair & Ganzinger, 1998a, 2001; Nieuwenhuis & Rubio, 2001],
and the technical part including all proofs can be found in [Kazakov, 2005].

3.5.1 Saturation-Based Theorem Proving

The goal for a saturation-based theorem prover is to establish unsatisfiability of an
input clause set. In order to prove unsatisfiability, the prover applies inferences to
clauses using a dedicated inference system called a calculus. The conclusion of every
inference is added to the current clause set, and this process, called saturation is



78 Preliminaries

iterated until either a contradiction is derived, or the closure under all inferences is
computed without deriving the contradiction. It is also possible that the process of
saturation is continued without reaching a fixed-point.

In saturation-based theorem proving, every clause C = L1 ∨···∨ Lk is treated
as the multiset consisting of its literals L = {L1, .., Lk}m . In other words, the order
of literals plays no rôle. A special empty clause � is introduced that corresponds
to the empty multiset {}

m
. This clause, which is always false, plays the rôle of a

basic contradiction that one needs to derive in order to establish unsatisfiability of
a clause set.

A calculus used in saturation-based theorem provers is usually given by a collec-
tion S of conditional inference rules (schemes) of form:

Inference Rule

IR :
C1, . . . , Cn

C

where some conditions of the rule hold

(3.18)

Here IR is a short identifier of the rule, C1, . . . , Cn are the premises of the rule
and C is its conclusion of the rule. The conditions written below the rule restrict
applicability of the rule. We write N ⊢S C when the clause C is derivable from
N using inferences from S. A calculus S is sound if N 6⊢S � for every satisfiable
clause set N . It is refutationally complete if N ⊢S � for every unsatisfiable clause set
N . Soundness and completeness ensure that the calculus can be used correctly for
checking unsatisfiability of clause sets.

Below we give calculi that are commonly used in saturation-based theorem
provers. Most calculi allow for several optional parameters. These are typically
defined by selection strategies and ordering restrictions. Such parameters can be
used to influence, yet indirectly, the saturation process, which, in the end, makes it
possible to design saturation-based decision procedures. We put a special effort to
give a precise classification of admissible parameters for each calculus, so that flex-
ible saturation strategies can be found afterwards. A detailed technical exposition
of the material in this section can be found in [Kazakov, 2005].

3.5.2 The Ordered Resolution Calculus

Resolution calculus was invented by Robinson [1965] and later became the most suc-
cessful method for automated reasoning in first-order logic. The ordered resolution
calculus OR≻

Sel
given in System 3, is the modern (refined) version of the Robinson’s

[1965] resolution calculus. This calculus is parametrised by an ordering ≻ on literals



3.5. A Framework of Saturation-Based Theorem Proving 79

Ordered Resolution Ordered Factoring

OR :
C ∨A⋆ D ∨¬B

Cσ ∨Dσ
OF :

C ∨B ∨A

Cσ ∨Aσ

where (i) σ = mgu(A, B); (ii) A is eligible strictly
maximal w.r.t. C and σ and (iii) ¬B is eligible
w.r.t. D and σ.

where (i) σ = mgu(A, B); (ii) A is eligible
w.r.t. C and σ.

System 3: The ordered resolution calculus with selection OR≻
Sel

and a selection function Sel for negative literals which are used in conditions of the
inference rules according to the following terminology:

A selection function is a mapping Sel that assigns to every clause C a (possibly
empty) sub-multiset Sel(C) of negative literals from C. These literals are then called
the selected literals in C. A literal L is maximal w.r.t. C, if L′ ≻ L for no literal
L′ ∈ C. Additionally, if L /∈ C, then L is strictly maximal w.r.t. C. Given a clause
C and a substitution σ, we say that a literal L is eligible (strictly maximal) w.r.t.
C and σ if either L ∈ Sel(C ∨ L), or otherwise Sel(C ∨ L) = {} and Lσ is (strictly)
maximal w.r.t. Cσ.

The ordered resolution calculus OR≻
Sel

is refutationally complete not for all or-
derings, but only for admissible ones. We say that an ordering ≻ is liftable if there
exists an order ≻0 on ground expressions such that E1 ≻ E2 implies that E1σ�0 E2σ
for every ground substitution σ. Then admissible orderings are defined as follows:

Definition 3.5.1. An ordering ≻ on literals is admissible for ordered resolution if
it admits the following conditions:

(L) ≻ is liftable;
(W) ≻ is a well-order on ground literals;
(R1) ¬A ≻ A for every ground atom A. 33

Ordering restrictions and selection strategies are examples of so-called local re-
finements of saturation-based calculi. They allow one to reduce the number of infer-
ences and thereby, to prune the search space of the prover. The efficiency of modern
theorem provers, however, is highly determined by global simplification techniques
of a prover, in which the notion of redundancy plays the key rôle.

Let ≻ be an ordering on clauses, that is the multiset extension of the ordering
≻ on literals. Let N be a set of ground clauses. A ground clause C is redundant
w.r.t. N , if C follows logically from the set NC := {C ′ | C ′ ≺ C} of the clauses
from N that are smaller than C. A ground inference π = (C1, .., Ck ⊢ C) with
the maximal premise C1 is redundant w.r.t. N if C follows logically from the set
NC1 := {C ′ | C ′ ≺ C1}.



80 Preliminaries

A (possibly non-ground) clause C is redundant w.r.t. a set N of (possibly non-
ground) clauses, if every ground instance C 0 = C·σ0 of C is redundant w.r.t. the
set Ngr of ground instances of the clauses from N . Similarly, a (possibly non-
ground) inference π = (C1, .., Ck ⊢ C) is redundant w.r.t. N if every ground instance
π0 = (C1σ

0, .., Ckσ
0 ⊢ Cσ0) of π is redundant w.r.t. Ngr.

We say that a clause set N is saturated up to redundancy in a calculus S, if every
possible S-inference π = C1,.., Ck ⊢ C from N is redundant w.r.t. N . A calculus S
is refutationally complete with redundancy elimination if for every clause set N that
is saturated up to redundancy in S, we have � ∈ N if N is unsatisfiable.

It can be shown [see e.g., Kazakov, 2005] that the ordered resolution calculus
OR≻

Sel
is refutationally complete with redundancy elimination for every admissible

ordering ≻ and every selection function Sel.

3.5.3 Equational Reasoning

Shortly after the resolution calculus has been introduced, Robinson & Wos [1969]
have formulated an extension of this calculus with build-in equality. Equality plays
a fundamental rôle in many applications of formal methods in mathematics and
computer science, hence reasoning with equality has been and remains one of the
central topics in automated deduction.

In this section we formulate two calculi with equality that are commonly used
in automated theorem provers: the ordered paramodulation calculus [Robinson &
Wos, 1969] and the superposition calculus [Bachmair & Ganzinger, 1990].

The Ordered Paramodulation Calculus

The ordered paramodulation calculus OP≻
Sel

is an extension of the ordered resolution
calculus OR≻

Sel
with two rules given in System 4. Like ordered resolution, this

calculus is parametrized by an ordering ≻ on literals and a selection function Sel,
however now the ordering ≻ is defined on terms. In order to simplify the exposition

Ordered Paramodulation Reflexivity Resolution

OP :
C ∨ s ≃ t⋆ D ∨L[s′]

Cσ ∨Dσ ∨ L[t]σ
RR :

C ∨ s 6≃ s′

Cσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible strictly
maximal w.r.t. C and σ; (iii) L[s′] is eligible (strictly
maximal if positive) w.r.t. D and σ; (iv) (sσ ≃ tσ) 6�
L[s′]σ; (v) tσ 6� sσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′) and (ii) s 6≃
s′ is eligible w.r.t. C and σ.

System 4: The ordered paramodulation calculus OP≻
Sel



3.5. A Framework of Saturation-Based Theorem Proving 81

of calculi with equality, we identify every non-equational atom A with equation
A ≃ T (and its negation with A 6≃ T), where T is some fixed constant, which stands
for “True”. This allows us to deal only with equational atoms of form E1 ≃ E2 over
two sorts of expressions, where E1, E2 are either atoms or terms.

Definition 3.5.2. An ordering ≻ is admissible for paramodulation if ≻ is admissible
for resolution (see Definition 3.5.1) and additionally:

(T) ≻ is total on ground terms with the least element T;
(E1) t ≺ s ⊳ L implies L[s] ≻ L[t] (monotonicity);
(E2) t ≺ s ⊳ E1 implies (E1[s] ≃ E2) ≻ (s ≃ t); 33

Condition (T) and (E1) of admissible ordering together with condition (L) from
Definition 3.5.1 imply that ≻ is a total reduction ordering on ground expressions
(see terminology on p. 57).

The Superposition Calculus

The superposition calculus SP≻
Sel

extends the ordered resolution calculus OR≻
Sel

with
more refined inference rules for equality, given in System 5. Instead of a single Or-
dered Paramodulation rule we now have three inference rules: the Ordered Paramo-
dulation rule into non-equational literals, the Positive Superposition rule for paramo-
dulation into the maximal term of positive equations and the Negative Superposition
rule for paramodulation into the maximal term of negative equations.11 Additionally
a special Equality Factoring rule is required to retain refutational completeness. In-
stead of this rule, one alternatively can use rule Merging Paramodulation formulated
in Figure 3.2.

Figure 3.2 The merging paramodulation rule

Merging Paramodulation

MP :
C ∨ s ≃ t⋆ D ∨ u ≃ v ∨ r ≃ h[s′]

⋆

Cσ ∨Dσ ∨ rσ ≃ h[t]σ ∨ uσ ≃ vσ

where (i) σ = mgu({s=s′, r=u}); (ii) s ≃ t is eligible strictly maximal w.r.t. C and σ;
(iii) r ≃ h is eligible strictly maximal w.r.t. D ∨ u ≃ v and σ; (iv) tσ 6� sσ; (v) hσ 6� rσ and
(vi) s′ is not a variable.

11Ordered Paramodulation into non-equational literals is often described as an instance of Positive
Superposition or Negative Superposition when atoms are viewed as equations over two sorts of
expressions



82 Preliminaries

Ordered Paramodulation

OP :
C ∨ s ≃ t⋆ D ∨L[s′]

Cσ ∨Dσ ∨ L[t]σ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible strictly maximal w.r.t. C and σ; (iii) L[s′]
is eligible (strictly maximal if positive) w.r.t. D and σ; (iv) L[s′] is a non-equational literal;
(v) tσ 6� sσ and (vi) s′ is not a variable.

Positive Superposition Negative Superposition

PS :
C ∨ s ≃ t⋆ D ∨ r[s′] ≃ h

⋆

Cσ ∨Dσ ∨ r[t]σ ≃ hσ
NS :

C ∨ s ≃ t⋆ D ∨ r[s′] 6≃ h
⋆

Cσ ∨Dσ ∨ r[t]σ 6≃ hσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) r ≃ h
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ≃ tσ) 6� (rσ ≃ hσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) r 6≃ h
is eligible strictly maximal w.r.t. D and σ;
(iv) tσ 6� sσ; (v) hσ 6� rσ and (vi) s′ is not a
variable.

Reflexivity Resolution Equality Factoring

RR :
C ∨ s 6≃ s′

Cσ
EF :

C ∨ s′ ≃ h ∨ s ≃ t⋆

Cσ ∨ tσ 6≃ hσ ∨ s′σ ≃ hσ

where (i) σ = mgu(s, s′) and (ii) s 6≃ s′ is
eligible w.r.t. C and σ.

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C ∨ s′ ≃ h and σ, and
(iii) tσ 6� sσ.

System 5: The superposition calculus SP≻
Sel

Definition 3.5.3. An ordering ≻ is admissible for superposition if ≻ is admissible
for paramodulation (see Definition 3.5.2) and addittionally:

(E3) s ≻ t ≻ h implies (s 6≃ h) ≻ (s ≃ t), and
(E4) s ≻ t ≻ h implies (s ≃ t) ≻ (t 6≃ h). 33

Both the ordered paramodulation calculus OP≻
Sel

and the superposition calculus
SP≻

Sel are refutationally complete with redundancy elimination for every choice of a
selection function Sel and an admissible ordering ≻.

3.5.4 Chaining Calculi

The ordered paramodulation and superposition calculi described in the previous
section, are examples of calculi with build-in theory, in these cases, the theory of
equality. It is in principle possible to use the resolution calculus for reasoning with
equality, by processing explicitly all necessary equational axioms. However, this



3.5. A Framework of Saturation-Based Theorem Proving 83

approach is impractical, as it gives a huge number of unnecessary inferences. A
similar situation may happen when other useful theories are considered.

Bachmair & Ganzinger [1995, 1998b] have studied automated reasoning over
theories induced by a collection of so-called compositional axioms of form:

xSy ∧ yTz→xHz or short S ◦ T ⊆ H (3.19)

The simplest instance of this scheme is the transitivity axiom:

xTy ∧ yTz→xTz or short T ◦ T ⊆ T (3.20)

We have already seen in subsection 2.5.2 that resolution inferences with tran-
sitivity axioms are hard to control. Yet many of such inferences can be shown to
be redundant: see [Nieuwenhuis & Rubio, 2001, Example 4.10] and [Kazakov, 2005,
Example 3.38]. Bachmair & Ganzinger [1995, 1998b] have formulated several chain-
ing calculi, where only necessary inferences with compositional axioms (3.19) are
performed using dedicated inference rules. Below we describe the most general of
these calculi and formulate sufficient conditions for their admissible parameters.

Reasoning with Compositional Binary Relations

Let C be a compositional theory induced by a collection of compositional axioms
(denoted by the same letter) of form (3.19). The predicate symbols involved in
C are called special predicate symbols, and, like for equality, we will use the infix
notation to distinguish them from other predicate symbols.

A compositional theory C is associative if for every (S◦T ⊆ U) ∈ C and (U ◦H ⊆
W ) ∈ C there exists a special predicate symbol V such that (T ◦H ⊆ V ) ∈ C and
(S ◦ V ⊆ W ) ∈ C, or in symbols: (S ◦ T ) ◦ H = S ◦ (T ◦ H). Most reasonable
compositional theories are associative, including the theory of transitivity. The
following theory of a quasi-ordering considered in Bachmair & Ganzinger [1995,
1998b], is another example of an associative compositional theory:

≻ ◦ ≻ ⊆ ≻; % ◦% ⊆ %; ∼ ◦ ∼ ⊆ ∼;

≻ ◦% ⊆ ≻; ≻ ◦ ∼ ⊆ ≻; % ◦ ∼ ⊆ %;

% ◦ ≻ ⊆ ≻; ∼ ◦ ≻ ⊆ ≻; ∼ ◦% ⊆ %.

(3.21)

The ordered chaining calculus OC≻Sel for an associative compositional theory C is
formulated in System 6. In all inference rules we assume that S, T and H are special
predicate symbols such that (S ◦ T ⊆ H) ∈ C. One can notice similarities between
the ordered chaining calculus OC≻Sel and the superposition calculus SP≻

Sel defined in
System 5. In particular, analogies between the Ordered Chaining and the Positive



84 Preliminaries

Ordered Chaining

OC :
C ∨ tSs⋆ D ∨ s′T t′⋆

Cσ ∨Dσ ∨ tσHt′σ

where (i) σ = mgu(s, s′); (ii) tSs is eligible strictly maximal w.r.t. C and σ; (iii) s′T t′ is
eligible strictly maximal w.r.t. D and σ; (iv) tσ 6≻ sσ; (iv)′ tσ 6= sσ if H = T ; (v) t′σ 6≻ s′σ
and (v)′ t′σ 6= s′σ if H = S.

Negative Chaining

NC :
C ∨ sSt⋆ ¬(s′Hh) ∨D

Cσ ∨ ¬(tσThσ) ∨Dσ

C ∨ tTs⋆ ¬(hHs′) ∨D

Cσ ∨ ¬(hσStσ) ∨Dσ

where (i) σ = mgu(s, s′); (ii) sSt is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(s′Hh)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6� s′σ.

where (i) σ = mgu(s, s′); (ii) tT s is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(hHs′)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6≻ s′σ.

Compositional Resolution

CR :
C ∨ sHh ∨ s′′S′t′⋆ D ∨ s′St

⋆

Dσ ∨ ¬(tσThσ) ∨ sσHhσ

C ∨ hHs ∨ t′S′s′′⋆ D ∨ tTs′⋆

Dσ ∨ ¬(hσStσ) ∨ hσHsσ

where (i) σ = mgu({s=s′, s=s′′}); (ii) s′′S′t′

is eligible strictly maximal w.r.t. C ∨ sHh and
σ; (iii) s′St is eligible strictly maximal w.r.t.
D and σ; (iv) s′′σS′t′σ 6≻ s′σStσ; (v) tσ 6� s′σ
and (vi) hσ 6� sσ.

where (i) σ = mgu({s=s′, s=s′′}); (ii) t′S′s′′

is eligible strictly maximal w.r.t. C ∨ hHs and
σ; (iii) tT s′ is eligible strictly maximal w.r.t.
D and σ; (iv) s′′σS′t′σ 6≻ tσT s′σ; (v) tσ 6� s′σ
and (vi) hσ 6� sσ.

System 6: The ordered chaining calculus for compositional binary relations OC≻
Sel

Superposition rule, and between Negative Chaining and Negative Superposition rules.
The Compositional Resolution rules have a similar function as Reflexivity Resolution.

Definition 3.5.4. An ordering ≻ on expressions is called admissible for chaining if
≻ is admissible for resolution (see Definition 3.5.1) and additional:

(T) ≻ is total on ground terms,

and for every axiom (S ◦ T ⊆ H) ∈ C and terms s ≻ t, s ≻ h we have:

(C1) ¬(sHh) ≻ (sSt); ¬(hHs) ≻ (tT s); ¬(sHs) ≻ (tT s);
(C2) ¬(sHh) ≻ ¬(tTh); ¬(hHs) ≻ ¬(hSt); ¬(sHs) ≻ ¬(sSt);
(C3) (sSt) ≻ ¬(tTh); (tT s) ≻ ¬(hSt); (sHs) ≻ (sSt) 33

Remark 3.5.5. In their original chaining calculi, Bachmair & Ganzinger [1998b]
did not allow for arbitrary associative compositional axioms, but for those induced
by a total precedence ≫ on special predicate symbols. Given a precedence ≫ on
special predicate symbols, we say that a compositional theory C is induced by ≫ if



3.5. A Framework of Saturation-Based Theorem Proving 85

C = {S ◦ T ⊆ H | H = max≫(S, T )}. Although the theory of transitivity (3.20)
and the theory of a quasi-ordering (3.21) fulfil this property, there are some natural
associative theories which lack it. In particular, the theory of metric distances that
will be considered in subsection 5.1.1. Hence, our formulation of chaining calculus is
a non-trivial generalisation over those given in [Bachmair & Ganzinger, 1998b]. 33

The Subterm Chaining Calculus

It is possible to describe a hybrid calculus which incorporates both a theory of com-
positional axioms C and the theory of equality. One could simply use the Ordered
Paramodulation rule to perform paramodulation inferences into non-equational liter-
als (including all special non-equational literals) as before. However it is possible to
use the advantage of compositional theory and perform paramodulation inferences
only into the largest argument of special literals. Essentially, equality is treated as
a part of a compositional theory: we assume that every compositional theory C
contains all axioms ≃ ◦ S ⊆ S and S ◦ ≃ ⊆ S for every special predicate symbol
S. However we do not allow the equational predicate to be the result of composi-
tion of non-equational predicates, i.e., S ◦ T ⊆ ≃ implies that S = ≃ and T = ≃.
Applying these modifications, we obtain a so-called subterm chaining calculus that
is an extension of the ordered chaining calculus from System 6 with inference rules
given in System 7, where now equality can be used as a compositional predicate
symbol. Note that the Positive Superposition and the Negative Superposition rules
are instances of the Ordered Subterm Chaining and the Negative Subterm Chaining
rules respectively, when S = ≃ (in the left variants). The right variants of these
rules are not needed for equational literals, since we treat equality symmetrically.
The Equality Factoring rule is simulated by a self-application of the Compositional
Resolution rule for equational atoms.

Definition 3.5.6. The ordering ≻ on expressions is called admissible for subterm
chaining if ≻ is admissible for chaining (see Definition 3.5.6) and superposition (see
Definition 3.5.3). 33

Redundancy

The standard redundancy criterion formulated in subsection 3.5.2 that uses an ad-
missible ordering ≻, does not always work for the chaining calculi. We will not
discuss the reasons for this here, and forward the reader to [Kazakov, 2005] for de-
tails. For proving redundancy we have to use an ordering ≻· which is slightly weaker
than the admissible ordering ≻ of the calculus (so less clauses and inferences might
be redundant):



86 Preliminaries

Ordered Paramodulation Reflexivity Resolution

OP :
C ∨ s ≃ t⋆ D ∨L[s′]

Cσ ∨Dσ ∨ L[t]σ
RR :

C ∨ s 6≃ s′

Cσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) L[s′]
is eligible (strictly maximal if positive) w.r.t.
D and σ; (iv) L[s′] is a non-special literal;
(v) tσ 6� sσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′) and (ii) s 6≃ s′ is
eligible w.r.t. C and σ.

Ordered Subterm Chaining

OSC :
C ∨ s ≃ t⋆ r[s′]Sh

⋆∨D

Cσ ∨ r[t]σShσ ∨Dσ

C ∨ s ≃ t⋆ hSr[s′]
⋆∨D

Cσ ∨ hσSr[t]σ ∨Dσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) rSh
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ≃ tσ) 6� (rσShσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) hSr
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ≃ tσ) 6� (hσSrσ); (v) tσ 6� sσ;
(vi) hσ 6≻ rσ; (vi)′ S 6= ≃, and (vii) s′ is
not a variable.

Negative Subterm Chaining

NSC :
C ∨ s ≃ t⋆ ¬(r[s′]Sh) ∨D

Cσ ∨ ¬(r[t]σShσ) ∨Dσ

C ∨ s ≃ t⋆ ¬(hSr[s′]) ∨D

Cσ ∨ ¬(hσSr[t]σ) ∨Dσ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(rSh) is
eligible w.r.t. D and σ; (iv) tσ 6� sσ; (v) hσ 6�
rσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(hSr) is
eligible w.r.t. D and σ; (iv) tσ 6� sσ; (v) hσ 6≻
rσ; (v)′ S 6= ≃, and (vi) s′ is not a variable.

System 7: The subterm chaining calculus SC≻
Sel

Definition 3.5.7 (Redundancy Ordering). A redundancy ordering for an admissible
ordering ≻ (for chaining calculi) is a partial ordering ≻· on ground literals such that
the following conditions hold:

(CRO1) ≻· ⊆ ≻, ≻ ◦ ≻· ⊆ ≻, ≻· ◦ ≻ ⊆ ≻;
(CRO2) S ◦ T ⊆ H , L ≻· tSs, L ≻· sTh and s � t, s � h

imply that L ≻· tHh 33

Intuitively, the redundancy ordering ≻· is a subordering of ≻ under which the
rule Ordered Chaining is monotone (in some weak sense) w.r.t. ≻· . It is possible
to show that the chaining calculi are refutationally complete with this notion of
redundancy for every selection function Sel, every admissible ordering ≻, and every
redundancy ordering ≻· for ≻ [see Kazakov, 2005].



3.5. A Framework of Saturation-Based Theorem Proving 87

3.5.5 Variations of Inference Systems

Many variations of inference rules in saturation-based calculi have been proposed
in the literature, that intend to restrict or speed-up inferences for certain cases.
In this section, we describe two particular classes of such inference rules, namely
simulteneous paramodulation and hyper-inferences.

Simultaneous Paramodulation and Superposition

The inference rules of the ordered paramodulation and superposition calculi can be
modified in such a way that the replacement is performed in several equal subterms
simultaneously : see Figure 3.3. These variants are typically employed in theorem

Figure 3.3 The simultaneous paramodulation and superposition rules

(Simulteneous) Ordered Paramodulation

OP :
C ∨ s ≃ t⋆ D[s′] ∨L[s′]

Cσ ∨D[t]σ ∨ L[t]σ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible strictly maximal w.r.t. C and σ; (iii) L[s′] is
eligible (strictly maximal if positive) w.r.t. D and σ; (iv) (sσ ≃ tσ) 6� L[s′]σ; (v) tσ 6� sσ
and (vi) s′ is not a variable.

(Simulteneous) Positive Superposition (Simulteneous) Negative Superposition

PS :
C ∨ s ≃ t⋆ D[s′] ∨ r[s′] ≃ h[s′]

⋆

Cσ ∨D[t]σ ∨ r[t]σ ≃ h[t]σ
NS :

C ∨ s ≃ t⋆ D[s′] ∨ r[s′] 6≃ h[s′]
⋆

Cσ ∨D[t]σ ∨ r[t]σ 6≃ h[t]σ

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) r ≃ h
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ≃ tσ) 6� (rσ ≃ hσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ≃ t is eligible
strictly maximal w.r.t. C and σ; (iii) r 6≃ h
is eligible strictly maximal w.r.t. D and σ;
(iv) tσ 6� sσ; (v) hσ 6� rσ and (vi) s′ is not a
variable.

provers instead of the original rules, because this would make it more efficient for
shared data-structures. In section 4.3 we demonstrate how these rules allow one to
obtain decision procedures with optimal complexities.

Hyper-Inferences

A hyper-inference rule is a rule composed from several ordinary inference rules. A
typical example of such rule is the well-known Ordered Hyper-resolution rule. In
Figure 3.4 we formulated a variant of this rule with selection, which can be seen as
simulteneous application of n resolution inferences.



88 Preliminaries

We say that a multiset D′ = {¬B1,..,¬Bn}m of negative literals is eligible w.r.t.
D and σ (for hyper-resolution) if either (a) D′ = Sel(D ∨D′) 6= {}

m
, or, otherwise

(b) Sel(D ∨ D′) = {}
m
, n = 1 and ¬B1σ is maximal w.r.t. Dσ. Now the Ordered

Figure 3.4 The hyper-resolution rule

Ordered Hyper-resolution

HR :
C1 ∨A1

⋆ . . . Cn ∨An
⋆ ¬B1∨· · · ∨¬Bn∨D

C1σ ∨· · · ∨Dσ

where (i) σ = mgu({A1=B1, . . . , An=Bn}); (ii) Aiσ are eligible strictly maximal w.r.t. Ci

and σ, i = 1,.., n and (iii) {¬B1,..,¬Bn}m is eligible w.r.t. D and σ.

Hyper-Resolution calculus with selection HR≻
Sel is defined by replacing the Ordered

Resolution rule with the Ordered Hyper-resolution rule.
Hyper-inferences are typically used to avoid generation of unnecessary interme-

diate clauses in inferences. However such rules are also more restrictive, since all
conditions of a hyper-inference must be satisfied simultaneously. In Figure 3.5, we
extend this principle and formulate a Negative Hyper-Chaining rule. This rule is ap-

Figure 3.5 A hyper- extension of the Negative Chaining rule

Negative Hyper-Chaining

HC :
Ci ∨ s1S̃1t1

⋆
. . . Cj ∨ snS̃ntn

⋆
¬(s′

1
H̃1h1)

♯
∨···∨¬(s′

nH̃nhn)
♯
∨D

Ciσ ∨ ¬(t1σT̃1h1σ) ∨Dσ

where (i) S̃i ◦ T̃i ⊆ H̃i for all 1 ≤ i ≤ n; (ii) σ = mgu({si=s′i | 1 ≤ i ≤ n}); and there
is a ground substitution σ0 = στ 0 such for all i with 1 ≤ i ≤ n: (iii) siSiti is eligible
strictly maximal w.r.t. Ci and σ0; (iv) {¬(s′1H1h1),..,¬(s′nH̃nhn)}

m
is eligible w.r.t. D and

σ0; (v) tiσ
0 6� siσ

0 and (vi) hiσ
0 6� s′iσ

0.

plied to a clause whose all selected literals are special and for each of them a Negative
Chaining inference with the same clause is possible. Then all these inferences are
applied at once provided that all ordering restriction can be satisfied simultaneously.
Here by xS̃y we denote a special atom xSy or its inverse ySx, to avoid formulation
of the symmetric version of the rule. Given a clause with several selected literals,
we allow either (i) a simultaneous application of the negative chaining rule on all
of these literals, or (ii) any other inference with any of the selected literals.



3.5. A Framework of Saturation-Based Theorem Proving 89

3.5.6 The Theorem Proving Process

So far we have described saturation-based calculi from the static point of view, i.e.,
as a collection of inference rules. We have also formulated some redundancy criteria,
but did not discuss how they can be used. In this section we are concerned with
the question of how deduction of clauses and redundancy elimination is organised
in theorem provers.

Simplification Rules

Deletion of redundant clauses in modern theorem provers is organised using special
simplification rules. In most cases simplification rules do not just delete redundant
clauses, but rather replace clauses with “simpler” ones, which is why they are called
so. A general simplification rule typically has the following form:

A Simplification Rule

SR :
S ∪ [[S ′ ]]

S1 || · · · || Sn

where the conditions of the rule hold

(3.22)

where S, S ′, S1, .., Sn are clause sets, [[S ′ ]] are the clauses that should be deleted
after the inference is applied, and S1, . . . , Sn are the possible (non-deterministic)
choices for the clauses produced by the inference. In Figure 3.6 we have listed some
simplification rules commonly used in saturation-based theorem provers.

Figure 3.6 Some simplification rules used in saturation-based theorem provers

Tautology Deletion Elimination of Duplicate Literals

TD :
[[C ∨A ∨ ¬A ]]

ED :
[[C ∨ L ∨ L ]]

C ∨ L

— —

Subsumption Deletion Splitting

SD :
C [[D ]]

SP :
[[C ∨D ]]

C || D

where (i) C strictly subsumes D
where (i) C 6= �; (ii) D 6= � and (iii) vars[C]∩
vars[D] = {}.

Simplification rules should be admissible, which amounts to the following two
conditions: (1) the rule should be sound, i.e., there must be no way of producing an



90 Preliminaries

unsatisfiable clause set from a satisfiable one, and (2) deletion of clauses should be
done according to the redundancy criterion, i.e., every deleted clause should follow
logically from some smaller clauses of the rule. Admissible simplification rules can be
freely used in any calculus without affecting its refutaional completenes. Therefore,
we often call such rules as optional ones.

In our decision procedures we will introduce custom simplification rules to achieve
certain desirable effects. In subsection 2.5.2 we have used one of such rules for treat-
ing clauses for compositional axioms, namely:

Splitting through New Predicate Symbol

SPP :
C ∨D

C ∨ u
C
(x)

D ∨ ¬u
C
(x)

where (i) C 6= �; (ii) D 6= �; (iii) vars[C] ∩ vars[D] = x and
(iv) u

C
is an extended predicate symbol introduced for C.

(3.23)

Unlike those rules given in Figure 3.6, this rule extends the original signature with
a fresh predicate symbol u

C
introduced for clause C. For proving soundness of such

a rule, one usually needs to describe how the model for the conclusion of this rule
can be obtained from the model for its premises. For this particular rule one needs
to expand the model by interpreting u

C
(x) as a first-order formula ∃y(¬C), where

y = vars[C] \ x. A similar construction can be used for proving soundness of other
simplification rules extending the signature, which we introduce later.

A Model of a Saturation Process

In order to estimate the complexity of different saturation-based procedures, we will
use a simple model of computation for a refutational-based theorem prover. Similar,
but more detailed and more practically-oriented models can be found, for instance,
in [Weidenbach, 2001; Bachmair & Ganzinger, 2001].

We assume that we are given a collection S of inference rules of a calculus aug-
mented with some (possibly non-deterministic) simplification rules. Among simpli-
fication rules we distinguish a subset Se of eager simplification rules. A distinction
between these two types of simplification rules will be clarified in a moment.

A state of our saturation-based theorem prover is a set of clauses S partitioned
into three pairwise disjoint subsets D, O and U of deleted clauses, worked-out clauses
and usable clauses respectively. This is written shortly as S = (D | O | U). Given
an input set of clauses N to be processed, a state of the prover is initialised to



3.5. A Framework of Saturation-Based Theorem Proving 91

S := ({} | {} | N). After that, the current set of clauses is a subject to normalisation
and deduction steps according to the procedure in Figure 3.7.

Figure 3.7 A model of a prover with eager simplification rules
state

↓

S =

(D
↑

deleted

|

worked-out
↓

O | U
↑

usable

)

Prover (N)
S:=Normalise ({} | {} | N);
while (U 6= {} and � /∈ U) do

S:=Normalise (Deduce (S));
end;
if (U = {}) then return ("Satisfiable");
if (� ∈ U) then return ("Unsatisfiable");

end.

Normalise (S)
repeat

S′:= S;
S:= Simplify (S′);

until (S = S′);
return(S);

end.

Deduce
D | O ⊔O′ | {C} ⊔ U ⇒ (D ∪O′ | O ∪ {C} | U) ∪N where O ∪ {C} ∪ [[O′ ]] ⊢S N

D | O ⊔O′ | {C} ⊔ U ⇒ (D ∪O′ ∪ {C} | O | U) ∪N where O ∪ [[ {C} ∪O′ ]] ⊢S N

Simplify
D | O ⊔O′ | U ⊔ U ′ ⇒ (D ∪O′ | O | U) ∪N where O ∪ U ∪ [[O′ ∪ U ′ ]] ⊢Se

N

In the deduction step (function Deduce(·)), the next theorem proving state is
obtained from the previous one by (1) selecting a usable clause, (2) inserting con-
clusions of all inferences between this clause and worked-out clauses, (3) moving
deleted clauses into D and (4) moving the selected clause into the set of worked-
out clauses O if it has not been deleted – see rule Deduce. In the normalisation
step (function Normalise(·)), an exhaustive application of eager simplification rules
according to rule Simplify is performed.

In the following, we assume that (i) every inference from S can be computed
in polynomial time in the size of its premises and (ii) normalisation of a clause
set N w.r.t. eager simplification rules can be done in polynomial time in the size
of N . These assumptions are reasonable: every rule from the calculi introduced
so far satisfies property (i), and normalisation using all rules from Figure 3.6, but
Subsumption Deletion, enjoys property (ii)12.

Now we give a formula which will be used for calculation of the running times for
saturation procedures that we describe. The time complexity is estimated in terms
of the following parameters:

12For many clause classes, including those considered in this thesis, deletion of subsumed clauses
can be also done in polynomial time



92 Preliminaries

|N | - the size of the initial clause set;

c - the maximal number of normalised clauses;

s - the maximal number of clauses in a normalised clause set;

m - the maximal size of a normalised clause;

k - the maximal number of premises in all deduction and simplification rules.

Given the values for these parameters, the total (possibly non-deterministic) running
time for a saturation procedure is bounded by:

t = p(|N |) + c · p(m · s(k−1)) (3.24)

where p(·) is a polynomial function. Please see [Kazakov, 2005] for the details of
how this formula has been derived.

3.5.7 Clause Normal Form Transformation

As has been said in the very beginning, saturation-based theorem provers do not
operate with arbitrary first-order formulas, but with clauses. To use a theorem
prover for first-order formulas, it is required, in the first place, to transform them
into a clause normal form (short CNF). In this section we describe the standard
CNF-transformation procedures, and discuss some complexity issues.

CNF-transformation has been thoroughly studied in literature [for the overview
see Nonnengart & Weidenbach, 2001; Baaz, Egly & Leitsch, 2001]. The traditional
way of producing CNF’s for decidable first-order fragments consists of three main
steps. First, a formula is translated into a negation normal form by pushing negation
inwards as far as possible. Second, a so-called structural transformation is applied to
a formula, that splits the formula into a conjunction of simple formulas. In the last
step, skolemization is employed that introduces Skolem functions for existentially
quantified variables. After this step the universal quantifiers are dropped and the
result is written in a clause form.

Negation Normal Form Transformation

A first-order formula (involving conjunction, disjunction and negation as the only
Boolean connectives) is in negation normal form (or shortly NNF) if negation sym-
bol appears only in front of atoms in this formula. For putting a first-oder formula
into NNF, one has to distribute negation over Boolean connectives and quantifiers
using the usual de-Morgan’s laws:

¬(A ∧ B) ⇒ ¬A ∨ ¬B
¬(A ∨ B) ⇒ ¬A ∧ ¬B

¬¬A ⇒ A
¬∀x.A ⇒ ∃x.¬A
¬∃x.A ⇒ ∀x.¬A

(3.25)



3.5. A Framework of Saturation-Based Theorem Proving 93

Formally the result [F ]nnf of NNF-transformation for a formula F can be defined
recursively over the definition of first-order formulas as in Figure 3.8. Note that the

Figure 3.8 Negation normal form transformation for first-order formulas

FO ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀y.F1 | ∃y.F1.

[F ]nnf := [A]nnf = A |

[F1 ∧ F2]
nnf = [F1]

nnf ∧ [F2]
nnf |

[F1 ∨ F2]
nnf = [F1]

nnf ∨ [F2]
nnf |

[¬F1]
nnf = [F1]

nnf
¬ |

[∀y.F1]
nnf = ∀y.[F1]

nnf |

[∃y.F1]
nnf = ∃y.[F1]

nnf .

[F ]nnf
¬ := [A]nnf = ¬A |

[F1 ∧ F2]
nnf
¬ = [F1]

nnf
¬ ∨ [F2]

nnf
¬ |

[F1 ∨ F2]
nnf
¬ = [F1]

nnf
¬ ∧ [F2]

nnf
¬ |

[¬F1]
nnf
¬ = [F1]

nnf |

[∀y.F1]
nnf
¬ = ∃y.[F1]

nnf
¬ |

[∃y.F1]
nnf
¬ = ∀y.[F1]

nnf
¬ .

set of first-order formulas in negation normal form can be defined by the grammar:

[FO]nnf ::= A | ¬A | F1 ∨ F2 | F1 ∧ F2 | ∀y.F1 | ∃y.F1. (3.26)

where A is an atom and F1, F2 ∈ [FO]nnf .

Proposition 3.5.8. For every formula F ∈ FO the result G = [F ]nnf of NNF-
transformation can be computed in polynomial time in |F | and produces a formula
G in negation normal form such that (i) G is equivalent to F and (ii) |G| ≤ 2·|F |.

The Structural Transformation

Structural transformation, known also as a subformula renaming, is the key part
of CNF-transformation which allows one to avoid exponentially long CNFs. The
problem can be demonstrated by the following example:

Pn = (A1 ∧ A
′
1) ∨ (A2 ∧ A

′
2) ∨ · · · ∨ (An ∧ A

′
n), n > 0 (3.27)

whose equivalent CNF, consisting of 2n clauses. This blowup can be avoided by
introducing auxiliary propositional “names” Bi for every conjunct Ai ∧ A′i, 1 ≤ i ≤ n.
Then the the following 2n + 1 clauses are conservative over Pn:

B1 ∨ B2 ∨ · · · ∨ Bn;
¬B1 ∨ A1; ¬B2 ∨ A2; · · · ¬Bn ∨ An;
¬B1 ∨ A′1; ¬B2 ∨ A′2; · · · ¬Bn ∨ A′n;

In Figure 3.9 we defined the structural transformation for a set of formulas F
represented by a general grammar, where Bi, 1 ≤ i ≤ n are first-order formulas for



94 Preliminaries

Figure 3.9 The structural transformation for a recursively defined set of formulas

F ::= B1 | B2 | · · · | Bn | R1[F1,.., Fk1 ] | R2[F1,.., Fk2 ] | · · · | Rm[F1,.., Fkm
]

[F ]str := PF ∧ [F ]def ;

[F ]def := [Bi]
def = ∀x.(PF→Bi), | 1 ≤ i ≤ n,

[Rj [F1,.., Fkj
]]def = ∀x.(PF→Rj [PF1

,.., PFkj
]) ∧ [F1]

def ∧···∧ [Fkj
]def | 1 ≤ j ≤ m.

base cases of the definition, and Rj[F1,.., Fkj
], 1 ≤ j ≤ m are recursive constructors

of new formulas from the old ones. Hereby we assume that every Fi with 1 ≤ i ≤ kj

occurs positively in Rj [F1,.., Fkj
].13 Definition (3.26) for first-order formulas in nega-

tion normal form is an example of such recursive construction. The function [F ]str

defined recursively in Figure 3.9 computes the result of the structural transforma-
tion for a formula F ∈ F . Here each PF = pF (x) is a fresh definitional predicate
introduced for F , where x = free[F ]. For example, the function [·]def for the set
of first-order formulas in negation normal form defined by (3.26) has the following
form:

[F ]def := [A]def = ∀x.(PF→A) |

[¬A]def = ∀x.(PF→¬A) |

[F1 ∨ F2]
def = ∀x.(PF→PF1

∨ PF2
) ∧ [F1]

def ∧ [F2]
def |

[F1 ∧ F2]
def = ∀x.(PF→PF1

∧ PF2
) ∧ [F1]

def ∧ [F2]
def |

[∀y.F1]
def = ∀x.(PF→∀y.PF1

) ∧ [F1]
def |

[∃y.F1]
def = ∀x.(PF→∃y.PF1

) ∧ [F1]
def .

(3.28)

Remark 3.5.9. Please note that the structural transformation is defined not for a
formula, but for its recursive definition. A formula might be represented by many
different recursive definitions, and consequently might have several different results
of the structural transformation. Note also that the structural transformation (3.28)
applied to a formula in NNF produces a formula in NNF (according to our con-
vention A→B is a shortcut for ¬A ∨ B). 33

Note that the result [G]str of the structural transformation for a formula G ∈ F
computed according to the definitions in Figure 3.9, can be written as follows:

[G]str = PG ∧
∧

F=Bi

∀x.(PF→Bi) ∧
∧

F = Rj [F1,.., Fkj
]

∀x.(PF→Rj[PF1
,.., PFkj

]), (3.29)

where the conjunctions are taken over subformulas F of G. In particular, the total
number of conjuncts is at most |G|.

13The structural transformation can be also defined for negative occurrences of subformulas,
however we do not need this since we put formulas into negation normal form first



3.5. A Framework of Saturation-Based Theorem Proving 95

Proposition 3.5.10. Let a formula set F and a function [·]str be defined like in
Figure 3.9. Then the result H := [G]str of structural transformation for G ∈ F can
be computed in polynomial time in |G| and produces a formula H such that (i) H is
conservative over G and (ii) |H| = O(w·|G|), where w := width(G).

Skolemization

In the next step of CNF-transformation, the existentially quantified variables of
a formula are skolemized. For the purpose of obtaining saturation-based decision
procedures we use the standard (outermost) Skolemization. Given a formula F in
negation normal (3.26), the result [F ]sko of applying the outermost Skolemization
to F is recursively defined in Figure 3.10, where A is an atom, F1, F2 ∈ [FO]nnf

Figure 3.10 Skolemization for first-order formulas in NNF

[F ]sk
o := [A]sk

o = A |

[¬A]sk
o = ¬A |

[F1 ∨ F2]
sk
o = [F1]

sk
o ∨ [F2]

sk
o |

[F1 ∧ F2]
sk
o = [F1]

sk
o ∧ [F2]

sk
o |

[∀y.F1]
sk
o = ∀y.[F1]

sk
o |

[∃y.F1]
sk
o = [F1·{y/fF (x)}]sk

o .

and fF (x) is a Skolem function introduced for the existentially quantified formula
F = ∃y.F1 over its free variables x = free[F ].

Proposition 3.5.11. For any formula F ∈ [FO]nnf the result of outermost Skolem-
ization [F ]sko can be computed in polynomial time in |F | such that the following holds:
(i) [F ]sko is conservative over F and (ii) |[F ]sko | ≤ (w + 1)·|F |, where w = width(F ).

Clausification

In the last step of CNF-transformation the formula is translated into the CNF, by
dropping the remaining (universal) quantifiers and distributing conjunctions over
disjunctions using the usual distributivity properties:

A ∨ (B ∧ C) ⇒ (A ∨ B) ∧ (A ∨ C) and (A ∧ B) ∨ C ⇒ (A ∨ C) ∧ (B ∨ C)

This step might yield an exponential blowup in the size of formula if CNF- trans-
formation is applied naïvely (without the structural transformation). In oder to
estimate accurately the computational cost of this transformation, we define it as
in Figure 3.11 by a recursive function [F ]cnf over quantifier-free first-oder formulas:

P ::= L | F1 ∨ F2 | F1 ∧ F2 . (3.30)

where L is a literal and Fi ∈ P, i = 1, 2.



96 Preliminaries

Figure 3.11 Clausification for quantifier-free first-order formulas

[F ]cnf := [F | ⊥]cnf ;

[F |C]cnf := [L |C]cnf = C ∨ L |

[F1 ∨ L |C]cnf = [F1 |C ∨ L]cnf |

[F1 ∧ F2 |C]cnf = [F1 |C]cnf ∧ [F2 |C]cnf |

[F1 ∨ (F2 ∧ F3) |C]cnf = [F1 ∨ F2 |C]cnf ∧ [F1 ∨ F3 |C]cnf |

[F1 ∨ (F2 ∨ F3) |C]cnf = [(F1 ∨ F2) ∨ F3 |C]cnf .

|F |cnf := |L|cnf = 1 |

|F1 ∨ F2|cnf = |F1|cnf + |F2|
1

cnf + 1 |

|F1 ∧ F2|cnf = |F1|cnf + |F2|cnf + 1 .

|F |1cnf := |L|1cnf = 1 |

|F1 ∨ F2|1cnf = |F1|1cnf + |F2|1cnf + 2 |

|F1 ∧ F2|1cnf = |F1|1cnf + |F2|1cnf + 1 .

Proposition 3.5.12. For any formula F ∈ P defined according to (3.30), the result
of Clausification S := [F ]cnf can be computed in polynomial time in 2|F | and produces
a formula S in CNF such that (i) S ≡ F and (ii) |S| ≤ 2|F |.

Remark 3.5.13. Although clausification, as stated above, is exponential in the worst
case, most translations that we give for fragments are polynomial. This is mainly
because of the structural transformation step which is applied before clausification.
Since the structural transformation produces a formula of the form (3.29), we need
to perform clausification only for conjuncts of these formula, which have a fixed
form for a fragment. Therefore, every conjunct is translated into CNF with a linear
overhead in the size and clausification can be computed in polynomial time. 33

Summing up the results of Propositions 3.5.8, 3.5.10, 3.5.11 and Remark 3.5.13,
we can conclude that CNF-transformation with a suitable structural transformation
can be computed in a polynomial time and produces the result of size O(w·|F |),
where w is the width of the input formula F .



Chapter 4

Saturation-Based Decision

Procedures

In this chapter we describe decision procedures for several fragments of first-order
logics: the guarded fragment, the two-variable fragment, the monadic fragment,
their combinations and extensions. All these decision procedures are obtained using
the ordered resolution and ordered paramodulation calculi introduced in the previous
chapter.

The fact that resolution can be turned into a decision procedure for first-order
fragments has been first observed by Joyner Jr. [1976], who formulated several
strategies that allow one to decide some prefix-vocabulary classes. For the last
thirty years, his method was extended to a variety of other decidable fragments of
first-order logic [Tammet, 1990; Fermüller et al., 1993; Fermüller & Salzer, 1993;
Bachmair, Ganzinger & Waldmann, 1993b; de Nivelle, 1995; Schmidt, 1997; Wald-
mann, 1997; Hustadt & Schmidt, 1999; Hustadt, 1999; de Nivelle, 2000a; Ganzinger
& de Nivelle, 1999; Ganzinger, Hustadt, Meyer & Schmidt, 2001; Armando, Ranise
& Rusinowitch, 2001; de Nivelle & Pratt-Hartmann, 2001; de Nivelle & de Rijke,
2003; Hustadt et al., 2004].

The principle behind such procedures is very simple: (1) translate a formula from
a fragment of interest into a clause normal form and (2) demonstrate that resolution
always terminates on these clauses. This means that a saturation-based prover is
guaranteed to produce a correct answer satisfiable/unsatisfiable for formulas of this
fragment in finite time. In chapter 2 we have already seen a simple application
of this method, where a resolution-based procedure has been defined that decides
subsumption of concepts in EL.

In order to demonstrate that saturation always terminates for every formula of a
fragment, one usually defines a suitable clause class for a fragment which (i) consists
of finitely many clauses for a fixed signature, (ii) contains the input clauses and (iii)

97



98 Saturation-Based Decision Procedures

is closed under all inference rules of a calculus. For EL, such clause class was defined
by listing types of clauses which could appear in a saturation (see Table 2.5 on p.20).

In general, defining a suitable clause class which enjoys properties (i) – (iii) is a
non-trivial and rather creative task (which can be compared with finding invariants
in inductive proofs). Even for relatively simple fragments considered in [Joyner Jr.,
1976], the descriptions of suitable clause classes are much more involved than that
of DL EL. Hence for fragments that correspond to expressive description logic, this
task might be already unfeasible. Therefore the goal of this chapter is not only
to give an account of new saturation-based decision procedures (such works are
listed above), but also to identify general strategies and techniques that support the
development of such decision procedures.

The contribution of this chapter can be briefly summarised as follows:

• We introduce a special scheme notation which facilitates description of clause
classes and inferences between them. Using this notation one can “program”
saturation-based decision procedures in tables by listing possible inferences
between clause types.

• We demonstrate how the forms of input clauses for fragments can be obtained
directly from their recursive definitions. These clauses determine the clause
class for a fragment.

• We give a uniform description of resolution-based decision procedures for the
guarded, two-variable and monadic fragments without equality, and show how
these fragments and their resolution procedures can be combined in a modular
way (so that the combined procedure remains the same when restricted to
each individual fragment).

• We analyse the complexities of our decision procedures and show that they
are not only theoretically optimal, but also yield the best known upper bounds
for the considered fragments.

• Finally, we obtain new paramodulation-based decision procedures for exten-
sions of the guarded fragment with equality, constants, functionality and count-
ing. These fragments have important relationship with many well-known ex-
pressive description logics.



4.1. Decision Procedures Based on Ordered Resolution 99

4.1 Decision Procedures Based on Ordered Resolu-

tion

4.1.1 Deciding the Guarded Fragment without Equality

de Nivelle [1998] was the first to formulate a resolution-based decision procedure for
the guarded fragment without equality [see also the extended version of this paper:
de Nivelle & de Rijke, 2003]. This decision procedure uses a refinement of resolution
by non-liftable orders, completeness of which is demonstrated by resolution games
[de Nivelle, 1995]. In fact, the procedure given in this paper decides a much larger
clause class, than is actually obtained from the translation of guarded formulas
(given in this paper). A more concise clause class for the guarded fragment has been
defined in [Ganzinger & de Nivelle, 1999], where a paramodulation-based decision
procedure for the guarded fragment with equality has been found. The smaller clause
class makes it possible to employ liftable orders, which allows one to use any “off-
the-shelf” saturation-based theorem prover to implement the decision procedure.

In this section we define a small clause class that captures the guarded fragment
without equality, and gives rise to many decision procedures for extensions of the
guarded fragment that will be presented in subsequent sections. Our aim is not only
to show decidability of these fragments by standard resolution and paramodulation,
but also to obtain sharp complexity bounds for these fragments. We will show that
for the guarded, two-variable and monadic fragments, our procedures have the best
known complexity.

The plan for the rest of this section is the following. First, we sketch a decision
procedure for the class of guarded clauses defined in [de Nivelle, 1998; de Nivelle
& de Rijke, 2003]. After that, we review a CNF-transformation procedure for the
guarded formulas and define a smaller clause class, that captures the result of the
translation. Finally, we present a decision procedure for the defined clause class by
ordered resolution and estimate its complexity.

Guarded clauses and non-liftable orders

A clause class defined by de Nivelle [1998] for the guarded fragment inherits certain
features from the class E+, that has been introduced by Tammet [1990] and later
studied in [Fermüller et al., 1993; de Nivelle, 1995, 2000a]. E+ is defined as a
class of so-called variable uniform clauses. A clause C is variable uniform if (i)
all literals in C are weakly covering (recall Definition 3.1.13 and terminology from
3.1.4) and (ii) for each two literals L1 and L2 of C, either vars[L1] = vars[L2], or
vars[L1] ∩ vars[L2] = {}.



100 Saturation-Based Decision Procedures

The following definition is a slightly modified definition of guarded clauses from
[de Nivelle & de Rijke, 2003]:

Definition 4.1.1. A clause C is guarded iff
(i) C is a weakly covering clause (see Definition 3.1.13), and

(ii) if C is not ground, then there is a negative literal ¬A in C (called a guard)
that contains all variables of C.1 33

For example, the following clauses are guarded, where the appropriate guards
are underlined:

a(c, g(f(c), c)); ¬b(x) ∨ ¬a(x, y)
::::::::

∨ a(f(c), g(x, y));

¬a(x, f(c))
::::::::::::

∨ ¬a(c, f(f(x))) ∨ ¬a(c, f(c)).

The second literal of the last clause can also be selected as a guard, but not the last
literal. The following clauses are not guarded:

¬b(x) ∨ ¬a(x, y) ∨ a(f(c), g(x, c)) - the last literal is not weakly covering;

¬b(x) ∨ ¬b(y) ∨ a(x, y) - the clause is not ground but there is no guard;

The main idea behind the decision procedure for the class of guarded clauses by
resolution (as well as for the class E+), is to force a procedure to perform resolution
inferences only on literals such that: (1) a literal contains all variables of the clause
and (2) a literal has the maximal (variable) depth in the clause. The first condition
usually guarantees that the number of different variables in a resolvent do not exceed
the maximal number of different variables in every clause it is derived from. The
second conditions allows one to establish a bound on (variable) depth of the derived
clause. These conditions together insure that all derived clauses have a bounded
size, therefore, only finitely many of those can be generated during saturation.

In order to fulfil conditions (1) and (2) above for guarded clauses, de Nivelle
[1998] introduces the following ordering ≻ on non-ground literals:

L1 ≻ L2 if (a) vars[L2] ( vars[L1], or

(b) vars[L1] = vars[L2], but vardepth(L1) > vardepth(L2).
(4.1)

The ordering ≻ satisfying these properties is non-liftable (recall the terminology
from subsection 3.5.2). Both conditions of the ordering (4.1) violate liftability:
both (a) a(x) ≻ a′(c); a′(x) ≻ a(c) and (b) b(f(x), c) ≻ b′(f(c), x); b′(f(x), c) ≻
b(f(c), x) yield conflicts under the substitution {x/c}, if a 6= a′, b 6= b′. Nonetheless,
de Nivelle [1998] proves that ordered resolution based on an ordering ≻ fulfilling the
conditions above, remains complete for guarded clauses:

1this case contained more restrictions, which, however are not necessary for the procedure



4.1. Decision Procedures Based on Ordered Resolution 101

Theorem 4.1.2. [de Nivelle, 1998] Let N be a set of guarded clauses and N ′ be a
saturation of N under ordered resolution based on an order (4.1), applied a-priori.
Then
(1) all clauses in N ′ are guarded;
(2) N ′ is satisfiable iff N is satisfiable;
(3) depth(N ′) ≤ vardepth(N) + depth(N).

Theorem 4.1.2 implies that a set of the guarded clauses can be decided by ordered
resolution based on non-liftable orders. There are some disadvantages of using non-
liftable orders in resolution. The important one, is that non-liftable orders are
not fully compatible with redundancy elimination techniques, in particular, with
Tautology Deletion.

Satisfiability for guarded clauses can probably be decided using a liftable or-
der applied a-posteriori (i.e. when ordering conditions are verified after a rule is
applied), similar as it has been done for the class E+ in [de Nivelle, 2000a] (but
the procedure yields a larger bound on a clause depth). However, for deciding the
guarded fragment, many problems can be avoided by considering a smaller clause
class.

Clause Schemes

Before we start describing our resolution-based decision procedure for the guarded
fragment, we introduce a special scheme notation to facilitate description of clauses
and inferences between them. We augment the usual first-oder notation with a
constructor of the type:

< top symbols > (< arguments >)

which represents a term, literal or a clause having certain top symbols (functional,
predicate symbol, negation of a predicate symbol, etc.) and certain sequence of ar-
guments. For example, (p|¬p)(x, y) stands for either p(x, y) or ¬p(x, y). Here the
arguments of both expressions (x, y) are composed from two sequences of (not nece-
cerily disjoint) variable-vectors x and y. If we want to describe a similar expression
whose arguments are from either x or y, we write (p|¬p)[x, y]. This form means
neither that all variables from x, y occur as arguments, nor that they follow in some
specific order. If we want to additionally express, say, that all variables from x
occur as arguments of the expression, we write (p|¬p)[!x, y].

We can form more complicated expressions by nesting our scheme notation. For
example, we can write {∨l}[x, !f̂(x)] to denote a clause consisting of literals whose
arguments are either from x, or of form f̂(x), and at least one such functional term
is present. The “hat” on top of f means that there are possibly several occurrences



102 Saturation-Based Decision Procedures

of functional terms of this form for different functional symbols. If we had written
{∨l}[x, !f(x)], this would mean that all functional symbols in the clause must be
the same. Symbols f and f̂ are called parameters (for functional symbols). The
first parameter is free, i.e., all occurrences of this parameter must correspond to the
same functional symbol. The second parameter is bounded, meaning that different
occurrences of this parameter may correspond to different functional symbols. We
may also define new parameters using the old ones. For example, the literal param-
eter l in the above scheme can be defined as l := p|¬p. Similarly we can introduce a
clause parameter α := {∨l}, and write the above scheme as α[x, !f̂(x)] or α̂[x, !f̂(x)].

Please see Appendix B containing a comprehensive account on our scheme lan-
guage, including formal definitions and numerous examples. However, we also try
to give comments for the scheme expressions that we use, so their meanings should
be clear enough from what we have just said.

A clause class for the guarded fragment

To obtain a clause class for the guarded fragment, we apply the general CNF-
transformation procedure that we have described in subsection 3.5.7. We start with
a recursive definition (3.17) for the guarded formulas given in subsection 3.3.3:

GF ::= A | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] . (4.2)

where A is an atom containing no functional terms2, Fi with i = 1, 2 are guar-
ded formulas and G is an atom, called a guard containing all free variables of the
corresponding subformula F1.

After applying the negation normal form transformation (3.25) for formulas of
form (4.2), we obtain a fragment that can be characterised as follows:

[GF ]nnf ::= A | ¬A | F1 ∧ F2 | F1 ∨ F2 | ∀y.[G→F1] | ∃y.[G ∧ F1] . (4.3)

As has been shown in 3.5.7 (see Proposition 3.5.8), NNF-transformation can be
computed in polynomial time and produces a linear result in the size of the input
formula.

Now it’s time for the structural transformation, which we apply according to
the general procedure (3.9). For any F ∈ [GF ]nnf defined in (4.3), the result of
structural transformation is [F ]strg := PF ∧ [F ]def

g , where the function [·]def
g is defined

2A decision procedure for the guarded fragment with constants will be considered in subsec-
tion 4.3.2



4.1. Decision Procedures Based on Ordered Resolution 103

below:
[F ]def

g := [A]def
g = ∀x.(PF→A) |

[¬A]def
g = ∀x.(PF→¬A) |

[F1 ∧ F2]
def
g = ∀x.(PF→PF1

∧ PF2
) ∧ [F1]

def
g ∧ [F2]

def
g |

[F1 ∨ F2]
def
g = ∀x.(PF→PF1

∨ PF2
) ∧ [F1]

def
g ∧ [F2]

def
g |

[∀x.[G→F1]]
def
g = ∀x.(PF→∀y.(G→PF1

)) ∧ [F1]
def
g |

[∃x.[G ∧ F1]]
def
g = ∀x.(PF→∃y.(G ∧ PF1

)) ∧ [F1]
def
g .

(4.4)

Hereby PF = pF (x) is, as usual, a definitional predicate for a guarded subformula F
over x = free[F ]. According to (3.29), the result of the structural transformation is
a conjunction of formulas whose types are shown on Table 4.1 in the left column,
where we have additionally applied the existential closure. Here we partially use our

Table 4.1 Types of clauses resulted form CNF transformation for guarded formulas

Type of a conjunct 99K [·]sk, [·]cnf 99K Type of a clause (Nr)

∃x.pF (x) 99K pF (csk) (1)

∀x.(pF (x)→a[!x]) 99K ¬pF (x) ∨ a[!x] (2)

∀x.(pF (x)→¬a[!x]) 99K ¬pF (x) ∨ ¬a[!x] (3)

∀x.(pF (x)→(pF1
[x] ∧ pF2

[x])) 99K ¬pF (x) ∨ pF1
[x] (4)

¬pF (x) ∨ pF2
[x] (4)

∀x.(pF (x)→(pF1
[x] ∨ pF2

[x])) 99K ¬pF (x) ∨ pF1
[x] ∨ pF2

[x] (5)

∀x.(pF (x)→∀y.(g[!x, !y]→pF1
[x, y])) 99K ¬g[!x, !y] ∨ ¬pF (x) ∨ pF1

[x, y] (6)

∀x.(pF (x)→∃y.(g[!x, !y] ∧ pF1
[x, y])) 99K ¬pF (x) ∨ g[!x, !fsk(x)] (7)

¬pF (x) ∨ pF1
[x, fsk(x)] (8)

scheme notation: x, y denote sequences of variables; pF (x) denotes an atom whose
sequence of arguments is x; an atom a[x] (a[x, y]) contains only variables from x
(resp. from x and from y) and an atom a[!x] (a[!x, !y]), in addition, contains at least
one occurrence for every variable in x (resp. in x and in y).

Applying (the outermost) Skolemization and Clausification to the formulas of
these types, we obtain clauses of types (1) − (8) shown in the right column of
Table 4.1. Note, that all clauses (1)− (8) are guarded according to Definition 4.1.1:
(i) All clauses are weakly covering (and even covering !), since all functional terms are
either Skolem constants csk in ground clauses, or Skolem functions fsk(x) containing
all variables x of the clause in which they occur. (ii) All non-ground clauses have a
guard containing all variables of a clause: the negated definitional predicate ¬pF (x)
acts as guard for the clauses (2)− (5) and (7)− (8); for the clause (6) the guard is
the literal ¬g[!x, !y].

The clauses (1)− (8) in Table 4.1 are guarded clauses of a very specific form:



104 Saturation-Based Decision Procedures

1. All clauses are simple, i.e. they contain only shallow subterms (or equivalently,
their depth is not greater than 3);

2. All guards in clauses contain no functional subterms (i.e. guards contain only
variables);

3. All functional subterms in clauses have the same sequence of arguments, which
may be only variables (and all variables that occur in a clause should be there).

The properties 1-2 have been taken into account in [Ganzinger & de Nivelle, 1999],
where a more restricted class of clauses (also called guarded clauses) has been in-
troduced. We restrict this class even further by additionally imposing condition 3.
Additional conditions allow us to obtain a smaller complexity bound for the guar-
ded fragment. Note, that property 3 implies that ground clauses may contain only
constants as functional subterms.

A subclass (G) of guarded clauses having properties 1-3 is defined using clause
schemes in Table 4.2. Here ĉ is a bounded constant parameter that ranges over the

Table 4.2 A clause class for the guarded fragment without equality

(G):

Clause scheme Description

1 α̂[ĉ] a clause containing only constants;

2 ¬p̂[!x] ∨ α̂[f̂(x), x]

where
l := p|¬p; α := ∨{l}

a clause for which there is an enumeration of its variables x
(possibly with repetitions) such that there is a negative literal
- guard ¬p̂[!x], containing all variables from x, and such that
all functional terms of the clause have arguments x.

set of all constants; f̂ is a bounded functional parameter that ranges over the set of
all functional symbols (including constants); p is a predicate parameter that ranges
over the set of all predicate symbols and α is the correspondent clause parameter
for p (for the detail of these notations please refer to Appendix B).

Proposition 4.1.3. Let F ∈ GF be a guarded formula, n = |F | and w = width(F ).
Then CNF-transformation for F can be computed in polynomial time in n and
produces at most 2n clauses with at most 3 literals, which belong to (G) and have
at most w different variables.

Proof. As has been argued in 3.5.7, the structural transformation for the guarded
fragment can be computed in polynomial time in n and produces at most n elemen-
tary conjuncts. Each conjunct gives rise to at most 2 clauses (see Table 4.1). Each
of these clauses consists of at most 3 literals. It remains to notice that the number
of different variables in each clause is bounded by the maximal number of different
variables in every guard of F which is at most w. 22



4.1. Decision Procedures Based on Ordered Resolution 105

Saturation of the clause set

Now we show that the clause class (G) in Table 4.2 is closed under inferences of
ordered resolution with selection OR≻

Sel
(see System 3) with eager elimination of

duplicate literals and tautology deletion, based on a quite general class of orderings.
We need to restrict an order ≻ on literals in such a way, that eligible literals (i.e.,
the literals on which clauses are resolved) are of the maximal depth and contain
all variables of the clause (recall two basic conditions for decidability by resolution
formulated in the beginning of this chapter). Hopefully, we can achieve both of
these goals for clauses from (G) using liftable orders.

Definition 4.1.4. We say that an ordering ≻ on ground literals is simple iff
l(s1,.., sn) ≻ k(t1,.., tm) whenever there exists i with 1 ≤ i ≤ n such that si ⊲ tj for
all j with 1 ≤ j ≤ m. 33

Simple orders do exist. For example, any LPO order ≻lpo (see Definition 3.1.5)
based on a precedence≫, in which f ≫ a for any non-constant functional symbol f
and a predicate symbol a, has the above property. However, is not possible to find
a simple KBO ordering (see Example 3.1.8). Within this section we assume that
OR≻

Sel is parametrized by some simple order ≻.
Having a simple order ≻, we now can be sure that a maximal literal in a func-

tional clause form (G) is also functional. Indeed, it is not possible that k[x] ≻
l[!f̂(x), x] (this notation means that the last literal contains an argument f(x)),
since x ⊳ f(x) for every x ∈ x. Thus, maximal literals in functional clauses from
Table 4.2 are of the maximal depth and contain all variables of the clause.

Non-functional clauses from (G) have form ¬p̂[!x] ∨ α̂[x]. Unfortunately there
is no guarantee that for a clause of this form, a maximal literal contains all of its
variables. Luckily, all such clauses must have a guard, which is a negative literal that
contains all variables of a clause. So, a selection function can be used for making
the guard literal eligible. We define a selection function Sel for clauses of form
¬p̂[!x] ∨ α̂[x], to select a guard ¬p̂[!x]♯ of the clause (selected literals are indicated
by symbol ♯).

The case analysis of possible OR≻
Sel inferences from clauses of (G) is summarised

in Table 4.3. We will use tables of this kind to demonstrate closure of different
clause classes under inferences of appropriate calculi. Below we explain in details
the meaning of such a table.

Table 4.3 is organized as follows. The clause schemes from (G) are split on
several other subschemes distinguished by different forms of eligible literals (on the
first level) and applicable inference rules (on the second level). This means that
first, possible types of maximal and selected literals are identified. For example, a
functional literal of form l[!f̂(x), x] might be maximal in a clause scheme 2, and



106 Saturation-Based Decision Procedures

Table 4.3 Possible inferences between clauses for the guarded fragment

1 α̂[ĉ]
1.1 α̂[ĉ] ∨ l[ĉ]
1.1.1 α̂[ĉ] ∨ p[ĉ]

⋆
:OR.1

1.1.2 α̂[ĉ] ∨¬p[ĉ] :OR.2

1.1.3 α̂[ĉ] ∨ p[ĉ] ∨ p[ĉ] : [[ OF ]]

OR[1.1.1; 1.1.2]: α̂[ĉ]:1
⊥ �

2 ¬p̂[!x] ∨ α̂[f̂(x), x]

2.1 ¬p̂[!x] ∨ α̂[f̂(x), x] ∨ l̂[!f̂(x), x]

2.1.1 ¬p̂[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬p̂[!x] ∨ α̂[f̂(x), x] ∨¬p[!f̂(x), x] :OR.2

2.1.3 ¬p̂[!x] ∨ α̂[f̂(x), x] ∨ p[f̂(x), x] ∨ p[!f̂(x), x] :OF

OR[2.1.1; 2.1.2]:¬p̂[!x] ∨ α̂[f̂(x), x] :2

OF[2.1.3] :¬p̂[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]:2

2.2 ¬p̂[!x]
♯∨ α̂[x] :Sel

2.2.1 ¬p̂[!x] ∨ α̂[x] :OR.2

OR[1.1.1; 2.2.1]: α̂[ĉ] :1

OR[2.1.1; 2.2.1]:¬p̂[!x] ∨ α̂[f̂(x), x]:2

this is what the clause scheme 2.1 represents. Or, otherwise a clause should be
non-functional, and therefore, the selected guard is an eligible literal. This case is
represented by the clause scheme 2.2, where we have marked the selected literal by
♯ and indicated the use of selection function to the right of the clause scheme.

Once the form of an eligible literal is identified, a clause scheme is matched
against possible premises of inference rules of the calculus (for OR≻

Sel see System 3
on p. 79). The case 2.1.1 represents a situation when a maximal literal is positive:
p[!f̂(x), x], thus a clause may be used as a first premise of the Ordered Resolution
rule. This is indicated by placing OR.1 to the right of this case. The schemes
2.1.2 and 2.1.3 represent cases when a clause can be used as a second premise of
the Ordered Resolution rule (OR.2), and, respectively, as a premise of the Ordered
Factoring rule (OF). A clause of form 2.2 can be only used as a second premise of
Ordered Resolution rule (OR.2), since the selected literal is negative. This is indicated
in the case 2.2.1. All cases should be exhaustive, i.e. all possibilities of applying
inference rules should be enumerated.

After all possibilities of using a clause in inference rules are identified, we enu-
merate inferences between them. A clause of form 2.1.1 can be resolved with a clause
of form 2.1.2. This is indicated in Table 4.3 in a line starting with OR[2.1.1; 2.1.2].
To characterize the result of this inference, consider the situation in more details.
We have two clauses of the following forms:

2.1.1 ¬p̂[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬p̂[!y] ∨ α̂[f̂(y), y] ∨¬p[!f̂(y), y] :OR.2

which is the same as in Table 4.3, except that we have renamed the variables of
clauses apart. Let σ = mgu(p[!f̂(x), x], p[!f̂(y), y]) be a unifier used in the inference
OR[2.1.1; 2.1.2]. Since the unified expressions are covering and of equal depth (both
contain at least one functional term), by Lemma 3.1.14 (see 3.1.4), σ is atomic for



4.1. Decision Procedures Based on Ordered Resolution 107

x and for y. Since there are no constants in expressions, Ran(σ) consists only of
variables. Moreover, σ maps x and y to the same sequence of variables, since a
functional subterm f(x) of the first expression must be unified with a functional
subterm f(y) of the second expressions (it cannot be unified with a variable, since
σ is atomic). So, σ = {x/z, y/z} for some sequence of variables z, and the result of
the inference is:

OR[2.1.1; 2.1.2]:¬p̂[!z] ∨ α̂[f̂(z), z] ∨ ¬p̂[!z] ∨ α̂[f̂(z), z]

⇒ :¬p̂[!x] ∨ α̂[f̂(x), x] :2

One can see that the conclusion of the inference OR[2.1.1; 2.1.2] is always an instance
of scheme 2, which is indicated to the right of the result. Similar analysis allows one
to find results for other inferences using Lemma 3.1.14.

The inference rule for the case 1.1.3 is enclosed in brackets: [[ OF ]], since the
application of Ordered Factoring rule is redundant: if two literals of a ground clause
can be factored, then they are equal and the clause is simplified using Elimination
of Duplicate Literals, which is always applied eagerly (see subsection 3.5.6). We will
indicate redundant clauses and redundant rules by enclosing them in brackets [[ .. ]].
The case ⊥ corresponds to the empty clause �.

The case analysis in Table 4.3 is complete which demonstrates that the clause
class (G) is closed under inferences of OR≻

Sel. This proves the following lemma:

Lemma 4.1.5 (Closure of (G)). Let N be a set of clauses of form (G) and N ′ be
obtained by saturation of N in OR≻

Sel based on a simple order ≻ and a selection
function Sel that selects a guard in non-functional guarded clauses. Let w be the
maximal number of different variables in a clause from N . Then all clauses from
N ′ belong to (G) and have at most w different variables.

Lemma 4.1.5 implies that the ordered resolution calculus OR≻
Sel

can be used as
a decision procedure for the clause class (G) and, through Proposition 4.1.3, for
the guarded fragment GF , since at most finitely many normalised clauses from (G)
can be generated for a given formula F ∈ GF (all these clauses are over a fixed
signature, have bounded number of variables and are without duplicate literals). In
Appendix C.1.1 we have proved that the running time t of our procedure can be
bounded by:

t ≤ 2n·2w·(log w+ǫ)

where n := |F | is the size of the input guarded formula F , w := width(F ) is its
width, and ǫ is some constant. A similar complexity bound: t ≤ 2n·2a·(log w+ǫ)

(where
a is the maximal arity of atoms), has been obtained by Grädel [1999] using model-
theoretic analysis. Our procedure yields an improved complexity bound over those
given in [de Nivelle & de Rijke, 2003]: t ≤ 22av ·(log n+ǫ)

(where v is the maximal



108 Saturation-Based Decision Procedures

variable depth of the initial guarded clauses), and in [Ganzinger & de Nivelle, 1999]:

t ≤ 22(a2+a+1)·(log n+ǫ)
, because we consider a much smaller clause class and estimate

complexity more precisely. As a consequence, the following theorem is shown:

Theorem 4.1.6. There is a resolution-based decision procedure for the guarded
fragment without equality GF that runs in 2EXPTIME. This procedure decides the
bounded-variable guarded fragment GFk in EXPTIME.

Note 4.1.7. Decidability of the guarded fragment has been demonstrated by An-
dréka et al. [1996] using mosaic techniques known from modal logics. An exponen-
tial space alternating decision procedure for guarded formulas has been described by
Grädel [1999] yielding 2EXPTIME upper complexity bound for GF . He also noted
that a specialisation of this procedure for GFk has a lower complexity, namely EXP-
TIME. This paper also gives a matching upper complexity bound for GF by reduc-
tion from alternating Turing machines with exponential tape, establishing thereby
its 2EXPTIME-completes.

The first resolution-based decision procedure for the guarded fragment has been
proposed in [de Nivelle, 1998], which later has been extended for equality [Ganzinger
& de Nivelle, 1999]. In the last paper, complexity of the decision procedure is
measured concluding that it is theoretically optimal. Similar complexity estimations
have been carried out later in [de Nivelle & de Rijke, 2003], where the procedure was
also extended for the loosely guarded fragment. Hence the first part of Theorem 4.1.6
should be attributed to these papers. Specialisation of these decision procedures
for formulas with bounded number of variables has not been considered in these
papers, although EXPTIME upper bound follows from provided calculations for
guarded formulas whose predicate and functional symbols have bounded arity – see
the estimations in Appendix C.1.1. 33

4.1.2 Deciding the Two-Variable Fragment without Equality

In this section we describe a resolution-based procedure for the two-variable frag-
ment of first-order logic by essentially repeating the same steps as for the guarded
fragment.

Although decidability of the two-variable fragment by resolution has been explic-
itly stated in [de Nivelle, 2000b], this fact follows from previous works on resolution
decision procedures, since, in particular, clauses resulted from CNF-transformation
of two-variable formulas in Scott normal form (3.16) (see p. 74), fall into classes
S+, E+, and Maslov’s class K, for which resolution based decision procedures were
studied in [Tammet, 1990; Fermüller et al., 1993; de Nivelle, 1995; Hustadt &
Schmidt, 1999]. Moreover, modal logic Km(∩,∪,¬, `), (a syntactical variants of



4.1. Decision Procedures Based on Ordered Resolution 109

ALC(−,⊓,¬), see subsection 3.2.2) is essentially the two-variable fragment, and is
also known to be decidable by resolution (see [Hustadt, 1999; Schmidt & Hustadt,
2003]).

In this section, we demonstrate how a resolution decision procedure for the two-
variable fragment can be obtained from its recursive definition by performing similar
steps as for the guarded fragment. We also show that this procedure has the best
known complexity.

A clause class for the two-variable fragment

We start with a recursive definition (3.15) for two-variable formulas that was given
in subsection 3.3.2:

FO2 ::= A[x, y] | ¬T1 | T1[x, y] ∧ T2[x, y] | ∀y.T1[x, y] . (4.5)

where A is an atom and T1, T2 are two-variable formulas. Negation normal form
transformation (3.25) applied to FO2 yields a fragment defined by:

[FO2]nnf ::= A[x, y] | ¬A[x, y] | T1[x, y] ∧∨ T2[x, y] | Qy.T1[x, y] . (4.6)

(recall that ∧∨ denotes conjunction or disjunction and Q stands for either the existen-
tial or the universal quantifier). A function computing the structural transformation
for formulas from [FO2]nnf , is obtained according to the general procedure (3.9):
[T ]strt := PT ∧ [T ]def

t , where:

[T ]def
t := [A[x, y]]def

t = ∀xy.(PT→A[x, y]) |

[¬A[x, y]]def
t = ∀xy.(PT→¬A[x, y]) |

[T1[x, y] ∧∨ T2[x, y]]def
t = ∀xy.(PT→PT1

∧∨ PT2
) ∧ [T1]

def
t ∧ [T2]

def
t |

[Qy.T1[x, y]]def
t = ∀x.(PT→Qy.PT1

) ∧ [T1]
def
t .

(4.7)

Where PT = pT [x, y] is, as usual, a definitional predicate for T = T [x, y]. By applying
clausification, we obtain clause types (1) – (7) listed in Table 4.4. It is easy to see
that clauses of these types satisfy the following properties:

1. Ground clauses contain at most two different constants;

2. Non-functional clauses contain at most two different variables;

3. Functional clauses contain at most one variable and (possibly several occurrence
of) at most one shallow functional term.

These properties motivate a clause class (T) for two-variable fragment defined in
Table 4.5. This clause class is given by three clause schemes. The first clause scheme



110 Saturation-Based Decision Procedures

Table 4.4 Types of clauses resulted form CNF transformation for two-variable
formulas

Type of a conjunct 99K [·]sk, [·]cnf 99K Type of a clause (Nr)

∃xy.pF [x, y] 99K pF [c1, c2] (1)

∀xy.(pF [x, y]→a[x, y]) 99K ¬pF [x, y] ∨ a[x, y] (2)

∀xy.(pF [x, y]→¬a[x, y]) 99K ¬pF [x, y] ∨ ¬a[x, y] (3)

∀xy.(pF [x, y]→pF1
[x, y] ∧∨ pF2

[x, y]) 99K ¬pF [x, y] ∨ pFi
[x, y], i = 1, 2 (4)

¬pF [x, y] ∨ pF1
[x, y] ∨ pF2

[x, y] (5)

∀xy.[pF [x]→∀y.(pF1
[x, y])] 99K ¬pF [x] ∨ pF1

[x, y] (6)

∀xy.[pF [x]→∃y.(pF1
[x, y])] 99K ¬pF [x] ∨ pF1

[x, fsk(x)] (7)

Table 4.5 A clause class for the two-variable fragment without equality

(T):

Clause scheme Description

1 α̂[c1, c2] a ground clause containing only fixed constants c1 or c2;

2 α̂[x, y] a clause over two variables (without functional symbols);

3 α̂[f(x), x] a clause over one variable and one (fixed) functional term.

where l := p|¬p; α := ∨{l}

represents ground clauses which contain two fixed constants c1 and c2. The second
clause scheme represents non-functional clauses that contain at most two variables.
The last clause scheme represents clauses that may contain one functional symbol
f(x) and at most one variable.

The following analog of Proposition 4.1.3 is easy to prove for the two-variable
fragment:

Proposition 4.1.8. Let T ∈ FO2 be a two-variable formula and n = |T |. Then
CNF-transformation for T can be computed in polynomial time in n and produces
at most 2n clauses with at most 3 literals, which belong to (T).

Saturation of the clause set

Now we have to come up with a saturation strategy which demonstrates that clause
class (T) is closed under inference rules of the ordered resolution calculus. The
important difference between the clause classes (T) and (G) is that clauses from
(T) are no longer guaranteed to have a guard. Therefore, it is not always possible to
use the selection function Sel to force resolution on literals that contain all variables
of a clause. For example, having two clauses of form 1 from (T):

1. ¬a(x) ∨ b(x, y)......... 2. ¬b(x, x) ∨ b(x, y)......... (4.8)



4.1. Decision Procedures Based on Ordered Resolution 111

one would like to make the last literals in both these clauses eligible to prevent
growth of variables in inferences. For the first clause, we can make the last literal
maximal by using an ordering ≻ that respects arities of predicate symbols:

Definition 4.1.9. We say that an ordering ≻ on ground literals is compatible with
arities of predicate sybmols (or short CAP) iff l(s1,.., sn) ≻ k(t1,.., tm) whenever
max≻(s1,.., sn) = max≻(t1,.., tm) and n > m. 33

The class of simple LPO-orderings described after Definition 4.1.4, can be easily
restricted to fulfil the property given in Definition 4.1.9, by requiring the symbols
with greater arity to be greater in precedence: p≫ q if ar(p) > ar(q). For the
purpose of deciding the two-variable fragment, we use the ordered resolution calculus
OR≻ (without selection) parametrized with a simple CAP-ordering ≻.

Unfortunately the first literal of the second clause from (4.8) is always maximal
for every admissible ordering ≻. Indeed, in instance ¬b(c, c) ∨ b(c, c) of this clause,
the first literal is maximal because of condition (R1) of admissible orderings (see
Definition 3.5.1 on p. 79).

Several techniques have been proposed in literature to avoid this problem. This
problem can be avoided by using non-liftable orders, similar to (4.1) considered in
subsection 4.1.1, and employing resolution strategies that decide classes S+ and E+

[Tammet, 1990; Fermüller et al., 1993; de Nivelle, 1995, 2000b,a].
Another possibility is to use a refinement of the ordered resolution called the

lock resolution [Boyer, 1971] (see also [Bachmair & Ganzinger, 2001]). According
to this refinement, one should supply additional lock indexes for literals in clauses
(which are in our case the number of different variables in a literal), and use an
ordering defined on the indexed literals. This strategy for the two-variable fragment
has been described in [de Nivelle & Pratt-Hartmann, 2001]. The lock resolution is in
somewhat similar to non-liftable orders, although completeness for this refinement is
justified using renaming techniqes by a reduction to the classical ordered resolution
calculus [see Bachmair & Ganzinger, 2001].

Renaming techniques can be applied to clauses for the two-variable fragment
directly, which gives a third possibility of treating the problem above. For the
particular example (4.8), one can introduce a “name” p¬b(·,·)(x) for the first literal of
the second clause and split this clause into two clauses, in which maximal literals
now contain all variables of the clause:

2.1 p¬b(·,·)(x) ∨ b(x, y)⋆ 2.2 ¬p¬b(·,·)(x) ∨¬b(x, x)⋆ (4.9)

Renaming strategies of a similar sort have been employed in [Hustadt, 1999; Hustadt
& Schmidt, 1999] for deciding clause classes related to the two-variable fragment.

We may notice that literal renaming is reminiscent of rule Splitting through New
Predicate Symbol (3.23) discussed in 3.5.6. We can achieve the same effect as above



112 Saturation-Based Decision Procedures

by using an instance of this rule, which we call the Literal Projection rule: see
Figure 4.1. According to this rule, a clause is split into two clauses through a

Figure 4.1 The Literal Projection rule

Literal Projection

LP :
[[C ∨ l[x]

♯
]]

C ∨ pl[·](x)
¬pl[·](x) ∨ l[x]

where (i) l[x] is a non-unary literal and (ii) C has a
non-unary literal or a functional term, containing x.

new predicate pl[·](x) that is introduced for a literal l[x] containing duplicate occur-
rences of x. If our ordering ≻ is simple and compatible with arities of predicate
symbols, and if the premise of this rule contains some other non-unary or functional
literals with x (which are then greater than pl[·](x)), the premise of this rule be-
comes redundant after the inference is made, so it is a simplification rule extending
the signature. Note that new predicate symbols cannot be introduced for literals
that already contain those. So the extension of a signature by this rule is always
finite. Since Literal Projection is an optional rule, i.e., it does not affect refutational
completeness of the calculus, we can apply this rule “on demand”, i.e., when it is
needed in order to avoid potential problems.

Using the Literal Projection rule formulated in Figure 4.1 has an advantage over
non-liftable orders and lock resolution, in that we stay within our general framework
of saturation-based theorem proving, and, in particular, redundancy elimination
strategies can be applied as usual. Moreover, this rule is not intended to work only
as a preprocessor of the input clauses, like renaming in [Hustadt, 1999; Hustadt &
Schmidt, 1999], but can interleave with the saturation process. This is not required
for the two-variable fragment, where it can be shown that Literal Projection might
be applied only to the input clauses, but we will consider fragments, in which this
rule should be applied dynamically to newly generated clauses.

The case analysis for possible inferences between clauses from (T) is summarised
in Table 4.6. According to this strategy, for ground clauses of type 1, we first
exhaustively apply the Splitting rule (case 1.0), until clauses with only one literal
are obtained, which are then subject to further resolution inferences (case 1.1).

For convenience, we have separated clauses of type 2 that contain at most one
variable into case 4 (case 2.0). For the remaining ones the following cases are
possible: Case 2.1 is considered when the eligible literal of a clause contains both
variables x and y. In this case, the Ordered Resolution and the Ordered Factoring
rules can be applied. In case 2.2, the eligible literal contains one variable, but there



4.1. Decision Procedures Based on Ordered Resolution 113

Table 4.6 Possible inferences between clauses for the two-variable fragment

1 α̂[c1, c2]
⊥ �

1.0 [[ α̂[c1, c2] ∨ l[c1, c2] ]] :SP
1.1 l[cc1, cc2]

⋆
:OR

OR[1.1; 1.1]: �:⊥

2 α̂[x, y]
2.0 α̂[x] ⇒ 4

2.1 α̂[x, y] ∨ l̂[!x, !y]
2.1.1 α̂[x, y] ∨ l[!x, !y]⋆ :OR

2.1.3 α̂[x, y] ∨ p[x, y] ∨ p[x, y] :OF

OR[2.1.1; 1.1] : α̂[ĉ] :1
OR[2.1.1; 2.1.1]: α̂[x, y]:2
OF[2.1.3]: α̂[x, y] ∨ p[x, y]:2

2.2 [[ α̂[x, y] ∨ l[!x]
♯
]] :LP

LP[2.2]: α̂[x, y] ∨ pl[·](x):2
:¬pl[·](x) ∨ l[!x] :4

2.3 [[ α̂[x] ∨ α̂[y] ]] :SP
SP[2.3]: α̂[x] : 4 || α̂[y] : 4

3 α̂[f(x), x]
3.1 α̂[f(x), x] ∨ l[!f(x), x]
3.1.1 α̂[f(x), x] ∨ l[!f(x), x]

⋆
:OR

OR[2.1.1; 3.1.1]: α̂[f(x), x] ∨ α̂[f(x), x]:3
OR[3.1.1; 3.1.1]: α̂[f(x), x] :3

4 α̂[x]
4.1 α̂[x] ∨ l[!x]
4.1.1 α̂[x] ∨ l[!x]

⋆
:OR

OR[4.1.1; 1.1] : α̂[c1, c2] :1
OR[4.1.1; 2.1.1]: α̂[x] ∨ α̂[x] :4
OR[4.1.1; 3.1.1]: α̂[f(x)] ∨ α̂[f(x), x]:3
OR[4.1.1; 4.1.1]: α̂[x] :4

4.2 α̂ ⇒ 1

are literals that contain both variables. This is only possible if the eligible literal
contains duplicate occurrences of the variable, in which case we reduce the clause
by applying the Literal Projection rule. In the remaining case 2.3, every literal of a
clause contains at most one variable, but the clause contains two variables. In this
case the clause can be split into variable disjoint parts using the Splitting rule.

Clauses of type 3 are functional clauses with one variable. The case analysis of
inferences for these clauses is straightforward.

Clauses of type 4 contain at most one variable and no functional term. Hence ei-
ther the maximal literal of such a clause contains its variable (case 4.1), or otherwise,
there is no variable in this clause, and so the clause is ground (case 4.2).

The case analysis summarised in Table 4.6 proves the following lemma:

Lemma 4.1.10 (Closure of (T)). There is a strategy based on ordered resolution
that given a set N of clauses of form (T) computes its saturation N ′, which consists
of clauses of form (T) constructed over the signature of N extended possibly with
unary predicate symbols of form pL, where L = a[x], or L = ¬a[x] for some predicate
symbol a that occurs in N .

By carrying out the complexity calculations (see Appendix C.1.2) similar to those
for the guarded fragment, we obtain the following bound on the non-deterministic
running time t of our procedure:

t ≤ 2O(n)



114 Saturation-Based Decision Procedures

where n := |T | is the size of the input formula T ∈ FO2. As a consequence, the
following theorem holds:

Theorem 4.1.11. There is a resolution-based decision procedure for the two-variable
fragment without equality FO2 of NEXPTIME (optimal) complexity.

Note 4.1.12. As has been pointed out in subsection 3.3.2, Grädel, Kolaitis & Vardi
[1997] demonstrated that every two-variable formula with equality is satisfiable in a
model of size 2O(n) (the same bound on the model size for the case without equality
follows from a simpler estimation for the Gödel class given in [Börger et al., 1997]).
This means that both procedures—those based on enumeration of finite models and
based on saturation—have essentially the same worst-case complexity. However,
refinements of saturation-based procedures make our procedure more efficient for
the average case.

Although there are lots of works on resolution decision procedures that subsume
our decidability result (see the beginning of this section), to the best of our knowl-
edge, complexity of the resulted decision procedures have not been estimated. 33

4.1.3 Deciding the Monadic Fragments without Equality

In this section we demonstrate how our method can be extended for obtaining a
resolution-based decision procedure for the monadic fragment without equality M.

A first resolution-based strategy that decides the monadic fragmentM without
equality, has been proposed by Joyner Jr. [1976]. Later in [Bachmair et al., 1993b]
this procedure has been extended to the case without equality by employing the su-
perposition calculus with specially designed simplification rules. Both papers define
a special clause class for monadic formulas (called MON in the first paper and flat
clauses in the second one) and describe a saturation procedure which preserves the
clauses of this form. We demonstrate a relationship between monadic formulas and
flat clauses defined in [Bachmair et al., 1993b] by an example.

Definition 4.1.13. A clause C is flat iff
(i) all atoms from C are unary or equational (in the case with equality), and

(ii) there is a list v = v1,.., vn where vi with 1 ≤ i ≤ n is either a variable or
a constant, such that every functional subterm of C has form f(v1,.., vk), where
0 ≤ k ≤ n. 33

For example, the monadic formula (without equality)

∃u.∀x.([a(u) ∧ b(x)] ∨ ∃v.[p(v) ∧ ∀y.(q(y) ∧ ∃z.r(z))]) (4.10)



4.1. Decision Procedures Based on Ordered Resolution 115

is first put into a prenex normal form:

∃u.∀x.∃v.∀y.∃z.([a(u) ∧ b(x)] ∨ [p(v) ∧ q(y) ∧ r(z)])

and then is skolemaized in the outermost way (u→ c, v→ f1(x), z→ f2(x, y)) into
the formula

[a(c) ∧ b(x)] ∨ [p(f1(x)) ∧ q(y) ∧ r(f2(x, y))]

which yields the following flat clauses:

a(c) ∨ p(f1(x)), a(c) ∨ q(y), a(c) ∨ r(f2(x, y)),

b(x) ∨ p(f1(x)), b(x) ∨ q(y), b(x) ∨ r(f2(x, y)).

A disadvantage of this transformation to flat clauses which can be immediately
observed, is that it may result in exponentially many clauses in the size of the input
monadic formula (it is easy to construct a simple example that exhibits this be-
haviour similar to (3.27) given on p. 93). We describe an alternative procedure that
employs a structural transformation and avoids this exponential blowup. Moreover,
we show how to decide the full monadic class and prove that our decision procedure
has the best known complexity.

A clause class for the monadic fragment

As usual, we start from a recursive definition for the full monadic class given in
(3.13) on p. 72:

Mf ::= A[x] | M1[x] · {x/f(x)} | ¬M1 | M1 ∧M2 | ∀x.M1 . (4.11)

where A[x] is a unary atom and M1, M2 are monadic formulas. In fact, it does
not really matter whether atoms A[x] are unary, the main point is that they should
contain at most one variable. By applying the usual NNF-transformation to Mf

we obtain the fragment:

[Mf ]
nnf ::= (¬)A[x] | M1[x] · {x/f(x)} | M1 ∧∨M2 | Qx.M1 . (4.12)

A function computing the structural transformation is defined recursively over (4.12)
as usual, according to Figure 3.9 on p.94: [M ]strm := PM ∧ [M ]def

m , where:

[M ]def
t := [(¬)A[x]]def

t = ∀x.(PM→(¬)A[x]) |

[M1[x] · {x/f(x)}]def
t = ∀x.(PM→PM1

[x/f(x)]) ∧ [M1]
def
t |

[M1 ∧∨M2]
def
t = ∀x.(PM→PM1

∧∨ PM1
) ∧ [M1]

def
t ∧ [M1]

def
t |

[Qy.M1]
def
t = ∀x.(PM→Qy.PM1

) ∧ [M1]
def
t .

(4.13)



116 Saturation-Based Decision Procedures

However, here we introduce the definitional predicates PM′ for sumbformulas M ′ of
M in a slightly different way. W.l.o.g. we may assume that M is a sentence (i.e.,
it contains no free variables). Definitional predicates for subformulas of M that
match first two cases of (4.13) are introduced as usual over all free variables of the
defined formula. However, for the remaining two cases, we introduce definitional
predicates in the outermost way, i.e., variables of PM′ are all variables in scope
of which subformula M ′ occurs in M , and they are arranged according to the first
appearance of variables in M . For example, definitional predicates for formula (4.10)
are introduced as indicated below:

∃u.∀x.([

Pa(u)
︷︸︸︷

a(u)∧

Pb(x)
︷︸︸︷

b(x)]
︸ ︷︷ ︸

P1(u,x)

∨

P5(u,x)
︷ ︸︸ ︷

∃v.[

Pp(v)
︷︸︸︷

p(v)∧∀y.(

Pq(y)
︷︸︸︷

q(y)∧

P3(u,x,v,y)
︷ ︸︸ ︷

∃z.r(z))
︸ ︷︷ ︸

P2(u,x,v)

])

It is easy to justify such structural transformation in the same way as for the usual
structural transformation given in (3.9). Taking into account the form of the defi-
nitional predicates, from (4.13) we obtain clause types (1) – (7) listed in Table 4.7.
Note that variables of clauses occur in a fixed order in every literal. This will be the

Table 4.7 Types of clauses resulted form CNF transformation for monadic formulas

Type of a conjunct 99K [·]sk, [·]cnf 99K Type of a clause (Nr)

pM 99K pM (1)

∀x.(pM (x)→(¬)a[x]) 99K ¬pM(x) ∨ (¬)a[x] (2)

∀x.[pM(x)→pM1
(f(x))] 99K ¬pM(x) ∨ pM1

(f(x)) (3)

∀x.(pM(x)→pM1
(x) ∧∨ pM2

(x)) 99K ¬pM(x) ∨ pMi
(x), i = 1, 2 (4)

¬pM(x) ∨ pM1
(x) ∨ pM2

(x) (5)

∀x.[pM(x)→∀y.pM1
(x, y)] 99K ¬pM(x) ∨ pM1

(x, y) (6)

∀x.[pM(x)→∃y.pM1
(x, y)] 99K ¬pM(x) ∨ pM1

(x, fsk(x)) (7)

essential property used by our decision procedure. We define a clause class (M) for
monadic fragment in Table 4.8. Note how we have separated usage of definitional
predicates form monadic formulas (clause parameter αm) and unary definitional
predicate that originate from clause types (2) and (3) in Table 4.7.

Proposition 4.1.14. Let M ∈ M be a monadic formula and n = |M |. Then
CNF-transformation for M can be computed in polynomial time in n and produces
at most 2n clauses with at most 3 literals, which belong to (M).



4.1. Decision Procedures Based on Ordered Resolution 117

Table 4.8 A clause class for the monadic fragment without equality

(M):

Clause scheme Description

1 α̂[f(x), x], |x| ≤ 1 a clause with at most one variable and at most
one functional term containing all variables in a
fixed order

2 α̂m(x, y) ∨ α̂m(x) ∨ α̂1
m
[x, y] a clause containing only definitional predicates for

monadic formulas with arguments (x) and (x, y),
and unary definitional predicates whose argument
is either from x or is y

3 α̂m(x, f(x))∨α̂m(x)∨α̂1
m
[x, f(x)] the same as in the previous case, but instead of

variable y there is a functional term f(x)

4 α̂m(x) ∨ α̂[f(x)] ∨ α̂1
m

[x] a clause that contains definitional predicates with
arguments (x), predicates containing only fixed
functional term f(x), and unary definitional pred-
icates with an argument from x

where l := p|¬p; α := ∨{l}; lm := pm|¬pm; αm := ∨{lm}

Saturation of the clause set

For deciding the monadic class we employ the same resolution strategy as has been
applied for clauses of the two-variable fragment, except that we don’t need the
Literal Projection rule anymore. However, we still employ a simple CAP ordering ≻
in OR≻.

All possible resolution inferences between clauses from (T) are summarised in
Table 4.9. These inferences are quite straightforward and no “tricks” (like additional

Table 4.9 Possible inferences between clauses for the two-variable fragment

1 α̂[f(x), x], |x| ≤ 1

1.1 α̂[f(x), x]∨ l̂[!f(x), x] :OR

1.2 α̂[x] ∨ α̂[!x] :OR

OR[1.∗; 1.∗]: 1

3 α̂m(x, f(x))∨α̂m(x)∨α̂1
m

[x, f(x)]

3.1 α̂m(x, f(x))∨α̂m(x)∨α̂1
m

[x, f(x)]∨ l̂m(x, f(x)) :OR

3.2 α̂m(x) ∨ α̂1
m
[x, f(x)] :4

OR[1.∗, 3.1] : 1; OR[2.∗, 3.1] : 3; OR[3.1, 3.1] : 3:

2 α̂m(x, y)∨α̂m(x)∨α̂1
m
[x, y]

2.1 α̂m(x, y)∨α̂m(x)∨α̂1
m
[x, y]∨ l̂m(x, y) :OR

2.2 α̂m(x) ∨ α̂1
m
[x] ∨ l̂m(x) :OR

2.3 [[ α̂m(x) ∨ α̂1
m
[x] ∨ α̂1

m
[y] ]] :SP

OR[1.∗, 2.∗] : 1; OR[2.∗, 2.∗] : 2
SP[2.3]: α̂m[x] ∨ α̂1

m
[x] :2 || α̂1

m
[y] :1

4 α̂m(x) ∨ α̂[f(x)]∨α̂1
m
[x]

4.1 α̂m(x) ∨ α̂[f(x)]∨α̂1
m
[x]∨ l̂[!f(x)] :OR

4.2 α̂m(x) ∨ α̂1
m
[x] :2

OR[1.1, 4.1] : 1; OR[1.2, 4.1] : 4;
OR[2.1, 4.1] : 4; OR[2.2, 4.1] : 4;
OR[3.1, 4.1] : 1; OR[4.1, 4.1] : 4;

simplification rules) have been used, except for the Splitting rule in case 2.3.
For clauses described by scheme 1 there are two cases possible. Either there

exists a functional literal in this clause, and hence such a literal must be maximal



118 Saturation-Based Decision Procedures

(case 1.1), or, otherwise all literals are shallow , and hence the maximal literal must
contain all variables of the clause, since the number of variables is at most 1 (case
1.2).

For the clauses that correspond to scheme 2, the following cases are possible.
Either there exists a literal that contains all variables, and hence such a literal must
be maximal, since it is of the maximal arity (case 2.1 and case 2.2), or, otherwise,
the clause can be split into variable disjoint parts (case 2.3).

A clause that correspond to scheme 3, either contains a literal of form lm(x, f(x)),
and hence such a literal must be maximal (case 3.1), or, otherwise, the clause is
captured by scheme 4.

For clauses that are described by scheme 4, there is either a functional literal,
and hence such a literal must be maximal, since the functional term contains all
variables of a clause (case 4.1), or, otherwise, there are no functional terms in this
clause, and so the case is analogous to 2.2.

Note that no Ordered Factoring rule can be applied to clauses from (M): other-
wise a clause can be always simplified by Elimination of Duplicate Literals, which we
assume to be applied eagerly. The case analysis summarised in Table 4.9, proves
the following lemma:

Lemma 4.1.15 (Closure of (M)). There is a strategy based on ordered resolution
that given a set N of clauses of form (M), computes its saturation N ′, which consists
of clauses of form (M) constructed over the signature of N .

By analysing the complexity of the procedure given in Table 4.9, we obtain that

the non-deterministic running time of our procedure is bounded by: t ≤ 2O(n) ,
where n := |M | is the size of the input formula M ∈ Mf (see Appendix C.1.2 for
the details). Hence the following result is proven:

Theorem 4.1.16. There is a resolution-based decision procedure for the full mona-
dic class Mf of NEXPTIME (optimal) complexity.

4.2 Combinations of Decidable Fragments

Combination of algorithms, and in particular decision procedures, is nowadays one
of the central topic in automated deduction. For decidable fragments of first-order
logic, the problem can be formulated as follows: find a method of forming a new
decidable fragment from known ones so that their respective decision procedures can
be reused for the combined fragment. The purpose of combining decidable fragments
is quite obvious: to identify more expressible subclasses of first-order formulas and
design decision procedures for them in a modular way.



4.2. Combinations of Decidable Fragments 119

There is not much known about combination of decidable fragments of first-order
logic. Some (mostly undecidability) results about Boolean combinations of prefix-
vocabulary classes are mentioned in [Börger et al., 1997]. One of the known decidable
classes obtained in this way is the Scott class consisting of Boolean combinations of
formulas with quantifier prefixes ∀∀ and ∀∃ [see Grädel, Kolaitis & Vardi, 1997]. We
have implicitly considered this class in connection with the two-variable fragment
(see subsection 3.3.2).

In this thesis we introduce a different type of combination of first-order frag-
ments, motivated by what one usually observes in logical formalisms like modal
logics, description logics, dynamic logics, etc.. These logics are usually defined re-
cursively using different types of constructors (see section 3.2). Extensions and
combinations of these logics are formed by combining their constructors—this is
especially emphasised for description logics: see Table 3.2 on p.67.

Recursive definitions for the two-variable, guarded and monadic fragments that
have been considered in this chapter, can be seen as collections of “safe” constructors
for first-order formulas. Decidability of these fragments is achieved by quite orthog-
onal means: (i) in the guarded fragment, the form of quantification is restricted; (ii)
in the two-variable fragment, only formulas containing two free variables are con-
structed, whereas (iii) in the monadic fragment, only unary predicate symbols are
allowed. At this point the reader should agree that it is reasonable to ask ourselves,
what if we join these constructors in one recursive definition?

For example we may consider a fragment that is defined by:

GF|FO2 ::= A | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] | ∀y.F1[x, y] . (4.14)

where we took a recursive definition (3.17) for the guarded fragment augmented
with a constructor from the recursive definition for the two-variable fragment (3.15),
which is not subsumed by other constructors. Obviously, we obtain a fragment that
is more expressive than both the guarded-fragment and the two-variable fragment.
Note an important difference between GF|FO2 and fragment GF2: the last is an
intersection of the two-variable and the guarded fragments, whereas the first is a
fragment that contains their union.

We will call such a combination of fragments, a structural combination, meaning
that the structures of underlying fragments have been combined. It is rather natural
to consider structural combinations of fragment in order to study decidability of
expressive logical formalisms through the first-order logic.

However, it is not very clear how to define a structural combination with the
monadic fragment, in particular, how to apply the restrictions on the arity of predi-
cate symbols used in this fragment: obviously, if we restrict the arity of all predicate
symbols, we simply obtain the monadic fragment. In order to understand the situa-
tion better, and to come up with a formal definition for the structural combination



120 Saturation-Based Decision Procedures

of fragments, consider the formula:

∀x.[Nat(x)→Nat(s(x))]
︸ ︷︷ ︸

∈Mf

∧∀xy.[Nat(x) ∧ Nat(y)→

Summable(x,y)∈GF
︷ ︸︸ ︷

∃z.(Sum(x, y, z) ∧ Nat(z))]
︸ ︷︷ ︸

∈GF|FO2

(4.15)
This formula expresses some properties of natural numbers: existing of a successor
element and a sum of natural numbers. It is easy to see that the first conjunct in
this formula is a formula from the full monadic fragment. In the second conjunct
we find a subformula ∃z.(Sum(x, y, z)∧Nat(z)) which is from the guarded fragment.
If we now treat this subformula as a new binary atom Summable(x, y) with two
variables, we can easily see that the second conjunct forms a two-variable formula
in this notation. Hence, the second conjunct belongs to the structural combination
of the guarded fragment and the two-variable fragment GF|FO2 defined in (4.14).
So the structural combination of fragments can be described operationally as follows:
(i) define a formula in one fragment, (ii) pass this formula like a new atom to the
other fragment, and (iii) repeat again from step (i).

Formally, given recursive definitions for first-order fragments:

F1 ::= B1
1 [A1,..] | · · · | B1

b1
[A1,..] | R1

1[F
1
1 ,..] | · · · | R1

r1
[F 1

1 ,..] .

· · · · · · · · ·
Fk ::= Bk

1 [A1,..] | · · · | Bk
bk

[A1,..] | Rk
1 [F

k
1 ,..] | · · · | Rk

rk
[F k

1 ,..] .
(4.16)

where for every i with 1 ≤ i ≤ k, elements Bi
j[A1,..] with 1 ≤ j ≤ bi, correspond

to base constructors defined for atoms, and elements Ri
j [F

i
1,..] with 1 ≤ j ≤ ri,

correspond to recursive constructors for already defined formulas F j
1 ∈ Fj, etc..

Now a structural combination F1| · · · |Fk of fragments F1, . . . , Fk is defined by
joining the definitions from (4.16) as follows:

F1| · · · |Fk ::= A | F 1
1 | · · · | F

k
1 .

F ′
1 ::= B1

1 [P1,..] | · · · | B1
b1

[P1,..] | R1
1[F

1
1 ,..] | · · · | R1

r1
[F 1

1 ,..] .

· · · · · · · · ·
F ′

k ::= Bk
1 [P1,..] | · · · | B

k
bk

[P1,..] | R
k
1[F

k
1 ,..] | · · · | Rk

rk
[F k

1 ,..] .

(4.17)

where A is any atom, F i
1,.. ∈ F

′
i, 1 ≤ i ≤ k, and P1,.. ∈ F1| · · · |Fk.

For example, a recursive combination of the guarded fragment, two-variable frag-
ments and the full monadic class is defined using (3.17), (3.15) and (3.11) according



4.2. Combinations of Decidable Fragments 121

to (4.17) as follows:

GF|FO2|Mf ::= A | F1 | T1 | M1 .

GF ′ ::= P | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] .

FO2′ ::= P [x, y] | ¬T1 | T1[x, y] ∧ T2[x, y] | ∀y.T1[x, y] .

Mf
′ ::= P [x] | M1[x] · {x/f(x)} | ¬M1 | M1 ∧M2 | ∀x.M1 .

(4.18)

where F1, F2 ∈ GF
′, T1, T2 ∈ FO

2′, M1, M2 ∈ Mf
′ and P ∈ GF|FO2|Mf . Note

that the atom G in the guard position has not been replaced by P , since this
constructor does not correspond to the base case. This indicates an important
point, namely that a structural combination is defined for definitions of fragments
rather than their sets of formulas. Since same fragments can be possibly represented
by different recursive definitions, their combinations may vary considerably.

Since the combined fragments inherit certain features of their components, it is
reasonable to expect that their good computational properties are also preserved,
in particular decidability and complexity. As will be demonstrated below, this is
indeed the case for many combinations of the fragments that we have considered.
Moreover, the resolution-based decision procedures for these fragments described in
the previous sections, can be reused for their combinations.

4.2.1 Deciding the Combination of Guarded and Two-Variable

Fragments

In this section we demonstrate how to obtain a resolution decision procedure for the
structural combination GF|FO2 of the guarded and two-variable fragments from
those for their components.

We start from a recursive definition for GF|FO2, which is obtained according to
the general scheme (4.16):

GF|FO2 ::= A | F1 | T1 .

GF ′ ::= P | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] .

FO2′ ::= P [x, y] | ¬T1 | T1[x, y] ∧ T2[x, y] | ∀y.T1[x, y] .

(4.19)

It is easy to show that this fragment defines the same set of formulas as (4.14),
however we will rather work with definition (4.19) in order to demonstrate generality
of our approach.

A nice property of definition (4.19), as well as combinational scheme (4.16)
in general, is that it gives a possibility to reuse all steps carried out for CNF-
transformation for first-order formulas. In particular, it is easy to obtain the result



122 Saturation-Based Decision Procedures

of NNF-transformation for combination of fragments having their NNF-definitions
as follows:

[GF|FO2]nnf ::= (¬)A | F1 | T1 .

[GF ′]nnf ::= P | F1 ∧∨ F2 | ∀y.[G→F1] | ∃y.[G ∧ F1] .

[FO2′]nnf ::= P [x, y] | T1[x, y] ∧∨ T2[x, y] | Qy.T1[x, y] .

(4.20)

The structural transformation for the combined fragment can be also obtained by
joining those for their respective parts: [P ]strgt := PP ∧ [P ]def

gt , where:

[P ]def
gt := [(¬)A]def

gt = ∀x.(PF→(¬)A) |

[F1]
def
gt = [F1]

def
g |

[T1]
def
gt = [T1]

def
t .

[F ]def
g := [F1 ∧∨ F2]

def
g = ∀x.(PF→PF1

∧∨ PF2
) ∧ [F1]

def
g ∧ [F2]

def
g |

[∀x.[G→F1]]
def
g = ∀x.(PF→∀y.(G→PF1

)) ∧ [F1]
def
g |

[∃x.[G ∧ F1]]
def
g = ∀x.(PF→∃y.(G ∧ PF1

)) ∧ [F1]
def
g |

[P ]def
g = [P ]def

gt .

[T ]def
t := [T1[x, y] ∧∨ T2[x, y]]def

t = ∀xy.(PT→PT1
∧∨ PT2

) ∧ [T1]
def
t ∧ [T2]

def
t |

[Qy.T1[x, y]]def
t = ∀x.(PT→Qy.PT1

) ∧ [T1]
def
t |

[P ]def
t = [P ]def

gt .

Here we have pushed the base case for P down in order to avoid possible loops
(recall, that the definition for the last case is fired only when all previous cases do
not apply). Well, it remains to add nothing but to say that the CNF-transformation
for the resulted formulas will map them to a clause class that is a union of clause
classes (G) and (T) defined for the guarded and two-variable formulas in previous
sections.

Saturation of the clause set

In order to decide the union of clause classes (G) and (T), we should consider all
possible inferences between clauses from these classes. However, since all inferences
within each class have been already considered and proven to preserve them, it suf-
fices to enumerate inferences that involve only clauses from different clause classes.3

And indeed, it is possible to show that all inferences between (G) and (T) belong
to either from these fragments: see Table 4.10. This proves the following lemma:

3It is important that our saturation strategies are compatible, i.e., there are common parameters
that can be used for both saturation procedures. For our procedures this is indeed the case, where



4.2. Combinations of Decidable Fragments 123

Table 4.10 Possible inferences between the clauses of the guarded and two-variable
fragments

T.1:⇒ :G.1
OR[G.1.1.1; T.2.1.1]: α̂[ĉ] :G.1
OR[T.2.1.1; G.1.1.2]: α̂[ĉ] :G.1
OR[G.1.1.1; T.4.1.1]: α̂[ĉ] :G.1
OR[T.4.1.1; G.1.1.2]: α̂[ĉ] :G.1

OR[G.2.1.1; T.2.1.1]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2

OR[T.2.1.1; G.2.1.2]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2

OR[G.2.1.1; T.3.1.1]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2

OR[T.3.1.1; G.2.1.2]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2

OR[G.2.1.1; T.4.1.1]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2

OR[T.4.1.1; G.2.1.2]:¬p̂[!x] ∨ α̂[f̂(x), x]:G.2
OR[T.2.1.1; G.2.2.1]: α̂[x, y] :T.2
OR[T.3.1.1; G.2.2.1]: α̂[f(x), x] :T.3
OR[T.4.1.1; G.2.2.1]: α̂[x] :T.4

Lemma 4.2.1 (Closure of (G)∪(T)). There is a strategy based on ordered resolution
that given a set N of clauses from (G) ∪ (T), computes its saturation N ′, which
consists of clauses from (G) ∪ (T) constructed over the signature of N extended
possibly with unary predicate symbols of form pL, where L = a[x], or L = ¬a[x] for
some predicate symbol a that occurs in N .

Complexity

Lemma 4.2.1 implies that the structural combination GF|FO2 of the guarded and
two-variable fragments, is decidable by resolution. Now we are curious about the
complexity of this decision procedure. All calculations and remarks used to estimate
the number of clauses generated for the guarded and two variable fragments are valid
in our case as well, which gives us a complexity bound:

c, t = 2n·2w ·(log w+ǫ)
+ 2O(n) = 2n·2w·(log w+ǫ)

(4.21)

Since our saturation procedure is non-deterministic, this immediatly implies that
GF|FO2 can be decided in 2NEXPTIME and its bounded-variable variant GFk|FO2

can be decided in NEXPTIME. However, it is possible to refine the first bound after
an additional observation:

Observation 1: The Splitting rule is applied only on clauses from (T). The max-
imal number of such clauses is 2O(n).

Well, how does this observation help us to obtain a better complexity for GF|FO2?
Our non-deterministic saturation procedure for GF|FO2 can be seen as a compu-
tation tree, where on each branch at most 2O(n) non-deterministic binary choices
are made. Every branch of this tree has the length at most 2n·2w·(log w+ǫ)

, so, the

we can use OR≻
Sel parametrised with a simple CAP-ordering and a selection function for the

guarded clauses as has been defined before



124 Saturation-Based Decision Procedures

size of this binary tree is at most 22O(n)
· 2n·2w ·(log w+ǫ)

= 22O(n)+w·(log w+ǫ)
. Hence,

a saturation procedure with backtracking decides satisfiability of GF|FO2 in time

t = 22O(n)+w·(log w+ǫ)
.

Theorem 4.2.2. There is a resolution-based decision procedure for fragments GF|FO2

and GFk|FO2 with complexity 2EXPTIME and NEXPTIME respectively.

Note that the results stated in Theorem 4.2.2 are optimal, since the lower bounds
hold already for the fragments GF and FO2 which are contained in GF|FO2 and
GFk|FO2 respectively.

4.2.2 Deciding Combinations with the Monadic Fragment

In this section we demonstrate how to combine resolution decision procedures pre-
sented in the previous section, with the one for the monadic fragment described in
subsection 4.1.3. Unfortunately, these combinations are not very straightforward:
there are certain difficulties when combining structural transformations for the mo-
nadic fragment and the other fragments, since we introduce definitional predicates
for monadic formulas in the outermost way—not like it is done for the guarded and
two-variable fragments. Although it is possible to define the structural transforma-
tion in a consistent way w.r.t. the previous decision procedures, we prefer to give
an alternative solution that is easier to describe. The idea is to apply the structural
transformation in two steps: in step (1) subformulas that belong to different frag-
ments are separated, and in step (2) structural transformations are applied to each
separate part as usual.

Starting from recursive definition (4.18) for fragment GF|FO2|Mf , we first put
it into the negation normal form, as usual:

[GF|FO2|Mf ]
nnf ::= (¬)A | F1 | T1 | M1 .

[GF ′]nnf ::= P | F1 ∧∨ F2 | ∀y.[G→F1] | ∃y.[G ∧ F1] .

[FO2′]nnf ::= P [x, y] | T1[x, y] ∧∨ T2[x, y] | Qy.T1[x, y] .

[Mf
′]nnf ::= P [x] | M1[x] · {x/f(x)} | M1 ∧∨M2 | Qx.M1 .

(4.22)

Second, we introduce definitional predicates for subformulas that correspond to
cases P of recursive definitions—those subformulas that where “exchanged as atoms”
during construction of the combined formula. After this step, our formula should
have form:

P0 ∧
∧

i∈Ig

∀x.(Pi
g
[x]→Fi[x]) ∧

∧

i∈It

∀x.(Pi
t
[x]→Ti[x]) ∧

∧

i∈Im

∀x.(Pi
n
[x]→Mi[x]) (4.23)



4.2. Combinations of Decidable Fragments 125

where Pi
g
, Pi

t
, Pi

m
are definitional predicates introduced respectively for guarded sub-

formulas, two-variable subformulas and monadic subformulas, P0 is some (of these)
definitional predicate, and Fi ∈ GF , Tj ∈ FO

2, Mk ∈Mf are respectively guarded,
two-variable and monadic formulas. For example, (4.15) is translated to:

pm ∧ (pm→

∈Mf

︷ ︸︸ ︷

∀x.[Nat(x)→Nat(s(x))] ∧ pt)∧

∧ (pt→∀xy.[Nat(x) ∧ Nat(y)→pg(x, y)]
︸ ︷︷ ︸

∈FO2

)∧

∧ ∀xy.[pg(x, y)→∃z.(Sum(x, y, z) ∧ Nat(z))
︸ ︷︷ ︸

∈GF

]

After this transformation, each individual conjunct is translated to clauses as usual
(according to structural transformation for every fragment). In the end, a set of
clauses from the union of clause classes (G), (T) and (M) is obtained. By computing
all cross-inferences between clause class (M) and clause classes (G) and (T), we
conclude that every pair of these classes is closed under our resolution strategy:
see Table 4.11. All inferences in this table are fairly straightforward, except that a

Table 4.11 Possible inferences between the clauses from (M) and from (G) ∪ (T)

OR[M.1.1, G.2.1.∗]:M.2
OR[M.1.1; G.2.2.1]:M.1
OR[M.1.2; G.1.1.∗]:G.1
OR[M.1.2; G.2.1.∗]:G.2
OR[M.1.2; G.2.2.1]:M.1
OR[M.2.1; G.1.1.∗]:G.1

OR[M.2.1; G.2.1.∗]:G.2
OR[M.2.2; G.1.1.∗]:G.1
OR[M.2.2; G.2.1.∗]:G.2
OR[M.3.1; G.2.1.∗]:G.2
OR[M.4.1; G.2.1.∗]:G.2
OR[M.4.1; G.2.2.1]:G.4

T.3, T.4 ⇔ M.1
OR[M.2.1, T.1.1] :T.1
OR[M.2.1, T.2.1.1]:T.2
OR[M.2.2, T.1.1] :T.1

OR[M.2.2, T.2.1.1]:T.2
OR[M.3.1, T.2.1.1]:M.1
OR[M.4.1, T.2.1.1]:M.4

couple of the following invariants are additionally used:

Invariant 1: The guard literal in clauses of form 2 from (G) cannot be a defini-
tional predicate Pm for monadic formulas. Hence resolution inferences between
clauses of form 2, 3 and 4 from (M) and clauses of form 2.2.1 from (G) are not
possible.

Invariant 2: Clauses from (T) cannot contain definitional predicates Pm with
arity greater than 2. Hence a resolution inference between clauses M.2.1 and
T.2.1.1 is possible only if the first clause contains two variables, and hence the
result of this inference is a clause of form 1 from (M).

The case analysis summarised in Table 4.11 together with calculations analogous to
those given in the previous section implies the following result:



126 Saturation-Based Decision Procedures

Theorem 4.2.3. There is a resolution-based decision procedures for the following
fragments of the indicated complexities: GF|FO2|M : 2EXPTIME, GFk|FO2|M :
NEXPTIME. These decision procedures are theoretically optimal, since the lower
bounds hold already for subfragments GF and FO2 respectively.

4.2.3 Undecidability Results

In the previous section we have demonstrated how resolution-based decision proce-
dures for structural combinations of the guarded, two-variable and monadic frag-
ments of first-order logic, can be obtained in a modular way from those for their
parts. It is known that all these fragments remain decidable also with equality.
Therefore, a natural question is: do combinations of these fragments remain de-
cidable when equality is allowed? Unfortunately, the answer is negative for al-
most all combinations of guarded, two-variable and monadic fragments with equal-
ity. More precisely, we show that already combinations GF3

≃|FO
2, GF3|FO2

≃ and
GF3|FO2|M≃ are undecidable.

Our undecidability proof is by a reduction from the satisfiability problem for the
Goldfarb class (see subsection 3.3.1). For any sentence F ′ = ∀xy.∃z.F from the
Goldfarb class (where F is quantifier-free), we construct the formula:

FGT := ∀xy.p1(x, y)
︸ ︷︷ ︸

∈FO2

∧ ∀xy.[p1(x, y)→∃z.p2(x, y, z)] ∧ ∀xyz.[p2(x, y, z)→F ]
︸ ︷︷ ︸

∈GF3

Let F−
GT be obtained from FGT by replacing every occurrence of equality with a fresh

binary atom E(x, y) and let FE := ∀xy.[E(x, y) ↔ x ≃ y] be the “definition” for
E(x, y). Then:

(i) F ′ is (finitely) satisfiable

iff (ii) FGT is (finitely) satisfiable

iff (iii) F−
GT ∧ FE is (finitely) satisfiable.

Note, that F−
GT is a conjunction of formulas from FO2 and GF3 without equality.

Finally, observe that FE is expressible in every fragment GF2
≃, FO2

≃ and FO2|M≃:

∀xy.[E(x, y)↔ x ≃ y]
︸ ︷︷ ︸

∈FO2
≃

≡

≡ ∀xy.[E(x, y)→x ≃ y] ∧ ∀xy.[x ≃ y→E(x, y)]
︸ ︷︷ ︸

∈GF≃

≡

≡ ∀xy.[E(x, y)↔

∈M≃
︷ ︸︸ ︷
x ≃ y]

︸ ︷︷ ︸

∈FO2|M≃



4.3. Paramodulation-based Decision Procedures 127

Therefore, formula F−
GT∧FE is expressible in all fragments GF3

≃|FO
2, GF3|FO2

≃

and GF3|FO2|M≃. This translation F ′ ⇒ F−
GT ∧ FE provides a reduction from the

Goldfarb class.

Theorem 4.2.4. The fragments GF3
≃|FO

2, GF3|FO2
≃ and GF3|FO2|M≃ form

conservative reduction classes, i.e., they are undecidable for (finite) satisfiability.

4.3 Paramodulation-based Decision Procedures

In this section we formulate several paramodulation-based decision procedures for
extensions of the guarded fragment with equality . The main principle behind such
decision procedures remains the same, except that we need to consider additional
rules for equality.

A first saturation-based decision procedure for the guarded fragment with equal-
ity GF≃, has been formulated in [Ganzinger & de Nivelle, 1999]. Surprisingly, this
procedure is quite straightforward and does not require additional simplification
rules, in contrast, say, to the monadic class [see Bachmair et al., 1993b]. We analyse
the complexity of this decision procedure and derive essentially the same results as
for the guarded fragment without equality, which once again proves the robustness
of the guarded fragment w.r.t. its extensions.

Starting from a paramodulation-based decision procedure for GF≃ as a basis,
we consider further extensions of GF≃ with (1) constants, (2) functionality and
(3) counting . These extensions are of special interest, because they allow one to
express well-known constructors in description logics, namely nominals, functional
restrictions and (qualified) number restrictions. We will see that, although the
procedure for GF≃ can be fairly easily extended to the case with constants (however
with some complexity issues), the guarded fragment with functionality appears to
be more difficult and is in general undecidable [Grädel, 1999]. Yet we do not give
up at this point but consider a restricted version of this fragment, where functional
atoms may be used as guards only. This fragment is still appropriate for description
logics and can be decided using the ordered paramodulation calculus.

4.3.1 Guarded Fragment with Equality

Shortly after a resolution-based decision procedure for the guarded fragment without
equality has been formulated in [de Nivelle, 1998], Ganzinger & de Nivelle [1999] have
proposed an extension of this procedure for the case with equality. Their decision
procedure is based on the ordered paramodulation calculus, an extension of the
ordered resolution calculus with special inference rules for treatment of equality
(see subsection 3.5.3). However, the main principles behind the procedure remained



128 Saturation-Based Decision Procedures

the same: (i) formulate a clause class which contains CNF-translations for the
guarded formulas and (ii) provide a saturation strategy which respects this clause
class.

In this section we follow the main ideas of Ganzinger & de Nivelle [1999], and
extend a resolution-based decision procedure for GF given in subsection 4.1.1, to
the case with equality. We demonstrate, that our version of this procedure gives an
optimal (and actually the best known) complexity not only for the guarded fragment
GF≃, but also for its bounded-variable version GFk

≃.
A guarded fragment with equality GF≃ is defined by the same grammar (3.17)

as the one without equality, except that now all atoms (including guards) might be
equational atoms. It should not come as a big surprise that all CNF-transformation
steps described in subsection 4.1.1, remain valid for the case with equality. Hence,
a clause class for GF≃ is essentially the same as class (G) given in Table 4.2, except
that equational atoms are allowed in clauses. It turns out, that in order to capture
all inferences from the guarded clauses with equality, we need an additional clause
type described by clause scheme U in Table 4.12. The clauses of this type can be

Table 4.12 A clause class for the guarded fragment with equality

(G≃):

Clause scheme Description

1 α̂[ĉ] a ground clause whose functional terms are constants;

2 ¬â[!x] ∨ α̂[f̂(x), x] a guarded clause with a possibly equational guard;

U α̂[x] non-functional clauses with one variable.

where a := p| ≃; l := a|¬a; α := ∨{l}

seen as semantically guarded clauses with an implicit guard (x ≃ x): they originate
from guarded formulas of form ∀x.[(x ≃ x)→F [x]] which are equivalent to a simpler
formula ∀x.F [x]. Note how we distinguish non-equational atoms from atoms that
possibly contain equality: the first are denoted with a parameter p, whereas for the
last we use a parameter a.

In order to check satisfiability for a set of clauses from (G≃), we employ a general-
purpose ordered paramodulation calculus OP≻

Sel formulated in 3.5.3 (see System 4
for new inference rules). Any simple ordering (see Definition 4.1.4) that is admissible
for paramodulation, perfectly suits for our decision procedure (in particular, the one
formulated after this definition). The selection strategy remains unchanged, i.e., we
set a selection function Sel to select the guard literal in non-functional guarded
clauses. By applying this strategy to clauses from (G≃), we obtain inferences that
are summarised in Table 4.13. This table has essentially the same logical structure as
the one for the guarded fragment without equality (see Table 4.3), however we have
two additional inference rules to match the clauses from (G≃) with: the Ordered



4.3. Paramodulation-based Decision Procedures 129

Table 4.13 Possible inferences between clauses for the guarded fragment with equal-
ity

1 α̂[ĉ]
1.1 α̂[ĉ] ∨ l[ĉ]
1.1.1 α̂[ĉ] ∨ p[ĉ]

⋆
:OR.1

1.1.2 α̂[ĉ] ∨¬p[ĉ] :OR.2

1.1.3 α̂[ĉ] ∨ p[ĉ] ∨ p[ĉ] : [[ OF ]]

1.1.4 α̂[ĉ] ∨ ĉ ≃ ĉ⋆ :OP.1
1.1.5 α̂[c, ĉ] :OP.2
1.1.6 α̂[ĉ] ∨ c 6≃ c :RR

OR[1.1.1; 1.1.2] : α̂[ĉ] :1
OP[1.1.4;1.1.5]: α̂[ĉ] ∨ α̂[ĉ, ĉ]:1
RR[1.1.6] : α̂[ĉ] :1

⊥ �

U α̂[x]
U.1 α̂[x] ∨ l[!x]
U.1.1 α̂[x] ∨ p[!x]

⋆
:OR.1

U.1.2 α̂[x] ∨¬p[!x] :⇒ of form 2

U.1.3 α̂[x] ∨ x 6≃ x :RR
OR[U.1.1;1.1.2]: α̂[ĉ] ∨ α̂[ĉ]:1
RR[U.1.3] : α̂[x] :U

U.2 α̂ :⇒ of form 1

2 ¬â[!x] ∨ α̂[f̂(x), x]

2.1 ¬â[!x] ∨ α̂[f̂(x), x] ∨ l̂[!f̂(x), x]

2.1.1 ¬â[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬â[!x] ∨ α̂[f̂(x), x] ∨¬p[!f̂(x), x] :OR.2

2.1.3 ¬â[!x] ∨ α̂[f̂(x), x] ∨ p[f̂(x), x] ∨ p[!f̂(x), x] :OF

2.1.4 ¬â[!x] ∨ α̂[f̂(x), x] ∨ f(x) ≃ {f̂(x), x}
⋆

:OP.1

2.1.5 ¬â[!x] ∨ α̂[f(x), f̂(x), x] :OP.2

2.1.6 ¬â[!x] ∨ α̂[f̂(x), x] ∨ f(x) 6≃ f(x) :RR

OR[2.1.1; 2.1.2] :¬â[!x] ∨ α̂[f̂(x), x] :2

OF[2.1.3] :¬â[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]:2

OP[2.1.4;2.1.5]:¬â[!x] ∨ α̂[f̂(x), x] :2

RR[2.1.6] :¬â[!x] ∨ α̂[f̂(x), x] :2

OR[U.1.1; 2.1.2] : α̂[f̂(x), x] ∨ ¬â[!x] ∨ α̂[f̂(x), x] :2

2.2 ¬â[!x]
♯∨ α̂[x] :Sel

2.2.1 ¬â[!x] ∨ α̂[x] :OR.2

2.2.2 x1 6≃ x2 ∨ α̂[x1, x2] :RR
OR[1.1.1; 2.2.1] : α̂[ĉ] :1

OR[2.1.1; 2.2.1] :¬â[!x] ∨ α̂[f̂(x), x]:2
RR[2.2.2] : α̂[x] :U
OR[U.1.1;2.2.1]: α̂[x] ∨ α̂[x] :U

Paramodulation rule (shortly OP) and the Reflexivity Resolution (short RR). New cases
which correspond to these inference rules are indicated with bold numbers.

For the clauses of type 1 from (G≃), we get the following new cases: case 1.1.4
that matches a clause to the left premise of the Ordered Paramodulation rule, case 1.1.5
that matches a clause to the right premise of this rule, and case 1.1.6 that matches
a clause to the premise of the Reflexivity Resolution rule. For clauses of types 2 and
U, we have similar cases. Note that certain cases are not possible: for example, it is
not possible to use a clause of form 2.2 as the right premise of the Ordered Paramo-
dulation rule, since paramodulation into a variable is not allowed by condition (vi)
of this rule (see System 4), but all subterms of such clause are variables. The same
holds for clauses of type U. Note that clauses of these types appear from application
of Reflexivity Resolution rule to clauses of type 2.2 with equational guards.

It remains, perhaps, to give some comments on cases 2.1.4 and 2.1.5. Recall,
that according to our scheme notation (see Sections B), expression f(x) ≃ {f̂(x), x}
represents an atom of form f(x) ≃ g(x) or of form f(x) ≃ x, where x ∈ x. Case 2.1.5
is related to the simultaneous paramodulation strategy that is described in Figure 3.3
on p. 87. In fact, we will use this refinement of the Ordered Paramodulation rule in



130 Saturation-Based Decision Procedures

our inferences. So, case 2.1.5 indicates that paramodulation takes place into every
occurrence of term f(x) in a clause (not only into one occurrence in the eligible
literal). As will be seen in a moment, this will let us obtain the optimal complexity
results for our decision procedure.

The case analysis given in Table 4.13 proves the following lemma:

Lemma 4.3.1 (Closure of (G≃)). Let N be a set of clauses of form (G≃) and N ′

be obtained from N by a saturation under OP≻
Sel based on a simple order ≻ and a

selection function Sel that selects a guard in non-functional guarded clauses. Let w

be the maximal number of different variables in a clause from N . Then all clauses
from N ′ belong to (G≃) and have at most w different variables.

It turns out (see Appendix C.2.1) that the complexity of our decision procedure
is the same as for the case without equality, which implies the analogous result:

Theorem 4.3.2. There is a paramodulation-based decision procedure for the guar-
ded fragment with equality GF≃ which can be implemented in 2EXPTIME. This
procedure decides its bounded-variable version GFk

≃ in EXPTIME.

4.3.2 Guarded Fragment with Constants

A guarded fragment with equality GF≃ alone, seems to be not particularly useful for
reasoning in modal and description logics: there are only few constructors that could
be expressed in GF≃: Ganzinger & de Nivelle [1999] gave an example of difference
logic—a modal logic where ♦A means that A should hold in some different world
than the current one (this can be expressed in GF≃). A real advantage of equality
can be gained in combination with other extensions of the guarded fragment.

If we look at the description logic constructors listed in Table 3.2 on p.67, we
find several constructors that translate to the first-order logic with equality, namely
(qualified) number restrictions, functional restrictions and nominals. Consider the
last constructor from these, which presumably, is the simplest one. Nominals can be
expressed in the other way, as we did for extensions of EL in subsection 2.4.3, using
constants: see Table 2.15. Translations for nominals given in this table, belong
to the guarded fragment with equality and constants, in particular the formula
∀x.(A(x)→x ≃ a) which expresses an inclusion axiom A ⊑ {a}. In this section, we
are concerned with a decision procedure for this extension of the guarded fragment.

The fact that constants may be admitted in atoms of guarded formulas has been
pointed out by Grädel [1999]. He also presented a simple transformation, using
which a guarded formula with constants can be transformed into another guarded
formula without constants in a satisfiability-preserving way.



4.3. Paramodulation-based Decision Procedures 131

Elimination of constants

A procedure that eliminates constants from guarded formulas can be described in
two steps:

Step 1 Given a guarded formula F [c1,.., ck] containing k constants, pick k fresh
variable names z1,.., zk, and replace all occurrences of constants in this formula
with the respective variable: F [c1/z1,.., ck/zk]. This transformation preserves
satisfiability of formulas (which can be demonstrated using Skolemization).
Note that the resulted formula might not be guarded, since guards do not
necessarily contain all constants: for example the formula for nominals above
is translated to ∀x.(A(x)→x ≃ z), which is not guarded.

Step 2 To make a formula guarded again, we put all new variables z1,.., zk as new
arguments of relational predicates. That is, we expand every atom p(x1,.., xn) in
F (note that only variables are left in arguments), to p(z1,.., zk, x1,.., xn).4 This
transformation also preserves satisfiability of a first-order formula, provided
that variables z1,.., zk occur free in F (this can be also demonstrated using
Skolemization followed by a suitable renaming of predicate symbols). After
this step, a formula obtained in Step 1 becomes guarded, since all guards will
contain all variables z1,.., zk.

Note that transformation in Step 2 does not expand the equational predicates:
the formula ∀x.(A(x)→ x ≃ z) from our example is translated into ∀x.(A(z, x)→
x ≃ z). This means that if F contained equational guards, this transformation
might still produce non-guarded clauses: for example, the guarded formula

∀x.[(x ≃ a)→∀y.[(x ≃ y)→A(x, y)]]

is transformed to the non-guarded formula:

∀x.[(x ≃ z)→∀y.[(x ≃ y)→A(z, x, y)]]

It seems to be that Grädel [1999] did not allow for equational atoms in guard posi-
tions (although this is not explicitly stated). Luckily, it is possible to eliminate all
equational guards from every guarded formula using an additional transformation:
note that the last formula is simply equivalent to A(z, z, z).

Before we continue, we just point out that there is an interesting connection
between the above transformation that eliminates constants, and automata/tableau-
based decision procedure for DL ALCIO [Sattler & Vardi, 2001; Horrocks & Sattler,
2001], where nominals are memorised in global states of an automaton or tableau in
a similar way as the new variables in atoms are used.

4p(x1,.., xn) must be expanded even if it already contains variables z1,.., zk among x1,.., xn



132 Saturation-Based Decision Procedures

Elimination of equational guards

We describe a procedure that given a guarded formula, possibly containing equa-
tional guards, produces another guarded formula without equational guards. Our
procedure consists of two steps similar to those described above for elimination of
constants. In the first step, we eliminate equational guards, but this might result in
a non-guarded formula. In the second step we make our formula guarded again.

Step 1 Given a guarded formula F ∈ GF≃ (possibly containing constants), we
perform the following replacements for its subformulas that are guarded with
equational guards:

∀xy.[(x ≃ y)→F1[x, y]] 99K ∀x.F1[x, y/x];
∀y.[(x ≃ y)→F1[x, y]] 99K F1[x, y/x];
∀x.[(x ≃ c)→F1[x]] 99K F1[x/c];

(4.24)

It is easy to see that this transformation produces an equivalent formula from
the following fragment:

GF∗
≃ ::= A | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] | ∀x.F1[x] . (4.25)

where G are non-equational guards (possibly with constants).

Step 2 A resulted formula F ′ of form (4.25) might not be guarded because of the
last case. We introduce new guards for such subformulas using a fresh unary
atom e(x), which is read as “x is an element of a domain”. Using this atom,
we “shield” every quantified variable from F ′ as follows:

∀y1..yn.[G→ F1] 99K ∀y1..yn.[G ∧ e(y1) ∧···∧ e(yn)→ F1];
∀x.F1[x] 99K ∀x.[e(x)→F1[x]];

(4.26)

and add conjuncts e(c) for every constant c in F ′, or a conjunct ∃x.e(x) if there
is are no constants. For example, the formula ∀x.[(∀y.a(x, y)→y ≃ c)∧b(x)] of
form (4.25) is translated to: ∀x.[e(x)→ [∀y.a(x, y)∧e(y)→y ≃ c)∧b(x)]]∧e(c).
We claim that a formula F ′′ resulted after this transformation from F ′, is
satisfiable iff F ′ is satisfiable. Indeed, every model of F ′ can be expanded to a
model of F ′′ by defining e(x) to hold on all elements of the model. Conversely,
every model of F ′′ induces a model of F ′ by restricting the domain to those
elements on which e(x) holds (this set is non-empty because of the additional
conjuncts). Needless to say that the result of this transformation is a guarded
formula without equational guards.

By combining elimination of equational guards followed with Grädel’s [1999]
elimination of constants, we prove the following proposition:



4.3. Paramodulation-based Decision Procedures 133

Proposition 4.3.3 (Elimination of Constants from GF≃). There is a polynomial
transformation that given a guarded formula F ∈ GF≃ with constants, produces an
equisatisfiable guarded formula F ′ ∈ GF≃ without constants.

This proposition implies that we can employ our paramodulation-based deci-
sion procedure described subsection 4.3.1 for deciding the guarded fragment with
constants.

Corollary 4.3.4. There is a paramodulation-based decision procedure for the guar-
ded fragment with equality and constants which can be implemented in 2EXPTIME.

However a decision procedure through the transformations above does not seem
to give (at least directly) a better complexity for the bounded-variable guarded
fragment with constants, since elimination of constants increases the width of the
guarded formula on the number of constant symbols in the formula. Moreover, the
exact complexity of the bounded-variable guarded fragment with constants seems
to be not known so far.

We stress that the bounded-variable guarded fragment, and not the full guarded
fragment, is of particular interest for non-classical logics, since problems in modal
and description logics correspond to bounded-variable first-order formulas.

In this section we demonstrate that GFk
≃ remains EXPTIME-complete even with

constants using two paramodulation-based decision procedures. The first procedure
refines the clause class (G≃) defined in subsection 4.3.1, to capture the clauses
that are obtained after the elimination of constants described above. The second
procedure does not use elimination of constants but extends clause class (G≃) to
capture guarded formulas with constants directly.

A paramodulation-based procedure employing elimination of constants

Table 4.14 A clause class for the guarded fragment with eliminated constants

(Gz):

Clause scheme Description

1 α̂(v, {ĉ}) ∨ {(≃|6≃)[ĉ]} a ground clause whose non-equational literals have a fixed
(within the clause) prefix of constants v of length k;

2 ¬p̂(z, {!x})∨

∨ α̂(z, {f̂(z, x), x})∨

∨{(≃|6≃)[f̂(z, x), x]}

a guarded clause with non-equational guards whose non-
equatioal predicates are prefixed with a fixed (within the
clause) variable-vector z of length k.

where v := {ĉ}; a := p| ≃; l := a|¬a; α := ∨{l}; |v| = |z| = k

Let F ∈ GF≃ be a guarded formula with constants and F ′ ∈ GF≃ be obtained
from F by elimination of constants. Recall that every non-equational atom in F ′



134 Saturation-Based Decision Procedures

Table 4.15 A decision procedure for the guarded fragment with constants through
Grädel’s [1999] elimination of constants

v := {ĉ} : a fixed sequence of constants within a clause

1 α̂(v, {ĉ}) ∨ {(≃|6≃)[ĉ]} :The cases are analogous to the those in Table 4.13

2 ¬p̂(z, {!x}) ∨ α̂(z, {f̂(z, x), x}) ∨ {(≃|6≃)[f̂(z, x), x]}

2.1 ¬p̂(z, {!x}) ∨ · · · ∨ l̂[z, !f̂(z, x), x]

2.1.1 ¬p̂(z, {!x}) ∨ · · · ∨ p[z, !f̂(z, x), x]
⋆

:OR.1

2.1.2 ¬p̂(z, {!x}) ∨ · · · ∨¬p[z, !f̂(z, x), x] :OR.2

2.1.3 ¬p̂(z, {!x}) ∨ · · · ∨ p[z, f̂(z, x), x] ∨ p[z, !f̂(z, x), x] :OF

2.1.4 ¬p̂(z, {!x}) ∨ · · · ∨ f(z, x) ≃ {f̂(z, x), x}
⋆

:OP.1

2.1.5 ¬p̂(z, {!x}) ∨ α̂(z, {f(z, x), f̂(z, x), x}) ∨ {(≃|6≃)[f(z, x), f̂(z, x), x]} :OP.2

2.1.6 ¬p̂(z, {!x}) ∨ · · · ∨ f(z, x) 6≃ f(z, x) :RR

OR[2.1.1; 2.1.2]:¬p̂(z, {!x}) ∨ · · · :2

OF[2.1.3] :¬p̂(z, {!x}) ∨ · · · ∨ p[z, !f̂(z, x), x] :2

OP[2.1.4; 2.1.5]:¬p̂(z, {!x}) ∨ α̂(z, {f̂(z, x), x}) ∨ {(≃|6≃)[f̂(z, x), x]}:2
RR[2.1.6] :¬p̂(z, {!x}) ∨ · · · :2

2.2 ¬p̂(z, {!x})
♯∨ α̂(z, {x}) :Sel

2.2.1 ¬p̂(z, {!x}) ∨ α̂(z, {x}) :OR.2

OR[1.1.1; 2.2.1]: α̂(v, {ĉ}) ∨ {(≃|6≃)[ĉ]} :1

OR[2.1.1; 2.2.1]:¬p̂(z, {!x}) ∨ α̂(z, {f̂(z, x), x}) ∨ {(≃|6≃)[f̂(z, x), x]}:2

has a form a(z, x), where z is a fixed vector of variables of length k := the number of
constants in F , and x contains at most w := width(F ) of other different variables.
By applying the usual CNF-transformation, it is easy to show that all resulted
clauses belong to class (Gz) defined in Table 4.14. The number of such clauses is
O(n), where n := |F |, since the number of subformulas in F ′ is O(n) (the only new
subformulas in F ′ are e(z) that are introduced for every variable and constant in F
at most once). Now, if we restrict the case analysis from Table 4.13 to clause class
(Gz), we obtain inferences that are sketched in Table 4.15. Note that there is no
case U, since we have eliminated non-equational atoms. This case analysis shows
that the clause class (Gz) is closed under paramodulation inferences:

Lemma 4.3.5 (Closure of (G≃)). Let N be a set of clauses of form (Gz) where the
length of every prefix v and z is k, and let w be the maximal number of different
constants (variables) in each clause from 1 (2) from N that do not belong to v (z).
Let N ′ be obtained from N by a saturation under OP≻

Sel
based on a simple order ≻

and a selection function Sel that selects a guard in non-functional guarded clauses.
Then each clause from N ′ belongs to (Gz) and have the same properties as mentioned
for N .

The refined clause class gives us an optimal complexity also for the bounded-



4.3. Paramodulation-based Decision Procedures 135

variable version of GF with constants: t ≤ 2n·(2w+k)(w+ǫ)
(see Appendix C.2.2):

Theorem 4.3.6. There is a paramodulation-based decision procedure for the guarded
fragment with equality and constants which can be implemented in 2EXPTIME. This
procedure decides the bounded-variable guarded fragment with equality and constants
in EXPTIME.

Note that the paramodulation-based procedure has remained the same—we have
just refined the case analysis of inferences to see that it gives an optimal complexity
result for the bounded-variable case as well.

A direct paramodulation-based decision procedure

Although the decision procedure described above gives optimal complexity results
for the full and the bounded-variable guarded fragments with constants, it is always
a good idea to refrain, if possible, from using additional transformations. It turns
out that a decision procedure of the same complexity, can be obtained directly,
without elimination of constants.

It is easy to observe, that without elimination of constants we obtain a clause
class that is similar to (G), except that literals might contain additional constants.
This clause class can be captured by clause schemes (Gc) defined in Table 4.16.
Intuitively, every clause from (Gc) is obtained from clauses in (G≃) by substituting

Table 4.16 A clause class for the guarded fragment with constants

(Gc):

Clause scheme Description

1 α̂[ĉ] a ground whose arguments are constants;

2 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] a clause with non-equational guards which may contain
constants, such that every non-constant functional symbol
has a fixed sequence of arguments consisting of all variables
of the clause and constants.

where v := {!x, ĉ}; a := p| ≃; l := a|¬a; α := ∨{l};

constants for some variables. Note that we do not allow equational guards, assuming
that they have been eliminated. By repeating essentially the same case analysis as
for GF≃ given in Table 4.13, we can prove that clause class (Gc) is closed under
paramodulation inferences. This case analysis is summarised in Table 4.17.

To make everything work fine, we need an additional assumption about the
ordering ≻ and constants. We assume that (i) p(s1,.., sn) ≻ (c1 ≃ c2) for every non-
equational predicate symbol p and every pair of constants c1, c2, and (ii) f(t1,.., tm) ≻
c for every non-constant functional symbol f and every constant c. Any simple
LPO-ordering can be easily adjusted to fulfil this property by using a precedence



136 Saturation-Based Decision Procedures

Table 4.17 A direct decision procedure for the guarded fragment with constants
v := {!x, ĉ} : a fixed sequence of variables and constants within a clause

1 α̂[ĉ]
1.1 α̂[ĉ] ∨ l[ĉ]
1.0 [[ α̂[ĉ] ∨ ĉ ≃ ĉ⋆]] :SP
1.1.1 α̂[ĉ] ∨ p[ĉ]

⋆
:OR.1

1.1.2 α̂[ĉ] ∨¬p[ĉ] :OR.2

1.1.4
::::

ĉ ≃ ĉ⋆ :OP.1
::::

1.1.5 [[ α̂[c, ĉ] ]] :OP.2
1.1.6 α̂[ĉ] ∨ c 6≃ c :RR

OR[1.1.1; 1.1.2]: α̂[ĉ] :1
OP[1.1.4; 1.1.5]: α̂[ĉ, ĉ]:1
RR[1.1.6] : α̂[ĉ] :1

⊥ �

2 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ]

2.1 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ l̂[!f̂(v), x, ĉ]

2.1.1 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ p[!f̂(v), x, ĉ]
⋆

:OR.1

2.1.2 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨¬p[!f̂(v), x, ĉ] :OR.2

2.1.3 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ p[f̂(x)..] ∨ p[!f̂(v), x, ĉ] :OF

2.1.4 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ f(v) ≃ {f̂(v), x, ĉ}
⋆

:OP.1

2.1.5 ¬p̂[!x, ĉ] ∨ α̂[f(v), f̂(v), x, ĉ] :OP.2

2.1.5′ [[¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, c, ĉ] ]] :OP.2

2.1.6 ¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ f(v) 6≃ f(v) :RR

OR[2.1.1; 2.1.2] :¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] :2

OF[2.1.3] :¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] ∨ p[!f̂(v), x, ĉ]:2

OP[2.1.4; 2.1.5] :¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] :2

OP[1.1.4;2.1.5′]:¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ, ĉ] :2

RR[2.1.6] :¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ] :2

2.2 ¬p̂[!x, ĉ]
♯∨ α̂[x, ĉ] :Sel

2.2.1 ¬p̂[!x, ĉ] ∨ α̂[x, ĉ] :OR.2

OR[1.1.1; 2.2.1]: α̂[ĉ] :1

OR[2.1.1; 2.2.1]:¬p̂[!x, ĉ] ∨ α̂[f̂(v), x, ĉ]:2

in which all constant symbols are smaller than non-constant symbols. Restriction
(ii) is needed to avoid paramodulation inferences from oriented equations of form
c ≃ f(v), as this may result in increase of the number of variables in clauses.

Restriction (i) is needed to obtain optimal complexity results. For this, we have
developed a special strategy according to which we split a ground clause into unit
literals whenever its eligible literal is a positive equality (case 1.0). Since the eligible
literal must be maximal in the clause, by (i), we have that all literals in this clause
are equalities or inequalities between constants. Unit equalities that are produced
after splitting in case 1.0, can be used in Ordered Paramodulation inferences (case
1.1.4). However, we apply them in a more general way for eager simplification. That
is, whenever an equation of form c1 ≃ c2 is obtained with c1 ≻ c2, we replace all
occurrences of constant c1 in every clause, with constant c2.

It turns out that the direct procedure gives us essentially the same complexity
as the one with elimination of constants: for the details see Appendix C.2.2.

Implications for description logics

The guarded fragment for which we have presented decision procedures, became
large enough to capture some expressive description logics.



4.3. Paramodulation-based Decision Procedures 137

As has been pointed out in subsection 3.3.3, the guarded fragment captures the
relational translation of modal formulas, and ALC-concepts (see ALC-fragment of
first-order logic (3.9) on p.66). This also holds if we allow inverse roles. Hence sat-
isfiability of ALCI-concepts can be decided through the guarded fragment without
equality and constants.

It is also possible to express simple role hierarchies in the guarded fragment:
S ⊑ T is translated to ∀xy.[S(x, y) → T (x, y)]. Moreover, the general inclu-
sion axioms C1 ⊑ C2 can be expressed in the guarded fragment with equality5

by ∀x.[(x ≃ x)→ (τ(C1, x)→ τ(C2, x))] (recall that both translations τ(C1, x) and
τ(C2, x) are guarded formulas). So now the concept subsumption problem w.r.t.
general TBoxes can be decided through the guarded fragment.

Finally, as has been already noted in the beginning of this section, constants
in guarded fragment allow us to express nominals. Hence, the following result is
proven in this section:

Corollary 4.3.7. There is a paramodulation-based procedure which decides the con-
cept subsumption problem w.r.t. general ALCIOH-TBoxes in EXPTIME.

4.3.3 Guarded Fragment and Functionality

Another class of constructors that are commonly used in description logics, but can-
not be directly expressed in the guarded fragment, are (qualified) number restrictions
and functional restrictions. Unfortunately, the guarded fragment becomes unde-

cidable already with functional restrictions. In this section we define a decidable
extension of the guarded fragment that captures description logics with functional-
ity. We extend our paramodulation-based decision procedure to this fragment and
show that the complexity of this extension remains the same both for its full and
the bounded-variable versions.

Undecidability for the guarded fragment with functionality

We say that a binary relation r(x, y) is functional if it satisfies the following axiom:

F. r(x, y) ∧ r(x, z) → y ≃ z (functionality)

Grädel [1999] has investigated a guarded fragment with functionality , which we de-
note by GF [functional(r1,.., ri,..)], or, short GF [F]. GF [F] is a set of guarded formulas,
where some binary atoms are declared to be functional, i.e., the set of possible inter-
pretations is restricted to those where the listed predicate symbols are interpreted

5although, equality is used here only in guards, and hence, can be completely eliminated



138 Saturation-Based Decision Procedures

by functional relations. It turns out that satisfiability problem for GF [F] is in gen-
eral undecidable. In fact, this is already the case for GF3[F], i.e., for three-variable
guarded fragment with one functional relation:

Theorem 4.3.8 ([Grädel, 1999]). GF3[functional(r)] is a conservative reduction
class, i.e., it is undecidable for (finite) satisfiability.

Proof. The proof of this theorem is by a reduction from domino problems (see
section 3.4). Given a domino system D = (D, H, V ) we construct a formula F ∈
GF3[functional(r)] such that F is (finitly) satisfiable iff D admits (periodic) tiling of
a grid N×N. Our formula F is a conjunction of formula TILING given in Figure 3.1,
that encodes tiling conditions for a domino problem, and a formula GRID defined
below:

GRID := ∃x.[o(x) ∧ v(x) ∧ h(x)] ∧ - constructs the origin of a grid

∧ ∀x.(v(x)→∃y.[V (x, y) ∧ v(y)]) ∧ - launches the initial vertical axis

∧ ∀x.(h(x)→∃y.[H(x, y) ∧ h(y)]) ∧ - launches the initial horizontal axis

∧ ∀xy.[V (x, y)→∃z.g1(x, y, z)] ∧ - creates the upper triangle of a cell

∧ ∀xy.[H(x, y)→∃z.g2(x, y, z)] ∧ - creates the right triangle of a cell

∧ ∀xyz.[g1(x, y, z)→H(y, z) ∧ r(x, z)] ∧ - creates the remaining

∧ ∀xyz.[g2(x, y, z)→V (y, z) ∧ r(x, z)] - edges of triangles

(4.27)
Recall, that in order to enforce a grid structure, we need to encode a confluence
property for relations V and H : H` ◦ V ⊆ V ◦H`. This is done by the last four
conjuncts from (4.27) using a condition that r(x, y) must be a functional relation.
Using these conjunctions we launch two triangles from incident vertical and horison-
tal edges of a cell and then “glue” them on diagonal into a cell using functionality
of r(x, y): see Figure 4.2. It is easy to show that every (periodic) tiling of an in-
finite quadrant N × N of a plane yields a (finite) model for F = TILING ∧ GRID
where r(x, y) is functional, and vice versa, every (finite) model of F , where r(x, y)
is functional, can be unfolded into a (periodic) tiling of a grid. Hence this reduction
proves that GF3[functional(r)] is a conservative reduction class. 22

As has been pointed out in [Grädel, 1999], the result of Theorem 4.3.8 is optimal
w.r.t. the number of variables used in the fragment, since already the two-variable
fragment with counting C2, which subsumes GF2[F], is decidable [Grädel, Otto &
Rosen, 1997; Pacholski et al., 2000].



4.3. Paramodulation-based Decision Procedures 139

Figure 4.2 Undecidability of GF3[functional(r)]
H

V

r

g1

g2

H

V

H

V
r

o h h h h h h h h h h

v

v

v

v

v

The guarded fragment with functional guards

Let us try to analyse and explain why the guarded fragment with functionality
becomes undecidable, whereas this is not the case for many description logics with
functionality restrictions. One explanation could be in that these logic usually
correspond to two-variable guarded fragment with functionality, which is decidable.
While it is possible to come up with a decision procedure for this fragment based on
paramodulation (we return to this point later), we have found another explanation
of this phenomenon.

If we look carefully at formula (4.27), we notice that the functional atom r(x, y)
is used here in the body of the guarded formula positively, which makes it possible to
enforce functionality restrictions for some larger atoms: in this formula we enforce
functionality of predicates g1(x, y, z) and g2(x, y, z) w.r.t. their first and the last
arguments. This made it possible, in the end, to “glue” triangles corresponding to
these atoms on one edge, while keeping the remaining vertices free. However, this
does not happen in first-order formulas that correspond to description logics, not
only because there are no relations of higher arity, but also because the functional
roles, as any other roles, are typically used in guards.

Motivated by this observation, we consider the guarded fragment with functional
guards GF [functional_guards(r1,..)] (short GF [FG]), to be a set of formulas from
GF [functional(r1,..)] in which functional predicate symbols r1,.. occur in guard posi-
tions only. It can be shown that fragment GF [FG], can in particular capture first-
order translation for DL ALCIF . Later we discuss how to extend this fragment in
order to capture more description logics.

Remark 4.3.9. In the definition of guarded formulas (3.17) that we gave in sub-
section 3.3.3, it is allowed, in principle, to use the constructor ∀y.[G→ F1] with
an empty variable-vector y (since this will be just implication). However, when we



140 Saturation-Based Decision Procedures

restrict occurrences of certain predicate symbols to guards only, we assume that the
usage of these guards is non-trivial, i.e., y is non-empty. Otherwise these restrictions
make no sense, since these predicate symbols could appear essentially everywhere
using quantification over the empty variable-vector. 33

Let us see how functional guards from GF [FG] may appear in clauses that result
from CNF-translation of guarded formulas given in subsection 4.1.1. If we look at
the clause types obtained in Table 4.1 after the structural transformation, we notice
that guard atoms appear only in clauses of types (6)−(8). Now, by restricting guards
in these clauses to binary functional predicate symbols, we obtain clause types
listed in Table 4.18. We intentionally changed clausification in the last two cases in

Table 4.18 Clause types for guarded formulas with functional guards

Type of a conjunct 99K [·]sk, [·]cnf 99K Type of a clause (Nr)

∀x.(pF (x)→∀y.(r[!x, !y]→pF1
[x, y])) 99K ¬r[!x, !y] ∨ ¬pF (x) ∨ pF1

[x, y] (6.1)

pF→∀xy.(r[!x, !y]→pF1
[x, y]) 99K ¬r[!x, !y] ∨ ¬pF ∨ pF1

[x, y] (6.2)

pF→∀x.(r(x, x)→pF1
[x]) 99K ¬r(x, x) ∨ ¬pF ∨ pF1

[x] (6.3)

∀x.(pF (x)→∃y.(r[!x, !y] ∧ pF1
[x, y])) 99K ¬pF (x) ∨ r[!x, !h(x)] (7.1)

¬pF (x) ∨ pF1
[x, h(x)] (8.1)

pF→∃xy.(r[!x, !y] ∧ pF1
[x, y])) 99K ¬pF ∨ p′F (csk) (7.2)

¬p′
F
(x) ∨ r[!x, !h(x)] (7.1)

¬p′
F
(x) ∨ pF1

[x, h(x)] (8.1)

pF→∃x.(r(x, x) ∧ pF1
[x])) 99K ¬pF ∨ p′F (csk) (7.2)

¬p′
F
(x) ∨ r(x, x) (7.3)

¬p′
F
(x) ∨ pF1

[x] (8.2)

order to simplify the upcoming proofs, by introducing auxiliary unary definitional
predicate symbols p′

F
. However, our procedure can be easily repeated when a direct

Skolemization is applied. Functional restrictions can be encoded in first-order logic
directly, using an axiom ∀xyz.[r(x, y)∧r(x, z)→x ≃ z]. But it is easier to deal with
the axiom ∀xy.[r(x, y)→y ≃ h′(x)], where h′(x) is a fresh unary functional symbol
introduced for atom r(x, y).

After that, we end up with clauses which we generalise to clause class (Gf ) de-
fined in Table 4.19. The clauses of this class are either the usual guarded clauses
1 – 2, which may contain functional predicate symbols r(x, y) only negatively, or
clauses F and U.1 – U.4 containing functions h(x) introduced for functional atoms
r(x, y) either after Skolemization, or from the functionality axioms. The important
property of our saturation strategy is that we will keep these types of clauses sepa-
rately, so they do not mix with each other, in a similar fashion as it has been done
for combinations of fragments in section 4.2.



4.3. Paramodulation-based Decision Procedures 141

Table 4.19 A clause class for the guarded fragment with functional guards

(Gf ):

Clause scheme Description

1 α̂[ĉ] a ground clause without positive occurrences of func-
tional predicate symbols;

2 ¬â[!x] ∨ α̂[f̂(x), x] a guarded clause whose functional predicate symbols oc-
cur only negatively.

F ¬r(x, y) ∨ y ≃ h(x) a clause expressing functionality of a binary relation,
where h(x) does not occur in clauses of form 2;

U.1 α̂[h(x), x] ∨ r[h(x), x] a disjunction of a clause of form U.4 and an atom
r[h(x), x], where r is a functional predicate symbol and
h(x) is the same as in U.4;

U.2 α̂[h(x), x] ∨ h(x) ≃ h1(x) a disjunction of a clause of form U.4 and an atom
h(x) ≃ h1(x), where h1(x) does not occur in clauses of
form 2 either;

U.3 α̂[h(x), x] ∨ h1(h(x)) ≃ x the same as in the previous case but the atom is now of
form h1(h(x)) ≃ x.

U.4 α̂[h(x), x] a clause containing one variable and one unary func-
tional term which does not occur in clauses of type 2

where a := p | ≃ | r; l := p | ¬p | ≃ | 6≃ | ¬r; α := ∨{l}.

Saturation of the clause set

One of the problems that arise when applying paramodulation rules to clauses from
(Gf), is that the functional depth of clauses might grow. Clauses with nested func-
tional terms can already appear when a clause ¬pF1

(x)∨r(h2(x), x)⋆ of form (7.1),
is resolved with a clause expressing functionality for r: ¬r(x, y)∨ y ≃ h′(x), which
results in a clause ¬pF1

(x)∨h′(h2(x)) ≃ x of form U.3. However even deeper clauses
can be obtained from clauses U.1 – U.4.

Example 4.3.10. Consider the conclusion of resolution inferences from two clauses
of form U.2:

a(h2(x))⋆∨ h2(x) ≃ h1(x) and ¬a(h2(x)) ∨ h2(x) ≃ h3(x) (4.28)

The conclusion h2(x) ≃ h1(x)⋆∨h2(x) ≃ h3(x) of this inference is already outside of
(Gf). However, if we ignore this and paramodulate a clause h1(h2(x)) ≃ x

⋆of form
U.3 to this clause, we obtain a clause h2(h2(x)) ≃ x∨h2(h2(x)) ≃ h3(h2(x))⋆. The
last clause is dangerous not because it contains nested functional terms, but because
paramodulation from this clause into a subterm h2(x) of any clause would result
in increase of functional depth. In particular, this clause can be paramodulated
into itself which results in clauses of arbitrary depth (for simplicity we omit the



142 Saturation-Based Decision Procedures

remaining literal):

1. h2(h2(x)) ≃ h3(h2(x))⋆ :OP.1

2 h2(h2(x)) ≃ h3(h2(x)) :OP.2

OP[1; 2]: 3 h2(h3(h2(x))) ≃ h3(h3(h2(x))) :OP.2

OP[1; 3]: 4 h2(h3(h3(h2(x)))) ≃ h3(h3(h3(h2(x)))):OP.2

. . . . . . . . . etc. 33

A similar problem has been dealt with in a recent paper [Hustadt et al., 2004],
which studies decidability of some description logics including DL SHIQ by super-
position. In order to avoid growth of term depth in clauses, the authors propose to
use basic strategies [Bachmair, Ganzinger, Lynch & Snyder, 1995] which allow one
to block inferences into terms that appear in variable positions after applying sub-
stitutions. For the particular example above, no paramodulation inference except
for the first one, is necessary, since all subterms h2(x) occur in substitutional posi-
tions. However, even basicness does not prevent from nested terms in some cases,
for which a special decomposition rule is introduced that decomposes deep clauses
into shallow ones.

Here we propose a similar in spirit, but an easier (in our opinion) solution, based
on the “divide-and-conquer ” principle. The idea is, whenever a potentially dangerous
equational literal of form h2(x) ≃ h1(x) appears in a clause from U.2, this literal is
“cut away” using the Literal Projection rule to a clause where we can afford certain
growth in variable depth. It turns out that no supplementary basic restrictions are
required in the end, to control the depth of clauses.

Continuing Example 4.3.10, according to our strategy, we do not resolve clauses
from (4.28), but first apply the Literal Projection rule for their equational literals.
These rule will simplify each of these clauses on two clauses:

a(h2(x))⋆∨ phh1(x)

¬phh1(x) ∨ h2(x) ≃ h1(x)⋆ and
¬a(h2(x)) ∨ phh2(x)

¬phh2(x) ∨ h2(x) ≃ h3(x)⋆

(4.29)
Resolution between the first clauses gives us a clause phh1(x) ∨ phh2(x). After
paramodulation of h1(h2(x)) ≃ x

⋆ into the lower left clause, we obtain a clause
¬phh1(h2(x)) ∨ h2(h2(x)) ≃ x

⋆ of type U.3. Although this clause contains nested
functional terms, they are not dangerous anymore, since terms in the equation have
different variable depths. In particular, if we paramodulate this clause into the lower
right clause we obtain: ¬phh1(h2(x)) ∨¬phh2(h2(x)) ∨ x ≃ h3(h2(x)), which is again
of type U.3. If we paramodulate the previous clause into itself, we obtain a clause
even of a smaller depth: ¬phh1(h2(x)) ∨ ¬phh1(x) ∨ h2(x) ≃ x.

In Table 4.20 we have listed all inferences between clauses from (Gf) that are
possible according to our strategy. The inferences between clauses from 1 and 2



4.3. Paramodulation-based Decision Procedures 143

Table 4.20 Possible inferences between clauses for the guarded fragment with func-
tional guards

a := p | ≃ | r; l := p | ¬p | ≃ | 6≃ | ¬r; α := ∨{l}.

1 α̂[ĉ] :The cases are analogous to the those in Table 4.13

2 ¬â[!x] ∨ α̂[f̂(x), x]

2.1 ¬â[!x] ∨ α̂[f̂(x), x] ∨ l[!f̂(x), x]

2.1.1 ¬â[!x] ∨ α̂[f̂(x), x] ∨ p[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬â[!x] ∨ α̂[f̂(x), x] ∨¬p[!f̂(x), x] :OR.2

2.1.2′ ¬â[!x] ∨ α̂[f̂(x), x] ∨¬r[!f̂(x), x] :OR.2

2.1.3 ¬â[!x] ∨ α̂[f̂(x), x] ∨ p[f̂(x), x] ∨ p[!f̂(x), x] :OF

2.1.4 ¬â[!x] ∨ α̂[f̂(x), x] ∨ f(x) ≃ {x}
⋆

:OP.1

2.1.5 ¬â[!x] ∨ α̂[f(x), f̂(x), x] :OP.2

2.1.6 ¬â[!x] ∨ α̂[f̂(x), x] ∨ f(x) 6≃ f(x) :RR

OR[2.1.1; 2.1.2] : 2; OF[2.1.3] : 2; OP[2.1.4; 2.1.5] : 2; RR[2.1.6] : 2;

2.2 ¬â[!x]
♯∨ α̂[x] :Sel

2.2.1 ¬â[!x] ∨ α̂[x] :OR.2

2.2.2 x1 6≃ x2 ∨ α̂[x1, x2] :RR
OR[1.1.1; 2.2.1] : 1; OR[2.1.1; 2.2.1] : 2; RR[2.2.2] : U.4;

F ¬r(x, y) ∨ y ≃ h(x) :OR.2

U.1 α̂[h(x), x] ∨ r[h(x), x]

U.1.1 [[ α̂[h(x), x] ∨ r[h(x), x]♯]] :LP
U.1.2 α̂1[x] ∨ r[h(x), x]

⋆
:OR.1

U.1.3 α̂1[x] ∨ r[h(x), x] :OP.2

LP[U.1.1] : U.1.2, U.4; OR[U.1.2;2.2.1] : U.4; OR[U.1.2; F] : U.2, U.3;

U.2 α̂[h(x), x] ∨ h(x) ≃ h1(x)

U.2.1 [[ α̂[h(x), x] ∨ h(x) ≃ h1(x)
♯
]] :LP

U.2.2 α̂1[x] ∨ h(x) ≃ h1(x)
⋆

:OP

LP[U.2.1] : U.2.2, U.4; OP[U.2.2; U.1.3] : U.1; OP[U.2.2; U.2.2] : U.2.2;

U.3 α̂[h(x), x] ∨ h1(h(x)) ≃ x

U.3.1 α̂[h(x), x] ∨ h1(h(x)) ≃ x
⋆

:OP

U.3.2 α̂[h(x), x] ∨ h1(h(x)) ≃ x :OP.2

OP[U.3.1; U.1.3] : U.1; OP[U.3.1; U.2.2] : U.3; OP[U.3.1; U.3.1] : U.3;
OP[U.2.2; U.3.2] : U.3; OP[U.3.1; U.3.2] : U.2

U.4 α̂[h(x), x]
U.4.1 α̂[h(x), x] ∨ l[!h(x), x]⋆ :OR

U.4.2 α̂[x] ∨ h(x) ≃ x
⋆

:OP.1

U.4.3 α̂[h(x), x] :OP.2

U.4.4 α̂[h(x), x] ∨ h(x) 6≃ h(x) :RR

U.4.5 α̂[x] ∨ l[!x]⋆ :OR

U.4.6 α̂[x] ∨ x 6≃ x :RR
U.4.7 α̂[] ⇒ :1

OR[U.4.1;2.2.1] : U.4; OR[U.4.1; U.4.1] : U.4; OP[U.4.2; U.1.3] : U.1;
OP[U.4.2; U.2.2] : U.4; [U.4.2; U.3.2] : U.4; OP[U.4.2; U.4.3] : U.4;
OP[U.2.2; U.4.3] : U.4; OP[U.3.1; U.4.3] : U.4; RR[U.4.4] : U.4;
OR[U.4.5;1.∗] : 1; OR[U.4.5;2.1.∗] : 2; OR[U.4.5;2.2.1] : U.4;
OR[U.4.5; U.4.5] : U.4; RR[U.4.6] : U.4;



144 Saturation-Based Decision Procedures

are identical to those for (G≃) given in Table 4.13. The only difference is that
instead of clauses of form U, we have now clauses of form U.4. As seen from this
table, we apply the Literal Projection rule twice: in case U.2.1 and in case U.3.1.
The preconditions for both applications of this rule is that the remaining part of
the clause must contain either term h2(x), or a predicate symbol with arity greater
than 1 (in this case it is a simplification rule). Note that applications of these rule
introduce only finitely many new predicate symbols, since only equational or binary
atoms where “projected”.

The reasons for application of the Literal Projection rule for case U.3.1 where given
in Example 4.3.10 above. For the case U.2.1 this rule is not strictly necessary, but
we have applied it in order to simplify the case analysis (and keep things separate).
The remaining inferences given in the table, are relatively straightforward.

The case analysis presented in Table 4.20 demonstrates that the set of clauses
(G≃) is closed under our paramodulation strategy. By carrying out similar compu-
tations as in the case with GF≃, we obtain the following result:

Theorem 4.3.11. There is a paramodulation-based decision procedure for the guar-
ded fragment with equality and functional guards GF≃[FG] which can be implemented
in 2EXPTIME. This procedure decides the bounded-variable version of this fragment
GFk

≃[FG] in EXPTIME.

Note that it is possible to admit negative occurrences of functional literals not
only in guard positions, since this would result in the same clause class (Gf ).

On functional relations of greater arity

The fragments that we have considered above, have been restricted only to binary
functional relations. It is a natural question, whether our results can be carried
out to arbitrary functional relations? Unfortunatly an extension of the guarded
fragment with functional guards of greater arity is undecidable. Indeed, using a
ternary relation r(x, y, z), which is functional for z w.r.t. x (and possibly w.r.t. y),
we can enforce functionality of any other binary relation a(x, y) using a guarded
formula in which r(x, y, z) occurs in a guard position:

∀xz.(a(x, z)→∃y.[r(x, y, z) ∧ x ≃ y]) (4.30)

Since the atom a(x, y) is no longer restricted to occur in guards, we obtain unde-
cidability of this fragment in a similar way as for the guarded fragment with func-
tionality. An open question is then, which additional conditions can be imposed on
functional guards in order to retain decidability? The only variants of the guarded
fragment we are aware of, which admit for a certain form of counting for relations of
greater arity, are so-called action-guarded logics introduced in [Goncalves & Grädel,
2000]



4.3. Paramodulation-based Decision Procedures 145

4.3.4 Guarded Fragment with Counting

Expressive description logics, that are considered nowadays, usually employ a gen-
eralisation of functional restrictions—so-called (qualified) number restrictions (see
subsection 3.2.2). It would be rather useful to find a variant of the guarded fragment
which allows to capture such constructors, and to extend our paramodulation-based
procedure for them.

Although, as we will see in a moment, such extensions are possible and fairly
straightforward, there are certain well-known complexity issues related to how the
numbers are represented in formulas: in unary coding or in binary coding .

From functionality to counting

Before we describe an extension of the guarded fragment that captures (qualified)
number restrictions in description logics, we consider a simple generalisation of func-
tionality restrictions to global number restrictions of the forms:

L. ∀x.∃≥ny.r(x, y) (“at-least” number restrictions)

M. ∀x.∃≤my.r(x, y) (“at-most” number restrictions)
(4.31)

where n and m are naturals. Informally, these restrictions express that for every
element x there must be at least n, respectively at most m different elements y such
that r(x, y) holds. Formally, the semantics of these constructors is defined similarly
as in Table 3.2 on p.67:

∀x.∃≥ny.r(x, y) ≡ ∀x.∃y1..yn.[
∧

1≤i≤n

r(x, yi) ∧
∧

1≤i<j≤n

(yi 6≃ yj)]

∀x.∃≤my.r(x, y) ≡ ∀x.∀y1..ym+1.[
∧

1≤i≤m+1

r(x, yi) →
∨

1≤i<j≤m+1

(yi ≃ yj)]
(4.32)

Quantifiers of form ∃≥ny. and ∃≤my. are also called counting quantifiers. Note that
functionality restrictions are instances of “at-most” number restrictions when m = 1.

Let us see which clauses correspond to number restrictions. By skolemizing the
first formula above, we obtain the clauses:

L.1 r(x, hi(x)) 1 ≤ i ≤ n;

L.2 hi(x) 6≃ hj(x) 1 ≤ i < j ≤ n;
(4.33)

where hi(x) is a Skolem function introduced for i-th variable. The second formula
can be expressed similarly as functional restrictions, using m auxiliary counting
functions h1(x), . . . , hm(x) introduced for a binary relation r(x, y):

M.1 ¬r(x, y)♯∨ y ≃ h1(x) ∨ · · · ∨ y ≃ hm(x) (4.34)



146 Saturation-Based Decision Procedures

We can notice that clauses of form L.1 are instances clause scheme F.2 from Ta-
ble 4.19, and clauses M.1 and L.2 are close to schemes F.1 and F.3 respectively. In
fact, these clauses can be treated in saturation essentially in the same way as those
from (Gf). For example, clause of form M.1 can be resolved only with clauses of
form F.2, after which the clause is split into clauses of form F.3 or F.4 using the
Literal Projection rule.

In order to avoid clauses of form L.2, one can express “at-most” number restric-
tions directly in (Gf). This can be done by introducing n additional binary atoms
ei(x, y) for i with 1 ≤ i ≤ n, and replacing L.2 with the following clauses of form
F.5:

L.2.1 ei(x, hi(x)) 1 ≤ i ≤ n;

L.2.2 ¬ei(x, hj(x)) 1 ≤ i < j ≤ n.
(4.35)

However a direct procedure should be considered as more efficient for the practice.
Let us generalise this approach in order to capture (qualified) number restrictions

in description logics. For this purpose, we introduce a guarded fragment with number
restrictions GFN :

GFN ::= A | ¬F1 | F1 ∧ F2 | ∀y.[G→F1] | ∃
≤ny.[r(x, y) ∧ F1] . (4.36)

The last is a new constructor for this fragment, for which we have (i) free[F1] ⊆
{x, y} (in other words, r(x, y) is a counting guard) and (ii) atom r(x, y) is restricted
to occur only as a guard (i.e., it may not be used in the base case). The semantics
for the counting quantifiers is defined analogous to (4.32). It is easy to see that
(qualified) number restrictions can be expressed in GFN : see Table 3.2 on p.67.

Let us see, which types of clauses correspond to GFN . Note that the occurrence
of formula F1 in a formula ∃≤ny.[r(x, y) ∧ F1] is negative (see the first-order trans-
lation for counting quantifiers above), hence the negation normal form for formulas
in GFN is defined by:

[GFN ]nnf ::= (¬)A | F1 ∧∨ F2 | · · · | ∃
≤ny.[r(x, y) ∧ ¬F1] | ∃

≥ny.[r(x, y) ∧ F1] .
(4.37)

By applying the usual structural transformation and Skolemization we obtain new
clause types for GFN listed in Table 4.21. We see that the clauses for GFN are
very similar to clauses that we have obtained for global number restrictions. So,
they can be dealt with in essentially the same way. For example, if we select literal
¬r(x, y) in clause of form (N.1), it can be resolved only with clauses of form F.2
from Table 4.19, and the result can be split into clauses of form F.3 and F.4 using
the Literal Projection rule. Treatment for clauses of other types is similar. Hence the
following result is obtained analogously to GF [FG]:



4.3. Paramodulation-based Decision Procedures 147

Table 4.21 Additional clause types for guarded formulas with number restrictions

Type of a conjunct 99K [·]sk, [·]cnf 99K Type of a clause (Nr)

∀x.(pF (x)→∃≤ny.[r(x, y) ∧ ¬pF1
[x, y]]) 99K ¬r(x, y) ∨ ¬pF (x) ∨

∨ pF1
[x, y] ∨

∨

1 ≤ i ≤ n

y ≃ hi(x) (N.1)

∀x.(pF (x)→∃≥ny.[r(x, y) ∧ pF1
[x, y]]) 99K ¬pF (x) ∨ r(x, hi(x)), 1 ≤ i ≤ n (N.2)

¬pF (x) ∨ pF1
[x, hi(x)], 1 ≤ i ≤ n (N.3)

¬pF (x) ∨ hi(x) 6≃ hj(x), 1 ≤ i < j ≤ n (N.4)

Alternative clauses ¬pF (x) ∨ ei(x, hi(x)), 1 ≤ i ≤ n (N.4.1)

for clauses of form (N.4): ¬pF (x) ∨ ¬ei(x, hj(x)), 1 ≤ i < j ≤ n (N.4.2)

Theorem 4.3.12. There is a paramodulation-based decision procedure for the guar-
ded fragment with number restrictions GFN which can be implemented in 2EXP-
TIME. This procedure decides the bounded-variable version of this fragment GFkN
in EXPTIME. All complexities assume the unary coding of number restrictions.

On unary and binary codings of numbers

Let us comment on the last sentence of Theorem 4.3.12. When complexity of logics
with counting is analysed, there are generally two ways to measure the size of the
input formula depending on the coding of number restrictions. For unary coding one
assumes that the size of a counting quantifier ∃≤ny. is linear in n, i.e., one assumes
that these quantifiers are written as ∃≤11 . . . 11

| }

n times
y. However, it is more efficient to write

number restrictions using a binary coding of numbers. In this case the size of the
quantifier ∃≤ny. is logarithmic in n.

Unfortunatly the direct complexity computation for the paramodulation-based
procedure described in the previous section, does not give us satisfactory complexity
results for GFN w.r.t. binary coding of numbers, since we introduce too many
functional and predicate symbols by our CNF-translation from Table 4.21—possibly
exponentially many w.r.t. the size of a formula with binary coding of numbers.
Hence, all results formulated in Theorem 4.3.12 are one exponent higher for this
case.

It is possible to deal with number restrictions effectively using a polynomial
encoding of number restrictions in first-order logic. In [Kazakov, 2004], we have
presented a translation that eliminates counting quantifiers from guarded formulas
with number restrictions. Inspired by an automata-based decision procedure for DL
ALCQI [see Tobies, 2001, Chapter 4], we have proposed a translation from the two-
variable guarded fragment with number restrictions GF2N into the three-variable
guarded fragment GF3. This translation preserves (un)satisfiability of formulas, and,



148 Saturation-Based Decision Procedures

importantly, it is polynomial even if the number restrictions are coded in binary :

Theorem 4.3.13 ([Kazakov, 2004]). For any formula F ∈ GF2N there exists a
formula F ′ ∈ GF3 such that (i) F is satisfiable iff F ′ is satisfiable, (ii) |F ′| = O(|F |)
and (iii) F ′ can be computed in polynomial time from F . All sizes assume binary
coding of numbers.

Unfortunately, we cannot discuss the details of this result here, since this will
lead us outside the main topic of this thesis. We just comment, that the main idea
behind the translation is a tree-model property for GF2N , which makes it possible
to encode models using guarded formulas without number restrictions.

Implications for description logics

Paramodulation-based decision procedures for extensions of the guarded fragment
with functionality and number restrictions, can be used to perform reasoning in
many expressible description logics. As has been noted, guarded fragment with
functional guards can be used for reasoning in DL ALCIF . Similarly, it is possible
to show that DLALCQI (an extensions ofALCI with qualified number restrictions)
can be translated into the two-variable guarded fragment with number restrictions
GF2N . In fact, for fragment GF2N a restrictions (ii) for definition (4.36) requiring
that counting atoms r(x, y) must occur only as guards, can be dropped: a proof of
Theorem 4.3.13 does not use it. Hence, it is possible to capture even more expressive
description logics like ALCQIHb, which is ALCQI extended with role hierarchies
and restricted Boolean combinations of roles.

Let us briefly compare two algorithms for reasoning in ALCQIb-TBoxes which
are optimal for binary coding of numbers. The first one, presented in [Tobies,
2001] employs a translation of a concept-subsumption problem into a looping tree
automaton, which is then checked for emptiness. The second procedure described in
[Kazakov, 2004] employs a translation through the guarded fragment (first, concepts
and TBox are translated to GFN , and then counting quantifiers are eliminated):
see Figure 4.3. Both procedures give theoretically optimal complexity. However
the automata-based procedure from [Tobies, 2001], requires the construction of an
exponentially large automaton in the first step, after which a linear time emptiness
test is performed. In contrast to this, the main complexity of our procedure is
concentrated in the last step, where a decision procedure for the guarded fragment
is employed. This makes our procedure more attractive from the practical point of
view, since any optimised decision procedure for the guarded fragment (say, those
given in this thesis or in [Hladik, 2002]) can be directly reused for ALCQIb.

We hope that despite its non-optimal behaviour for the binary coding of numbers,
the paramodulation-based decision procedure for GFN given in this section, can be



4.4. Conclusions 149

Figure 4.3 The outline of decision procedures for ALCQIb and GFN : the dashed
arrows represent an automata-based approach; the solid arrows represent a decision
procedure through the guarded fragment; translations indicated by double arrows
are described in [Kazakov, 2004]

ALCQIb GF2N

Automata GF3

{⊥,⊤}

PTIMEEXPTIME

PTIME

PTIME

EXPTIME

still used in practise, since numbers restrictions in real knowledge bases are typically
not that big. A particular challenge is to combine this decision procedure with a
decision procedure given in subsection 4.3.2. The resulting fragment—GFN with
constants—can be used to reason in DL ALCQIO, which is known to lack the
tree-model property and is NEXPTIME-complete [Tobies, 2000]. Because of the
first, no tableaux algorithm was known for this logic until recently [the first one has
appeared in Horrocks & Sattler, 2005]. Saturation-based decision procedures do not
rely on a tree-model property, so we think that extending our decision procedure to
GFN with constants should not be that difficult.

4.4 Conclusions

In this chapter we have presented and compared a variety of saturation-based de-
cision procedures for several fragments of first-order logics, their combinations and
extensions. The main results of this chapter can be summarised as follows:

1. We derived resolution-based decision procedures for the guarded, two-variable
and full monadic fragments without equality of the respective complexities:
TIME(2n·2w·(log w+ǫ)

), NTIME(2O(n)), NTIME(2O(n)), where n and w are the
size and the width of the input formula. These complexities are optimal and
best known from the literature, to the best of our knowledge.

2. We introduced a notion of structural combination of recursively defined frag-
ments of first-oder logic and demonstrated how decision procedures for com-
binations of the guarded, two-variable and full monadic fragments without
equality, can be derived by combining the resolution decision procedures for
their components. We also demonstrated that almost all decidability results
for the combinations of the above fragments do not hold with equality: the
fragments GF3

≃|FO
2, GF3|FO2

≃ and GF3|FO2|M≃ are undecidable.



150 Saturation-Based Decision Procedures

3. We revisited a paramodulation-based decision procedure for the guarded frag-
ment with equality [Ganzinger & de Nivelle, 1999], and extended this pro-
cedure to capture description logics with nominals and counting restrictions.
We showed that nominals can be expressed within the guarded fragment with
equality and constants, and many DLs with number restrictions can be cap-
tured by the guarded fragment with number restrictions GFN , where the
counting relations are allowed to occur in guards only. For both of these
fragments we derived optimal paramodulation-based decision procedures.

Let us briefly summarise our experience with designing saturation-based decision
procedures:

Uniformness: In our presentation, all decision procedures are obtained in a uni-
form way by a sequence of standard transformations: a negation normal form trans-
formation, followed by a structural transformation, followed by Skolemization. It
turns out that this approach yields small clause classes and sharp complexity bounds.
We have also observed, that a clause class for a fragment can be obtained almost
immediately from a recursive definition for its formulas.

Modularity: Uniform description of decidable fragments and their decision pro-
cedures, opens new perspectives in obtaining more expressive decidable fragments
by combining constructors used in their recursive definitions. We have seen that
in many cases, a decision procedure for a combined fragment can be obtained by
taking a union of the respective clause classes, and only cross-inferences between
clauses for different fragments need to be inspected (see section 4.2).

Correctness: In contrast to tableau-based and related procedures for first-order
fragments, correctness of saturation-based procedures does not rely on global prop-
erties of a fragment (like the finite model property, or the tree-model property), but
on refutational completeness of standard calculi (resolution and paramodulation)
which is proven once-and-for-all. What usually remains to be shown is termination
of a chosen saturation strategy, which is easier to demonstrate formally.

Complexity analysis: Saturation-based decision procedures provide not only de-
cidability proofs for the considered fragments, but also make it possible to extract
best known complexity bounds. Although in some cases straightforward complexity
calculations do not give fully satisfactory results, the decision procedures themselves
are optimal. Refined calculations which use certain properties of saturation rules,
reveal much better complexity bounds.



4.4. Conclusions 151

Expressiveness: Our decision procedures were shown to be expandable for new
constructors and features of fragments. We have seen that decision procedures
for extensions of the guarded fragment with equality, constants, functionality and
number restrictions, are obtained by appropriate modifications of the clause class for
the guarded fragment. For some extensions, even several such solutions are possible
(see subsection 4.3.2). By specialisation of these decision procedures, one can obtain
reasoning algorithms for many expressive description logics.

Simplification rules: Our decision procedures are typically not based on pure
ordered resolution or ordered paramodulation calculi, but are often enhanced with
optional simplification rules. Simplification rules have been proven to be extremely
useful in automated reasoning, since they allow one to effectively prune the search
space of a prover. For saturation-based decision procedures, additional simplifica-
tion rules (like Elimination of Duplicate Literals and Splitting) are indispensable as
well. We have also discovered that dynamic renaming techniques and in particular
the Literal Projection rule, turned out to be very useful: this rule makes it possible to
simplify some saturation procedures, which otherwise require certain non-standard
refinements of theorem proving, like non-liftable orders or basic strategies (see sub-
section 4.1.2 and a discussion related to Example 4.3.10).

Translational methods: In some cases, when direct saturation-based procedures
do not give acceptable complexity results (like for GFN with binary coding of num-
bers), it is possible to employ translations based on model-theoretic arguments, to
fragments that can be decided optimally. However one should take such translations
with a grain of salt, since they often destroy the structure of an input formula, which
may spoil a positive effect of subsequent optimisations [see Horrocks et al., 2000,
Section 7].

Clause schemes: There are certain issues that should be addressed in future
works. Among them is the scheme notation which needs to mature. In this thesis
we introduced clause schemes in order to describe saturation procedures in concise
way. However, in broader perspectives, clause schemes can provide formal tools
for a machine-based development of saturation-based procedures, and in this case
one should come up with a more robust syntax. Although some features needed to
be reflected in clause schemes can be already seen from our presentation, it is not
yet clear which clause classes needed to be captured and what is an appropriate
language to express them.



Chapter 5

Guarded Fragment over

Compositional Theories

In this chapter we study extensions of the guarded fragment with theories that can
be characterised by a set of compositional axioms of form S ◦ T ⊆ H , where S, T
and H are binary relations.

We have already seen in section 2.5 that such axioms are extremely difficult
to handle, since they easily lead to undecidable logics. On the other hand, there
is a big demand in extensions of modal languages and in particular description
logics with compositional axioms. In the first section of this chapter we outline
some examples of such applications: (1) classification of medical terminologies with
complex role dependencies, (2) reasoning about geographical data, in particularly
about distances, routes and topological relations, and (3) interval-based temporal
reasoning.

Motivated by such applications, we consider extensions of the guarded fragment
with compositional relations. Our objective is on the one hand, to identify dangerous
usage of compositional axioms that might lead to undecidability, and on the other
hand to design decision procedures for useful decidable fragments with compositional
axioms and study their complexities.

We start our exploration from extensions of the guarded fragment with the sim-
plest form of compositional axioms—transitivity : T ◦T ⊆ T . Despite its simplicity,
inaccurate usage of transitivity axiom easily leads to undecidable logics. We sharpen
existing undecidability results and demonstrate that two-variable guarded fragment
with two transitive relations is already undecidable.

A series of works [Ganzinger et al., 1999; Szwast & Tendera, 2001; Kieronski,
2003] has been devoted to the question of finding suitable extensions of the guarded
fragment with transitivity that can generalise modal logics over transitive frames.
These studies have resulted in the guarded fragment with transitive guards. In order

152



5.1. Background 153

to obtain a saturation-based decision procedure for this fragment, we generalise the
idea of de Nivelle [1999] and design a special inference rule Transitive Closure. This
rule makes it possible to block certain dangerous inferences with transitive atoms. A
novel feature here is that unlike other simplification rules, the Transitive Closure rule
does not make clauses redundant, but inferences. Using this rule, we will formulate
the first practical decision procedure for the guarded fragment with transitive guards
without equality based on the ordered chaining calculus. This procedure is practical
not only because it gives the optimal complexity for the full fragment, but also
because it is optimal, without further modifications, for many simpler subfragments
that correspond to modal logics.

A similarity between the treatment of transitivity axioms and associative com-
positional axioms in chaining calculi took us to a thought that our procedure could
be extended to a larger class of compositional axioms. And indeed, we found a deci-
sion procedure for a guarded fragment over associative compositional axioms, where
conjunctions of compositional relations can be used as guards. Such extensions can
be used for expressing description logics over metric distances and interval temporal
relations. We have also tried to generalize this result to relational algebras, given by
a collection of extended compositional axioms of form S ◦ T ⊆ H1 ∨ · · · ∨Hn which
admit many regular properties (and in particular associativity). Unfortunately such
extensions are undecidable in general, which we show by a reduction from domino
problems.

Finally, we are concerned with extensions of our decidability results to the case
with equality. It turns out that presence of equality makes most of our extensions
undecidable. The only exception is the guarded fragment with transitive guards
[Szwast & Tendera, 2001], for which it is possible to extend our saturation-based
decision procedure.

5.1 Background

5.1.1 Examples and Applications of Compositional Theories

In this section we give an overview of some works and topics which are closely related
to compositional theories.

Complex role inclusion axioms.

Formalisation of medical nomenclature is nowadays one of the major application
arias for description logics. For designing anatomical ontologies, one often needs to
propagate certain properties of objects over relations [Rector, 2002]: for example, a
disease of a part-of a bone, is also a disease of a bone. Moreover, many anatomical



154 Guarded Fragment over Compositional Theories

relations, such as part-of or located-in admit certain non-trivial interaction properties
[Schulz & Hahn, 2001], which makes it harder to reason about them, for example:

part-of ◦ located-in ⊑ located-in

In order to support reasoning with such interaction axioms, Horrocks & Sattler
[2004] have considered extensions of DL SHIQ with complex role inclusions axioms
of forms:

(1) S ⊑ T, (2) S ◦ T ⊑ T, or (3) T ◦ S ⊑ T. (5.1)

Such axioms generalise transitive roles in a non-trivial way, but are still more re-
stricted than arbitrary compositional axioms of form S ◦ T ⊑ H .

Horrocks & Sattler [2004] have demonstrated, that (i) an extension of SHIQ
with this very restricted form of compositional axioms is still undecidable, but (ii) an
extensions of SHIQ with acyclic axioms of form (5.1) is decidable. Here acyclic
means that the dependency relation ◦< on roles, defined by S ◦< T iff one of axioms
(1) – (3) holds for S 6= T , is well-founded. For the case (ii), a tableaux algorithm
deciding subsumption in the resulted description logic was given.

Regular grammar logics.

A positive result from Horrocks & Sattler [2004] could be probably explained using
a more general framework. As has been mentioned in the end of subsection 3.2.1,
there is a close relationship between compositional axioms of form R ◦ S ⊆ T and
production rules for context-free grammars T → RS. del Cerro & Panttonen [1988],
Baldoni et al. [1998] and later Demri [2001], Demri & de Nivelle [2005] have used
this relationship for characterising (un)decidable modal logics based on inclusion
axioms, called grammar logics. Similar to other logics over composition axioms,
grammar logics are undecidable in general. However, there is a quite large subclass
of decidable grammar logics, namely regular grammar logics, whose compositional
axioms S ◦ T ⊆ H correspond to production rules of regular grammars.

Regular grammar logics subsume many well-known decidable modal logics, in
particular those based on transitive and Euclidean frames (see Table 3.1). It is
possible to show that, in fact, acyclic role inclusion axioms of form (5.1) correspond
to regular languages. That is, for every role T the set of all strings L(T ) = S1 . . . Sn

such that S1 ◦ · · · ◦Sn ⊑ T , is regular. This can be demonstrated by induction on T
w.r.t. ordering ◦<: (i) if T is maximal w.r.t. ◦<, i.e., when S ◦< T for no S, we may
have only rule T ◦ T ⊑ T that produces T , hence a language for T might be either
empty, or L(T ) = T+; (ii) in the induction step, a language for T can be constructed
by taking L0(T ) := (L(S1)∪· · ·∪L(Sl))

∗ ·(L(S ′
1)∪· · ·∪L(S ′

m))·(L(S ′′
1 )∪· · ·∪L(S ′′

n))∗,
where Si ◦ T ⊑ T , S ′

j ⊑ T , T ◦ S ′′
k ⊑ T , Si 6= T , S ′

j 6= T , S ′′
k 6= T , for all i, j, and k



5.1. Background 155

with 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n, and L(T ) := L0(T )+, if T ◦ T ⊑ T and
then L(T ) := L0(T ) otherwise.1

It can be shown that grammars that correspond to associative compositional
axioms (see subsection 3.5.4, p.83) are regular as well. Conversely, every regular
grammar can be “completed” by introducing auxiliary symbols to fulfil the associa-
tivity property. In short, every regular language can be represented by a left-linear
grammar, i.e., by the set of production rules of forms (i) A → aB or (ii) C → b,
where a and b are terminals [see Hopcroft & Ullman, 1979]. Now, for every produc-
tion rule of the first form, we introduce a new symbol PAB and add a new production
rule PAB → a. We also add production rules A → PAB B and PAC → PAB PBC for
every non-terminals A, B and C. It is easy to check that the resulted grammar
generates the same language and corresponds to associative compositional axioms.

Recently Demri & de Nivelle [2005] described a translation from regular grammar
logics with converses to GF2, providing thereby a simple method for deciding many
non-trivial modal logics.

Reasoning about distances.

The original purpose for the chaining calculus introduced in [Bachmair & Ganzinger,
1998b, 1995] was to optimise saturation-based theorem provers for reasoning with
different kinds of compositional relations, and in particular, orderings. We have
already given an example (3.21) which express compositional axioms for a quasi-
ordering %. It turns out, that theories of metric distances have a very similar
properties.

Consider a set of binary relations of forms x D≤n y, and x D>n y, where n is a
natural number, which we call the distance relations. These relations intuitively
express that “the distance between x and y is smaller or equal, respectively greater
than n”. It is easy to see that the usual triangle inequalities for distances give us
the following compositional axioms for the distance relations:

(1) D≤n ◦ D≤m ⊆ D≤(m+n) (2) D>(m+n) ◦ D≤n ⊆ D>m (3) D≤n ◦ D>(m+n) ⊆ D>m (5.2)

for every natural m and n. It is easy to verify that these compositional axioms are
associative. Indeed, there are only four possible ways to “overlap” these axioms:

1A similar construction has been used in the proofs from [Horrocks & Sattler, 2004], however
the authors do not draw parallels with regular languages



156 Guarded Fragment over Compositional Theories

1. (D≤n1
◦ D≤n2

) ◦ D≤n3
= D≤(n1+n2) ◦ D≤n3

= D≤(n1+n2+n3);
D≤n1
◦ (D≤n2

◦ D≤n3
) = D≤n1

◦ D≤(n2+n3) = D≤(n1+n2+n3);

2. (D>(m+n1+n2) ◦ D≤n1
) ◦ D≤n2

= D>(m+n2) ◦ D≤n2
= D>m;

D>(m+n1+n2) ◦ (D≤n1
◦ D≤n2

) = D>(m+n1+n2) ◦ D≤(n1+n2) = D>m;

3. (D≤n1
◦ D≤n2

) ◦ D>(m+n1+n2) = D≤(n1+n2) ◦ D>(m+n1+n2) = D>m;
D≤n1
◦ (D≤n2

◦ D>(m+n1+n2)) = D≤n1
◦ D>(m+n1) = D>m;

4. (D≤n1
◦ D>(m+n1+n2)) ◦ D≤n2

= D>(m+n2) ◦ D≤n2
= D>m;

D≤n1
◦ (D>(m+n1+n2) ◦ D≤n2

) = D≤n1
◦ D>(m+n1) = D>m.

Hence, it is possible to use the ordered chaining calculus OC≻Sel for reasoning over
such relations. Note that this example gives a set of associative compositional
axioms which are not induced by any precedence≫ on special predicate symbols (see
Remark 3.5.5). Hence the chaining calculus formulated in [Bachmair & Ganzinger,
1998b] could not be directly applied for such axioms.

Theories of metric distances have recently drawn considerable attention in [Kutz,
Wolter, Sturm, Suzuki & Zakharyaschev, 2003; Wolter & Zakharyaschev, 2003],
where several extensions of modal logics over distance relations have been proposed.
Investigation of such extensions is a useful and interesting direction towards integra-
tion of reasoning with geographical data in modal-like formalisms and in particular,
in description logics and ontology languages.

Unfortunately the theory of metric distances cannot be completely axiomatised
using only compositional axioms. Additional axioms are required for every n:

x D≤n x; (reflexivity) ¬(x D≤n y) ∨ ¬(x D>n y); (disjointness)
x D≤n y→y D≤n x; (symmetry) x D≤n y ∨ x D>n y; (totality)

(5.3)

(note that the relation D>n is also symmetric because of disjointness and totality, and
that reflexivity together with (5.2) yield monotonicity axioms: (xD<m y→xD<m+n y)
and (x D>(m+n) y→x D>m y))

It is possible to embed reflexivity and symmetry into the chaining calculus by
treating the atoms symmetrically and introducing an analog of Reflexivity Resolution
rule. For the disjointness and totality axioms the situation is more difficult, but even
in these cases special inference rules could be proposed [see Bachmair & Ganzinger,
1998b, Section 6].

The totality axiom makes atoms x D≤n y and x D>n y not particularly useful as
guards. For example, every formula ∀xy.F [x, y] is equivalent to a guarded formula
∀xy.(x D≤n y→F [x, y]) ∧ ∀xy.(x D>n y→F [x, y]) in presence of the totality axiom.
Hence the two-variable guarded fragment over such relations becomes as expressible
as the two-variable fragment, and hence, is NEXPTIME-hard. This was probably
the reason why most known decidable logics based on distance relations [Kutz et al.,



5.1. Background 157

2003; Wolter & Zakharyaschev, 2003; Lutz, Wolter & Zakharyaschev, 2003] include
only “half” of such relations, namely those of form x D≤n y.

Totality can be avoided, if one considers similar relations: x P≤n y and x P>n y
but with a slightly different semantics. These relations read as: “there exists a path
between x and y of length smaller or equal, respectively greater than n”. We call
such relations, the path relations. These relations admit the same axioms as the
distance relations (from (5.2) and (5.3)) except for disjointness and totality, which
makes it easy to integrate them into description logics and the guarded fragment.
Moreover, one can extend such relations and express other interesting compositional
properties, which do not hold for distance relations, like: P=m ◦ P=n ⊆ P=(m+n), or
P[m1,m2] ◦ P[n1,n2] ⊆ P[n1+m1,n2+m2], where x P=n y, x P[n1,n2] y mean: “there exists a path
between x and y of the length n, respectively, of the length between n1 and n2”.

Relational algebras

In the literature one can find other interesting theories which can be characterised
by extended of compositional axioms of the following form:

S ◦ T ⊆ H1 ∪ · · · ∪Hn (5.4)

that is a composition of two relations might be one of several other relations. The
most prominent examples of such theories are the region connection calculi RCC5
and RCC8, and the Allen’s interval algebra.

The region connection calculi. The region connection calculi (short RCC) have
been thoroughly studied in the context of qualitative spatial reasoning (see [Cohn,
Bennett, Gooday & Gotts, 1997] for an overview), and have many potential appli-
cations in reasoning about geographical data and in particular within Geographical
Information System (GIS).

The RCC-calculi consider spacial (topological) relations between regions. The
RCC8 calculus consists of eight such relations illustrated in Figure 5.1. Here x DC y

Figure 5.1 Spatial relations of RCC8
RCC8

DC EC PO TPP TPPi NTPP NTPPi EQ

means that region x is disconnected from y, x EC y means that x is externally



158 Guarded Fragment over Compositional Theories

connected with y, x PO y means that x partially overlaps with y, x TPP y and
x NTPP y denotes that x is a tangential, respectively, non-tangential proper part
of y (depending on weather the closures of regions intersect or not), x TPPi y and
x NTPPi y are their respective inverses, and x EQ y means that two regions are
eqal. These relations are mutually exclusive and cover all possible cases of relations
between regions. RCC5 consists of similar five relations between regions when the
closures of regions are not taken into account.

By considering all possible mutual re-
lationships between triples of regions, it
is possible to derive all compositional ax-
ioms for RCC8-relations, which are of form
(5.4), for example the following one (see
the illustration to the right):

TPPi ◦ NTPP ⊆ PO ∪ TPP ∪ NTPP

The collection of all compositional axioms of such form is called a compositional
table.

Allen’s interval algebra. Another well-known example of a theory that can be
characterised by compositional axioms of form (5.4) is the Allen’s interval algebra
[Allen, 1983]. This algebra consists of thirteen relations between time intervals:
those given in Figure 5.2, their inverses and the equality. Allen’s relational algebra

Figure 5.2 Allen’s [1983] relations between intervals
x y

x before y

x meets y

x overlaps y

x starts y

x during y

x finishes y

can be used in planning for reasoning about processes that have certain duration
in time [Allen, 1991]. The compositional table for Allen’s interval algebra can be
derived similarly by considering all possible relations between end-points of intervals.

It is well-known that the Allen’s interval algebra and region connection calculi
enjoy the properties of relational algebras:



5.1. Background 159

Definition 5.1.1. A relational algebra is a tuple A = (A,∧,¬, `, ◦, 0, 1, Id), where
(A,∧,¬, 0, 1) is a boolean algebra, ` : A → A is the inverse, ◦ : A × A → A is a
composition, Id ∈ A is the identity, such that the following properties hold for every
X, Y, Z ∈ A:

(1) X ◦ Id = Id ◦X = X (identity)
(2) (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) (associativity)

(3) (X`)` = X

(4) (X ∨ Y `) = X` ∨ Y `

(5) (¬X)` = ¬(X`)

(6) (X ◦ Y )` = Y ` ◦X`

(7) (X ◦ Y ) ∧ Z` = 0 ⇒ (Y ◦ Z) ∧X` = 0 (triangle axiom)

(5.5)

33

For an overview on relational algebras see, e.g., [Hirsch, 1997]. Relational alge-
bras that correspond to region and interval calculi are obtained by taking A to be
the set of all possible unions of relations, and extending composition and converse
on these unions element-wise.

In recent years there have been many attempts for extending modal and descrip-
tion logics with some forms of a spatial reasoning [Haarslev, Lutz & Möller, 1998;
Wessel, 2001; Gabelaia, Kontchakov, Kurucz, Wolter & Zakharyaschev, 2003; Lutz
& Wolter, 2004] and with interval-based reasoning [Halpern & Shoham, 1991; Lutz,
2004] (see also [Artale & Franconi, 2000] for an overview of such works). However,
in many of these papers the spatial and interval relations are interpreted over re-
stricted domains. For example Halpern & Shoham [1991] considered only domains
consisting of all intervals induced by a set of points on the real line; Lutz & Wolter
[2004] considered only regions that are rectangles in R2. These restrictions were
among the main reasons behind undecidability for the resulted logics.

Other papers like [Haarslev et al., 1998; Wessel, 2001] consider classes of theories
that overgeneralize spacial theories: for example theories that admit axioms of form
(5.4) (and do not fulfil all axioms of relational algebras (5.5)). It can be expected
that extensions of description logics with such theories are in most cases undecidable
(already compositional axioms of form R ◦ S ⊆ H are problematic), and only very
limited decidability results can be obtained.

In this chapter, among other results, we consider extensions of ALC with com-
positional axioms of form (5.4) satisfying all properties of relational algebras (5.5).
It turns out that even imposing all these “regular” conditions does not help avoiding
undecidability results.



160 Guarded Fragment over Compositional Theories

5.1.2 A Short History of the Guarded Fragment with Tran-

sitivity

On the decision problem and transitivity. Despite its simplicity, the transi-
tivity axiom:

∀xyz.( xTy ∧ yTz → xTz ) (Transitivity)

has always been a challenge for decision procedures in first-order logic, and au-
tomated deduction in general. This axiom is expressible in neither monadic, nor
two-variable, or guarded fragments which we have studied, because it contains a
binary atom, three variables and has no guard. It seems to be that the only well-
known decidable fragment that can capture transitivity, is the Bernays-Schönfinkel
class, which is a set of first-order formulas with a quantifier prefix ∃∗∀∗ [see Börger
et al., 1997].

Undecidable extensions of GF with transitivity. Transitivity is widely used
in many logical formalisms, including modal, temporal and description logics – it is
indispensable for reasoning about time and ordered structures. Since the guarded
fragment is a most natural first-order counterpart for these formalisms, the rea-
sonable question is: how to integrate transitivity into into the guarded fragment?
The first negative result on this question has been obtained by Grädel [1999]. He
showed that already the three-variable guarded fragment with two transitive rela-
tions GF3[transitive(T1, T2)] is undecidable. Later [Ganzinger et al., 1999] improved
this results by showing that even two-variable guarded fragment with transitivity
GF2[T] is undecidable. The reduction proof in the last paper makes use of five tran-
sitive relations. In the upcoming section we demonstrate that even two transitive
relations suffice for undecidability of GF2[T].

Decidable extensions of GF with transitivity. On the positive side, Ganzinger
et al. [1999] found a decidable variant of the guarded fragment with transitivity which
subsumes relational translation of some modal logics over transitive frames, like
K4—a so called monadic two-variable guarded fragment with transitivity GF2

m[T].
A monadic guarded fragment GFm is defined as a set of all guarded formulas, such
that every non-unary atom may occur in guards only. In other terms, only unary
atoms are allowed in the base case of definition (3.17) for guarded formulas (see
p. 75). Decidability of GF2

m[T] has been proven in [Ganzinger et al., 1999] by a
reduction to the monadic second-order logic, which gives only non-elementary com-
plexity. Two questions were left open in this paper: (1) Does the guarded fragment
remain decidable when only transitive relations are restricted to occur in guards?
and (2) What is the complexity of GF2

m[T]?



5.1. Background 161

The guarded fragment with transitive guards. Two years later, the question
(1) above has been answered positively : using a model-theoretic analysis, Szwast
& Tendera [2001] have demonstrated that the guarded fragment with transitive
guards (which we denote by GF [TG]) can be decided in 2EXPTIME. This com-
plexity is optimal, since already the guarded fragment without transitivity GF is
2EXPTIME-complete. However, the optimal complexity for its bounded-variable
version GFk[TG], remained unknown, since the procedure of Szwast & Tendera
[2001] does not become easy for this case. This complexity gap has been closed by
Kieronski [2003], who proved that, surprisingly, GF2[TG] is 2EXPTIME-hard. His
proof holds even for the case with one transitive relation which is the only non-unary
atom used in formulas. Hence this result also closes the open question (2) above.

Conclusions. From this short history on the guarded fragment with transitivity,
we see, that transitivity is not easy to integrate into decidable fragments: even two-
variable guarded fragment becomes undecidable with transitivity, and for its very
restricted version, already one transitive relation yields exponential blowup in com-
plexity. Yet, we think that it is impotent to study extensions of decidable fragments
with transitivity (both in theory and in practice), because of its fundamental role
in computer science.

In the next sections, we sharpen and generalise many results on the guarded
fragment with transitivity mentioned here. In particular, we obtain the first practical
decision procedure for GF [TG], using the ordered chaining calculus, which has an
optimal complexity not only for its full version, but also for its simpler subfragments
corresponding to modal and description logics.

5.1.3 Undecidability of the Guarded Fragment with Transi-

tivity

In this section, we demonstrate undecidability for the unrestricted guarded fragment
with transitivity GF [T]. This result has been obtained by Grädel [1999] for GF3[T]
with two transitive relations and later by Ganzinger et al. [1999] for GF2[T] with five
transitive relations. Here we sharpen both of these results by proving that GF2[T]
with two transitive relations is undecidable.

Both undecidability proofs mentioned above use reductions from the tiling prob-
lems2 (see section 3.4), the essential part of which is to enforce an infinite grid
structure using guarded formulas with transitivity, similar as it has been done for

2Strictly speaking, Ganzinger et al. [1999] use reduction from Minsky machines, although there
is no essential difference with domino problems



162 Guarded Fragment over Compositional Theories

the guarded fragment with functionality GF [F] in subsection 4.3.33. We also use
reduction from dominoes, but we entail the grid structure in a slightly different way,
so that only two variables and only two transitive relations are used.

Figure 5.3 Undecidability of GF2 with two transitive relations

S

T

a11 a11 a11 a11 a11 a11

a11 a11 a11 a11 a11 a11

a21 a21 a21 a21 a21 a21

a21 a21 a21 a21 a21 a21

a31 a31 a31 a31 a31 a31

a41 a41 a41 a41 a41 a41

a12 a12 a12 a12 a12

a12 a12 a12 a12 a12

a22 a22 a22 a22 a22

a22 a22 a22 a22 a22

a32 a32 a32 a32 a32

a42 a42 a42 a42 a42

The grid that we want to express is illustrated in Figure 5.3. In order to express
this structure, we first construct a “skeleton” of a grid: the initial vertical axis, and
horizontal lines from it. After that we propagate the vertical edges from left to
right using transitivity of the respective relations, and special conditional inclusion
axioms for them:

Table 5.1: Encoding of GRID in the guarded fragment with transitivity

GRID := ∃x.[a11(x) ∧ I(x)] ∧ - creates an origin of a grid

∧ ∀x.(I(x) ∧ a11(x)→ ∃y.[ySx ∧ I(y) ∧ a21(y)] ) ∧
∧ ∀x.(I(x) ∧ a21(x)→ ∃y.[xSy ∧ I(y) ∧ a31(y)] ) ∧
∧ ∀x.(I(x) ∧ a31(x)→ ∃y.[ySx ∧ I(y) ∧ a41(y)] ) ∧
∧ ∀x.(I(x) ∧ a41(x)→ ∃y.[xSy ∧ I(y) ∧ a11(y)] ) ∧

- creates the initial vertical axis

∧ ∀x.(a11(x)→∃y.[xSy ∧ a12(y)]) ∧ ∀x.(a12(x)→∃y.[xTy ∧ a11(y)]) ∧
∧ ∀x.(a21(x)→∃y.[ySx ∧ a22(y)]) ∧ ∀x.(a22(x)→∃y.[yTx ∧ a21(y)]) ∧
∧ ∀x.(a31(x)→∃y.[xSy ∧ a32(y)]) ∧ ∀x.(a32(x)→∃y.[xTy ∧ a31(y)]) ∧
∧ ∀x.(a41(x)→∃y.[ySx ∧ a42(y)]) ∧ ∀x.(a42(x)→∃y.[yTx ∧ a41(y)]) ∧

- creates all horizontal lines

∧ ∀xy.[ySx ∧ a12(x) ∧ a22(y)→yTx
:::

] ∧ ∀xy.[yTx ∧ a11(x) ∧ a21(y)→ySx
:::

] ∧

∧ ∀xy.[xSy ∧ a22(x) ∧ a32(y)→xTy
:::

] ∧ ∀xy.[xTy ∧ a21(x) ∧ a31(y)→xSy
:::

] ∧

- propagates the vertical edges

∧ ∀xy.[xSy ∧ a11(x) ∧ a12(y)→H(x, y)] ∧ ∀xy.[ySx ∧ a21(x) ∧ a22(y)→H(x, y)] ∧

Continued on next page

3In fact Grädel [1999] enforces functionality of a binary relation using two transitive relations
and reuses this reduction



5.1. Background 163

∧ ∀xy.[xSy ∧ a31(x) ∧ a32(y)→H(x, y)] ∧ ∀xy.[ySx ∧ a41(x) ∧ a42(y)→H(x, y)] ∧

∧ ∀xy.[xTy ∧ a12(x) ∧ a11(y)→H(x, y)] ∧ ∀xy.[yTx ∧ a22(x) ∧ a21(y)→H(x, y)] ∧
∧ ∀xy.[xTy ∧ a32(x) ∧ a31(y)→H(x, y)] ∧ ∀xy.[yTx ∧ a42(x) ∧ a41(y)→H(x, y)] ∧

∧ ∀xy.[ySx ∧ a11(x) ∧ a21(y)→V (x, y)] ∧ ∀xy.[xSy ∧ a21(x) ∧ a31(y)→V (x, y)] ∧
∧ ∀xy.[ySx ∧ a31(x) ∧ a41(y)→V (x, y)] ∧ ∀xy.[xSy ∧ a41(x) ∧ a11(y)→V (x, y)] ∧

∧ ∀xy.[yTx ∧ a12(x) ∧ a22(y)→V (x, y)] ∧ ∀xy.[xTy ∧ a22(x) ∧ a32(y)→V (x, y)] ∧
∧ ∀xy.[yTx ∧ a32(x) ∧ a42(y)→V (x, y)] ∧ ∀xy.[xTy ∧ a42(x) ∧ a12(y)→V (x, y)] ∧

- identifies vertical and horizontal edges

It is crucial in this construction that distant nodes do not become “connected”
via a relation. In order to prevent this, we interleave two sorts of edges and change
their directions. This is important, as the construction does not work, say, for one
transitive relation, or for two (partial) equivalence relations, that is, when transitive
relations are additionally symmetric4

The conjunction of formula GRID and formula TILING from Figure 3.1 in subsec-
tion 4.3.3, is (finitely) satisfiable iff the grid admits (periodic) tiling. This implies
the following result:

Theorem 5.1.2. GF2[transitive(S, T)] is a conservative reduction class.

In fact, it is easy to modify our construction in such a way that S and T are
the only non-unary atoms used in formulas: for this, atoms H(x, y) and V (x, y)
in GRID from Table 5.1, should be replaced with disjunctions that they guard in
formula TILING from Figure 3.1.

One possible reason for udecidability of the guarded fragment with transitivity,
is a dangerous usage of transitive atoms, when they can be implied by other atoms
(we indicated such occurrences in Table 5.1), which made it possible to propagate
relations over a grid without connecting too many nodes. It is possible to forbid
such occurrences by requiring that transitive atoms should occur in guard positions
only, as it is the case for translations of many modal and description logics (see the
next section). This fragment is called the guarded fragment with transitive guards
GF [TG], and is known to be decidable [Szwast & Tendera, 2001].

Implications for description logics

DL SHI, which is ALC augmented with transitive roles, role hierarchies and in-
verse roles, is a decidable description logic, contained in a well-studied DL SHIQ

4In fact, recently Kieronski & Otto [2005] have demonstrated that the two-variable fragment
with two equivalence relations remains decidable



164 Guarded Fragment over Compositional Theories

[Horrocks et al., 2000]. It turns out that DL SI(⊆) which is a seemingly harm-
less generalisation of SHI, with role hierarchies replaced by role-value maps (see
Table 3.2 on p.67) becomes undecidable.

Undecidability of description logics incorporating role-value maps and composi-
tions of roles is known since [Schmidt-Schauß, 1989], [see also Donini, 2003, Section
3.6.1]. However, it is generally understood that this undecidability is caused by com-
positions of roles, since already many simple description logics without role-value
maps become undecidable with composition: see [Baader, 2003] and section 2.5. All
these undecidability proofs do not work for transitive roles. It comes to our surprise
that transitivity with role-value maps may also form a dangerous mixture:

Corollary 5.1.3. Subsumption and satisfiability of concepts in DL SI(⊆) is unde-
cidable.

Proof. First, we prove that a concept satisfiability w.r.t. SI(⊆)-TBoxes is undecid-
able. For this, we express formula GRID from Table 5.1 using a concept and inclusion
axioms.

The initial “skeleton” can be enforced by saying that a concept a11 ⊓ I that
corresponds to the first conjunct ∃x.[a11(x) ∧ I(x)] in GRID is satisfiable w.r.t. a
TBox containing the following inclusion axiom for subsequent conjuncts from GRID:

∀x.(I(x) ∧ a11(x)→ ∃y.[ySx ∧ I(y) ∧ a21(y)] ) 99K I ⊓ a11 ⊑ ∃S− .(I ⊓ a21)

∀x.(I(x) ∧ a21(x)→ ∃y.[ySx ∧ I(y) ∧ a31(y)] ) 99K I ⊓ a21 ⊑ ∃S− .(I ⊓ a31)

. . . . . . . . . etc.
∀x.(a11(x)→∃y.[xSy ∧ a12(y)]) 99K a11 ⊑ ∃S.a12

∀x.(a12(x)→∃y.[xTy ∧ a11(y)]) 99K a12 ⊑ ∃T .a11

. . . . . . . . . etc.

where I and aij , 1 ≤ i ≤ 4, j = 1, 2 are concept names that correspond to the unary
atoms, and S and T are role names which are declared to be transitive.

It is more difficult to express the remaining conjuncts in GRID which are condi-
tional inclusion axioms used for propagation of vertical edges and defining relations
H and V . Although these axioms are not expressible using role hierarchies, it is
possible to express them using role-value maps as follows:

∀xy.[ySx ∧ a12(x) ∧ a22(y)→yTx] 99K a12 ⊑ (S− ⊆ T22)

99K a22 ⊑ (T−
22 ⊆ T−)

. . . . . . . . . etc.

∀xy.[xSy ∧ a11(x) ∧ a12(y)→H(x, y)] 99K a11 ⊑ (S ⊆ H12)

99K a12 ⊑ (H−
12 ⊆ H−)

. . . . . . . . . etc.



5.1. Background 165

Here T22,.., H12,.. are auxiliary role names (not declared to be transitive). Formula
TILING for a domino problem can be easily encoded by inclusion axioms (even in
ALC). Hence a formula GRID ∧ TILING is satisfiable iff the concept a11 ⊓ I is
satisfiable w.r.t. the constructed TBox. This proves that a concept satisfiability
w.r.t. a terminology is undecidable for SI(⊆).

In order to demonstrate undecidability of just concept satisfiability (without
TBox-es), we note that any SI(⊆)-TBox can be internalised (that is, imbedded
into a concept). This can be done using an additional transitive role U and role-
value maps:

• for every TBox inclusion axiom C1 ⊑ C2 we add a conjunct ∀U.(¬C1 ⊔ C2);

• for every role name R we add a conjunct
(R ⊆ U) ⊓ (R− ⊆ U) ⊓ ∀U.[(R ⊆ U) ⊓ (R− ⊆ U)].

The conjuncts of the last form express that U is a universal role, i.e., it contains any
other role and its converse. If U is additionally declared to be transitive, then ∀U.C
expresses that C holds globally, i.e., it is equivalent to inclusion axiom ⊤ ⊑ C. The
internalisation technique is well-known for expressive description logics [see Baader,
Calvanese, McGuinness, Nardi & Patel-Schneider, 2003].

Finally, concept subsumption in SI(⊆) is undecidable, since ⊥ subsumes C iff
C is not satisfiable. 22

5.1.4 On the Modal Fragment with Transitivity

As we have seen in the previous section, the guarded fragment with transitivity
remains undecidable even when restricted to two variables and to two transitive re-
lations. However many modal and description logics which could be translated to
two-variable guarded fragment, remain decidable with transitivity. In fact, transi-
tivity does not even change their complexity. So, which distinguished properties of
these logics are responsible for this?

In this section we try to approach this question, by considering the extension
K4 of the basic modal logic K with transitivity. Modal logic K4 consists of modal
formulas that are valid in all transitive frames (i.e., the set of admissible Kripke
interpretations for K4 is restricted to those where the reachability relation R is
transitive: see subsection 3.2.1). As any modal logic with a first-order expressible
frame correspondence property (like those listed in Table 3.1 on p.64), validity (and
dually, satisfiability) of K4-formulas can be decided through the first-order logic via
a relational translation for modal formulas (3.5). We reformulate this translation,
using our standard sequence of transformations:



166 Guarded Fragment over Compositional Theories

Starting from a recursive definition for modal formulas:

MF ::= A | ¬F1 | F1 ∧ F2 | 2F1 . (5.6)

we put them into the negation-normal form:

[MF]nnf ::= (¬)A | F1 ∧∨ F2 | 2F1 | ♦F1. (5.7)

and apply the structural transformation: [F ]str
K

:= PF ∧ [F ]def
K , where:

[F ]def
K := [(¬)A]def

K = ∀x.[pF (x)→(¬)A(x)] |

[F1 ∧∨ F2]
def
K = ∀x.[pF (x)→pF1

(x) ∧∨ pF2
(x)] ∧ [F1]

def
K ∧ [F2]

def
K |

[2F1]
def
K = ∀x.(pF (x)→∀y.[(xRy)→pF1

(x)]) ∧ [F1]
def
K |

[♦F1]
def
K = ∀x.(pF (x)→∃y.[(xRy) ∧ pF1

(x)]) ∧ [F1]
def
K .

(5.8)

Then a K4-formula F is satisfiable iff the first-order formula

[F ]str
K
∧ ∀xyz.[xRy ∧ yRz→xRz]

is satisfiable. It is easy to see from (5.8), that [F ]str
K

is a two-variable guarded
formula, however the second conjunct expressing the transitivity axiom is not. Since
the target fragment of this translation – the two-variable guarded fragment with
transitivity – is undecidable, this translation can be hardly used for deciding K4.

de Nivelle [1999] has proposed an alternative translation, that maps K4 (and
many other modal logics) directly into the guarded fragment. This translation is
obtained from (5.8), by adding one more conjunct to the case with 2F1:

[F ]def
K4 := [(¬)A]def

K4 = ∀x.[pF (x)→(¬)A(x)] |

[F1 ∧∨ F2]
def
K4 = ∀x.[pF (x)→pF1

(x) ∧∨ pF2
(x)] ∧ [F1]

def
K4 ∧ [F2]

def
K4 |

[2F1]
def
K4 = ∀x.(pF (x)→∀y.[(xRy)→pF (x)]) ∧

∀x.(pF (x)→∀y.[(xRy)→pF1
(x)]) ∧ [F1]

def
K4 |

[♦F1]
def
K4 = ∀x.(pF (x)→∃y.[(xRy) ∧ pF1

(x)]) ∧ [F1]
def
K4 .

(5.9)

It is proved that a guarded formula [F ]str
K4

:= PF ∧ [F ]def
K4 is satisfiable iff F is

satisfiable in K4.
Under a closer inspection one could notice that translations (5.8) and (5.9),

naturally correspond to the tableau expansion rules given in System 1. In particular,
the case for 2F1 from (5.9) encode respectively the expansion rules 4 and K.



5.1. Background 167

We have analysed the de Nivelle’s [1999] translation (5.9) from a viewpoint of
the clause logic, and came up with the following rule:

a(x)

aT (x)

b

b

bb

b

b

b

b

b

T

Transitive Closure

TC :
¬(xTy) ∨ ¬a(x) ∨ b(y)

¬(xTy) ∨ ¬a(x) ∨ aT (y)
¬(xTy) ∨ ¬aT (x) ∨ aT (y)

¬aT (y) ∨ b(y)

where (i) xTy is a transitive relation,
and (ii) aT (x) is a fresh unary atom
for introduced for a and T .

(5.10)
This rule extends a signature with an atom aT (x), which intuitively represents the
“image” of a(x) under relation T – this is what the first clause in the conclusion
of (5.10) expresses. If T is a transitive relation, then aT is closed under T , which
is expressed by the second clause. Finally, every element of aT (y) is an element of
b(y), because the premise of this rule says that every element y that is T -reachable
from some x where a(x) holds (i.e., exactly those from aT (y)) should be in b(y). In
fact, we have just proved the following lemma:

Lemma 5.1.4. Transitive Closure is a sound inference rule.

Proof. Let M be a T -model for the premise ¬(xTy) ∨ ¬a(x) ∨ b(y) of rule (5.10)
(i.e., a model of this formula in which T is interpreted by a transitive relation). We
expand M to a modelM′ by interpreting the new atom aT (x) as follows:

[aT (y)]
M′

:= [∃x.(a(x) ∧ xTy)]M.

This definition (when read from right to the left) implies, in particular that:

M′ � [∃x.(a(x) ∧ xTy)]→aT (x)

which means that the first conclusion of rule (5.10) is true in M′. The second
conclusion is also true inM′ because of the following sequence of implications:

M′ � aT (x) ∧ xTy ≡ ∃x′.[a(x′) ∧ x′Tx ∧ xTy] →

(transitivity of T ⇒) ∃x′.[a(x′) ∧ x′Ty] ≡ aT (y).

The last conclusion of (5.10), is implied by the premise of this rule:

M′ � aT (y) ≡ ∃x.[a(x) ∧ xTy]
premise
→ ∃x.b(y) ≡ b(y).

22



168 Guarded Fragment over Compositional Theories

Since the Transitive Closure rule is sound, it can be used in a saturation process as
an optional simplification rule. However, this rule does not really produce “simpler
clauses”. A really useful feature of this rule is that an atom xTy may no longer
assumed to be transitive, when all clauses of form:

¬(xTy) ∨ ¬a(x) ∨ b(y) (5.11)

are “closed” under the Transitive Closure rule:

Lemma 5.1.5. Let N be a set of clauses containing transitive atoms negatively only
in clauses of the form (5.11). Let N ′ be obtained from N by adding the conclusions
of the Transitive Closure rule for all of these clauses. Then N is T -satisfiable iff N ′

is satisfiable.

Proof. The “only if ” part of this lemma follows from soundness of the Transitive
Closure rule. Indeed, if N is T -satisfiable, then by Lemma 5.1.4, N ′ is also T -
satisfiable, and hence N ′ is satisfiable.

For proving the “ if ” part, suppose M′ is a model of N ′. We need to construct
a T -model M for N . We simply define M to be the smallest T -interpretation
that contains M′, i.e., M is identical to M′ for all non-transitive atoms, whereas
interpretations for transitive atoms are transitively closed : TM := (TM′

)+. We
claim that the clauses from N remain true inM:

Obviously, the clauses containing transitive atoms positively remain true inM.
The remaining clauses from N must be of the form (5.11). Such a clause may become
false in M, only if there are some domain elements di with 0 ≤ i ≤ n, such that:
(i) M′ � a(d0), (ii) M′ � di−1Tdi, 1 ≤ i ≤ n, but (iii) M′ 2 b(dn). However, since
the conclusions of these clauses under the Transitive Closure rule, are true in M′,
we have in particular:

(1) M′ � ¬(d0Td1) ∨ ¬a(d0) ∨ aT (d1);
(2) M′ � ¬(di−1Tdi) ∨ ¬aT (di−1) ∨ aT (di), 1 ≤ i ≤ n;
(3) M′ � ¬aT (dn) ∨ b(dn);

which is not possible together with (i) – (iii). Hence every clause from N is true in
M. 22

To summarise, we have shown how transitivity can be effectively eliminated for
certain clause classes, containing translations of modal formulas, using an additional
inference rule (5.10). However, this solution is not really satisfactory, since it relies
on global properties of a clause set: all negative occurrences of transitive atoms must
be of form (5.11). This makes application of this rule rather limited: if a clause



5.2. Extensions without Equality 169

¬(xTy) ∨ ¬a(x) ∨ b(y) is replaced with an essentially equivalent pair of clauses
¬(xTy) ∨ ¬a(x) ∨ b(y) ∨ c(x, y) and ¬c(x, y), our arguments stop working.

In the next section we demonstrate how to fix this problem and integrate the
Transitive Closure rule into our general theorem proving framework.

5.2 Extensions without Equality

In this section we consider extensions of the guarded fragment without equality
by compositional axioms. First we demonstrate how to obtain a saturation-based
decision procedure for the guarded fragment with transitive guards GF [TG] without
equality. Then we extended this procedure for arbitrary associative compositional
axioms instead of transitivity, and discuss how restrictions on occurrences of special
(transitive or compositional) atoms can be relaxed. Finally, we demonstrate where
is the limit of such extensions: the two-variable guarded fragment over a relational
algebra is undecidable even restricted to the modal fragment.

5.2.1 Deciding the Guarded Fragment with Transitive Guards

For deciding the guarded fragment with transitive guards GF [TG] without equality,
we employ the ordered chaining calculus OC≻Sel described in subsection 3.5.4, which
has build-in inferences for transitive relations. In [Kazakov & de Nivelle, 2004] we
have demonstrated how GF [TG] without equality can be decided by resolution with
ordering constraints. However, using the chaining calculus, constraint clauses can
be avoided, which means that our procedure could be, in principle, extended to the
case with equality.

The chaining calculus was proven to perform well in practice on problems in-
volving transitivity [Bachmair & Ganzinger, 1998b]. It is also able do decide some
modal logics with transitivity [Ganzinger et al., 2001] (although, see Note 5.2.2
below). Unfortunately, the chaining calculus does not decide directly the clause
class for GF [TG]. A problematic situation may appear which will be described in
a moment. After spotting this problem, we propose a solution, using an additional
simplification rule Transitive Closure considered in the previous sections.



170 Guarded Fragment over Compositional Theories

Difficulties with negative occurrences of transitive atoms

When we translate formulas from GF [TG] to clauses according to our general pro-
cedure, we obtain clauses containing transitive atoms only of the following forms:

(1) ¬p(x) ∨ h(x)Tx; (4) ¬(xTy) ∨ α[x, y];
(2) ¬p(x) ∨ xTh(x); (5) ¬(xTx) ∨ α[x];
(3) ¬p(x) ∨ xTx;

(5.12)

(the exact clause types are similar to those for GF [FG]: see Table 4.18 on p.140).
Chaining rules (see System 6 on p.84) do solve many problems with transitivity

axiom (in particular those mentioned in section 2.3 and in [Ganzinger et al., 2001]),
but not all of them. It can be noticed that clauses of forms (1) – (3), with positive
occurrences of transitive atoms behave “well” under the chaining inferences: the
Ordered Chaining rule applied to them does not increase the number of variables
in clauses (since there is only one variable), and does not increase their functional
depth, since the deepest terms are unified. There are also no difficulties with the
Negative Chaining rule applied to clauses (1) – (3) and a clause of form (5). However,
Negative Chaining with clauses of form (4) may cause problems:

Example 5.2.1. Consider the following clauses of forms (1), (2) and (4):

1. ¬p(x) ∨ h(x)Tx
⋆

2. ¬p(x) ∨ xTh(x)⋆
3. ¬(xTy) ∨ ¬a(x) ∨ a(y)
4. ¬(xTy) ∨ a(x) ∨ ¬a(y)

Clearly, the Negative Chaining inferences between clauses 1, 2 and 3, 4 are possible:

NC[2; 3]: 5. ¬p(y) ∨ ¬(xTy) ∨ ¬a(x) ∨ a(h(y))

NC[2; 4]: 6. ¬p(y) ∨ ¬(xTy) ∨ a(x) ∨ ¬a(h(y))

One can already see that clauses 5 and 6 do not look good: they contain a functional
term h(y) that is not covering for a clause, since it does not contain the variable x.
This may potentially result in increase of the number of variables in clauses. And
this happens indeed: unless no other literals are selected in clauses, a resolution
inference is possible that resolves the last literals:

OR[5; 6]: 7. ¬p(y) ∨ ¬(x1Ty) ∨ ¬(x2Ty) ∨ ¬a(x1) ∨ a(x2)

(we have eliminated duplicate occurrences of ¬p(y)). Clause 7 is similar to clauses
2 and 3 but is longer. It is possible to show that arbitrary long clauses can be
produced in this way by continuing Negative Chaining inferences with clauses 1 and
2 followed by Ordered Resolution.

On the other hand, if we select some negative literals in clauses 5 and 6 to
prevent their resolving, then the clause depth can grow, for example if one selects
the negative literal ¬(xTy), then the Negative Chaining inference with clause 2 would
produce similar but deeper clauses. 33



5.2. Extensions without Equality 171

Note 5.2.2. For the clause class correspondent to extensions of modal logic K4
considered in [Ganzinger et al., 2001], the problem illustrated in Example 5.2.1
can be partially solved. The authors have demonstrated that “long” clauses can
be simplified using a special Condensing rule. This makes it possible to establish a
bound on the size of such clauses and regain termination of the saturation procedure.
However the clauses that can be obtained after condensation could be exponentially
long in the size of the signature, which gives only 2EXPTIME decision procedure
for K4 (which is “only” PSPACE-complete). The authors pointed out that this
problem could be avoided by splitting long clauses on shorter ones using Splitting
through New Predicate Symbol. 33

More examples

Let us analyse the problematic situation illustrated in Example 5.2.1.

Example 5.2.3 [Example 5.2.1, continued]. Negative Chaining is not the only rule
that can be applied to clauses 2 and 3, respectively 2 and 4. These clauses can be
also resolved:

OR[2; 3]: 5′. ¬p(x) ∨ ¬a(x) ∨ a(h(x))

OR[2; 4]: 6′. ¬p(x) ∨ a(x) ∨ ¬a(h(x))

Note that clauses 5 and 6 can be now obtained by resolving these clauses with
clauses 3 and 4 on a(y) and ¬a(y) respectively. However, since these literals are not
maximal in these clauses, the resolution inferences should not be made. The fact
that the conclusion of some inference can be obtained by an “unordered” resolution
with some other clauses, is a strong indicator that this inference might be redundant.

Recall (see subsection 3.5.2) that (i) a ground inference is redundant if the
conclusion of this inference follows from clauses that are smaller in the ordering
than the maximal premise of this inference, and (ii) a non-ground inference is
redundant, if every ground instance of this inference is redundant. Redundancy
of inferences can justify many useful refinements of saturation procedures, notably,
that paramodulation into variables are not needed (see [Kazakov, 2005] for further
details).

Let us demonstrate formally, that inferences NC[2; 3] and NC[2; 4] are redundant
indeed. Any ground instance of the first inference has the form:

20. ¬p(t) ∨ tTh(t)⋆ 30. ¬(sTh(t)) ∨ ¬a(s) ∨ a(h(t))

NC[20; 30]: 50. ¬p(t) ∨ ¬(sT t) ∨ ¬a(s) ∨ a(h(t))

As we have pointed out above, clause 5 can be obtained by resolving clauses 5′ and
3, so its ground instance 50 follows from the following ground instances of these
clauses:



172 Guarded Fragment over Compositional Theories

5′0. ¬p(t) ∨ ¬a(t) ∨ a(h(t)) 31. ¬(sT t) ∨ ¬a(s) ∨ a(t)

⇒ : 50. ¬p(t) ∨ ¬(sT t) ∨ ¬a(s) ∨ a(h(t))

It remains to notice that both clauses 5′0 and 31 are smaller in the ordering than, say,
clause 30 used in the first inference above. Hence, inference NC[2; 3] is redundant.
Similarly, one can show that inference NC[2; 4] is redundant as well. 33

Example 5.2.3 demonstrates that “dangerous” Negative Chaining inferences can
be sometimes avoided provided that some “safe” Ordered Resolution inferences are
made. Unfortunately the construction from this example does not work for all
clauses of form (4) from (5.12).

Example 5.2.4 [Example 5.2.3, continued].

Let us try to repeat the procedure from Example 5.2.3, for other clauses:
2. ¬p(x) ∨ xTh(x)⋆ 3. ¬(xTy) ∨ ¬a(x) ∨ b(y), where a 6= b

NC[2; 3]: 5. ¬p(y) ∨ ¬(xTy) ∨ ¬a(x) ∨ b(h(y))
OR[2; 3]: 5′. ¬p(x) ∨ ¬a(x) ∨ b(h(y))

We see that clauses 3 and 5′ do not resolve anymore to produce 5. So, how to
be? Surprisingly, a solution can be found using the Transitive Closure rule (5.10)
considered in subsection 5.1.4. If we apply this rule to clause 3 above, we obtain
new clauses:

3a. ¬(xTy) ∨ ¬a(x) ∨ aT (y)

3b. ¬(xTy) ∨ ¬aT (x) ∨ aT (y)

3c. ¬aT (y) ∨ b(y)

By resolving clause 2 with first two clauses we obtain clauses:

5′a. ¬p(x) ∨ ¬a(x) ∨ aT (h(x))
5′b. ¬p(x) ∨ ¬aT (x) ∨ aT (h(x))

Now clause 5 above follows from clauses 3a, 5′b and 3c by resolving on respective lit-
erals, which similarly implies that inference NC[2; 3] producing clause 5 is redundant.
Moreover, the results of Negative Chaining inferences with newly generated clauses:

NC[2; 3a]: 5a. ¬p(y) ∨ ¬(xTy) ∨ ¬a(x) ∨ aT (h(y))
NC[2; 3b]: 5b. ¬p(y) ∨ ¬(xTy) ∨ ¬aT (x) ∨ aT (h(y))

can be also produced by resolving clauses 3a with 5′b and 3b with 5′b, respectively,
and hence these inferences are also redundant. So further Transitive Closure infer-
ences for clauses 5′a and 5′b are not needed and all Negative Chaining inferences are
effectively blocked. 33

Redundancy of Negative Chaining inferences

Now the rôle of the Transitive Closure rule in a saturation procedure becomes clear.
This rule, unlike other simplification rules, does not make its premise redundant,



5.2. Extensions without Equality 173

but it makes some inferences with the premise redundant. So, it is a new kind of
simplification rules. Now, when everything seems to become clear, let us formalise
the ideas described above.

First, we generalise the Transitive Closure rule introduced in subsection 5.1.4 to a
wider class of clauses: see Figure 5.4. Here the rule is applied to a clause containing

Figure 5.4 The general Transitive Closure rule

Transitive Closure

TC :
¬(xTy)♯∨ α[x] ∨ β[y]

¬(xTy) ∨ α[x] ∨ uT

α
(y)

¬(xTy) ∨ ¬uT

α
(x) ∨ uT

α
(y)

¬uT

α
(y) ∨ β[y]

where (i) T is a transitive predicate; (ii) uT

α
is an extended unary

predicate symbol introduced for α and T

one negative occurrence of a transitive atom over distinct variables x and y, the rest
of which can be split into variable disjoint parts over variables x and y. An extended
predicate symbol uT

α
is introduced now not for a unary literal containing x as before,

but for a subclause α[x] of all such literals in the premise. Apart from this, there are
no essential differences with the rule that we have considered in subsection 5.1.4. In
particular, soundness for this rule can be shown analogously to Lemma 5.1.4.

In order to prove redundancy of Negative Chaining inferences, we need to make
an additional assumption about the ordering ≻ of our chaining calculus OC≻

Sel
:

Definition 5.2.5. We say that an ordering ≻ is compatible with arities of special
predicate symbols, (short CASP) if: b[!t1, !t2] ≻ ¬(t1St2) ≻ (t1St2) ≻ ¬u(t1) for any
non-special predicate symbol b with ar(b) ≥ 2, special predicate symbol S and a
unary predicate symbol u. 33

CASP-orderings can be found by taking any total reduction ordering ≻ on ground
terms and comparing literals according to the following complexity measure:5

c(L) := ( max(L) , 1−pol(L) , ar(L) , s(L) , min(L) ) (5.13)

where max(L) and min(L) are respectively, the maximal and the minimal arguments
of L, pol(L) is the polarity of L (1 – positive, 0 – negative), ar(L) is the arity
of the predicate symbol of L, s(L) = 0 if L contains a special predicate symbol
and, s(L) = 1 otherwise. This ordering is simple (see Definition 4.1.4), CAP (see

5Such ordering could always be extended to a total ordering on ground literals



174 Guarded Fragment over Compositional Theories

Definition 4.1.9) and CASP. It is a routine to check that this ordering is admissible
for chaining according to Definition 3.5.6 on p.85

From now on we assume that the ordered chaining calculus OC≻
Sel

is parametrised
with a simple ordering ≻ which is CAP and CASP. Now we give our main lemma,
which summarises the purpose of the Transitive Closure rule:

Lemma 5.2.6. Let T be a transitive predicate symbol and N be a clause set such
that the following clauses are contained in N or redundant w.r.t. N :

1. C ∨ sT t, R0. ¬(xTy)♯∨ α[x] ∨ β[y],

R1. ¬(xTy) ∨ α[x] ∨ u(y)
R2. ¬(xTy) ∨ ¬u(x) ∨ u(y)
R3. ¬u(y) ∨ β[y];

OR[1; R1]: 2a. C ∨ α[s] ∨ u(t)
OR[1; R2]: 2b. C ∨ ¬u(s) ∨ u(t)

Then the following Negative Chaining inferences are redundant w.r.t. N :

(a) NC[1; R0] (left) : 3a. C ∨ ¬(tTy) ∨ α[s] ∨ β[y]
(b) NC[1; R0] (right): 3b. C ∨ ¬(xTs) ∨ α[x] ∨ β[t]

Proof. The proof of this lemma can be found in Appendix D.1. 22

Lemma 5.2.7. Let N be a clause set containing clauses:

1. C ∨ sT t, 2. ¬(xTy)♯∨ α[x] ∨ β[y],

and the conclusions of the following inferences:

TC[R0] : 3. ¬(xTy) ∨ α[x] ∨ uT

α
(y)

4. ¬(xTy) ∨ ¬uT

α
(x) ∨ uT

α
(y)

5. ¬uT

α
(y) ∨ β[y];

OR[1; 3]:C ∨ α[s] ∨ uT

α
(t)

OR[1; 4]:C ∨ ¬uT

α
(s) ∨ uT

α
(t)

Then all Negative Chaining inferences between clause 1 and clauses 2, 3 and 4 are
redundant.

Proof. Redundancy of Negative Chaining inferences with clause 2 follows directly
from Lemma 5.2.6 by taking u(x) := uT

α
(x).

In order to prove redundancy for clause 3, we apply this lemma for β(y) := uT

α
(y),

and R1, R2 and R3 be respectively clauses 3, 4, and ¬uT

α
(y) ∨ uT

α
(y). Since the first

two clauses are in N and the last clause is redundant w.r.t. N , by Lemma 5.2.6 we
have that the Negative Chaining inference NC[1; 3] is redundant.

For proving redundancy of inference NC[1; 4], we apply Lemma 5.2.6 for α(x) :=
¬uT

α
(x), β(y) := uT

α
(y) and respectively clauses 3, 3, and ¬uT

α
(y) ∨ uT

α
(y) for R1, R2

and R3. Since these clauses are in N or redundant w.r.t. N , the inference NC[1; 4] is
redundant as well. 22



5.2. Extensions without Equality 175

Lemma 5.2.7 says that all that we need in order to avoid dangerous Negative
Chaining inferences between clauses of forms C ∨ sT t and ¬(xTy) ∨ α[x] ∨ β[y], is
to make a Transitive Closure inference with the second clause and resolve the first
clause with its first two conclusions.

A saturation strategy for GF [TG]

In order to obtain a saturation-based decision procedure for GF [TG], this time
we need to take a special care about extended predicate symbols produced by the
Transitive Closure rule (see Figure 5.4), since, in contrast to the Literal Projection rule
(see Figure 4.1 on p.112), we are no longer guaranteed that only finitely many of
these are produced in a saturation. It might be possible, that the Transitive Closure
rule is repeatedly applied to clauses that contain new predicate symbols introduced
by this rule, which results in an infinite expansion of the signature. Our intension
is to show that this does not happen for GF [TG].

We define a clause class (GT ) for GF [TG] (see Table 5.2). This clause class

Table 5.2 A clause class for the guarded fragment with transitive guards

(GT ):

Clause scheme Description

1 β̂[ĉ] a ground clause containing transitive predicate symbols
only negatively;

2 ¬â[!x] ∨ α[x] ∨ β̂[!f̂(x), x] a guarded clause whose extended atoms introduced by
the Transitive Closure rule contain functional symbols;

T ¬{!T̂}[!x, !y] ∨ α̂[x] ∨ α̂[y] an instance of the previous scheme where all literals con-
taining different variables are transitive and occur neg-
atively

U.1 ¬p(x) ∨ hT
l (x)Tx

U.2 ¬p(x) ∨ xThT
r (x)

U.3 ¬p(x) ∨ xTx

clauses that originate from positive occurrences of tran-
sitive guards; every Skolem function for these guards is
labelled according to whether it has been introduced for
its “left” variable, its “right” variable.

U.4 β̂[hT (x), x] clauses with one variable that may contain a Skolem
function introduced for a transitive guard

where a := p |T ; l := p | ¬p | ¬T ; α := ∨{l}; hT := hT
l |h

T
r ;

q := p |uS

α̂
; b := a |uS

α̂
; k := l |uS

α̂
| ¬uS

α̂
; β := ∨{k};

is in somewhat similar to clause class (Gf ) defined for the guarded fragment with
functional guards GF [FG] in subsection 4.3.3 (see Table 4.18). In particular, here
we also separate clauses that contain positive occurrences of special, i.e., transitive
atoms: U.1 – U.3. All remaining clauses may contain transitive atoms only negatively.

In order to ensure that the Transitive Closure rule does not produce infinitely
many extended predicate symbols, we have introduced additional parameters q, b,



176 Guarded Fragment over Compositional Theories

k and β, respectively for non-special atoms, atoms, literals and clauses that might
contain extended predicate symbols resulted from this rule. The important property
which guarantees that only finitely many of such symbols are produced, is that for
clauses of form 2, the literals formed from such symbols must contain a functional
term. This implies that clauses of form T (which are instances of form 2), do not
contain such symbols.

We briefly summarise our saturation strategy and arguments which insure that
the class (GT ) is closed under all inferences. The detailed case analysis can be found
in Appendix D.2:

• We apply resolution inferences with clauses of forms 1 and 2 as for the guarded
fragment: if a clause contains a functional term, we resolve on its maximal
literal. Otherwise we select a non-special guard, as long as there exists one.
The remaining case is considered below.
Note that no Negative Chaining inferences with clauses of form 2 are possible,
since transitive atoms may occur positively only in clauses of form U.1 – U.3,
and they either contain a functional term h(x) which does not occur in clauses
of form 2, or are of the form xTx, which could not be used in any chaining
inference with transitive relations.
Note also that no Compositional Resolution inferences with clauses of (GT )
are possible, since every clause contains at most one positive occurrence of
transitive atoms.

• If a clause of form 2 contains neither functional terms nor non-special guards,
i.e., it is of form ¬{!T̂}[!x, !y] ∨ α̂[x, y], then its maximal literal either contains
both variables x and y – in this case we resolve on this literal, or it contains
duplicate occurrences of some variable – in this case we apply the Literal Pro-
jection rule, i.e., the strategy is similar as for the two-variable fragment (see
subsection 4.1.2). Otherwise the clause should be of form T.

• For clauses of form T we face with the problem of Negative Chaining inferences.
In case when there is only one transitive guard in such clause, we produce
inferences by the Transitive Closure rule, which solves the problem according to
Lemma 5.2.7.
Otherwise, when there are several transitive guards in a clause, we apply the
Negative Hyper-Chaining rule on them (see Figure 3.5 on p.88). This rule could
be applied only in one case – for a clause of form ¬(xTy)♯ ∨ ¬(yTx)♯ ∨
α[x, y]. In all other cases no Negative Hyper-Chaining inference is possible since
the functional terms in clauses U.1 and U.2 uniquely determine their transitive
predicate symbol and the side (left or right) in which they occur. Moreover,
for this remaining case the variables x and y will be unified because of the
condition (vi) of the Negative Hyper-Chaining rule.



5.2. Extensions without Equality 177

Complexity

The case analysis of possible inferences between clauses from (GT ) (which can be
found in Appendix D.2), proves that this clause class is closed under non-redundant
chaining inferences, provided that certain Transitive Closure inferences are drawn.
This gives a decision procedure for GF [TG]. It is possible to show that the complex-
ity of this decision procedure is 2EXPTIME in the worst case. All computations
are similar to the case with the guarded fragment, except that now we may have
exponentially many unary predicate symbols resulted from the Transitive Closure
rule. The reason is that the extended predicate symbols uT

α
produced by this rule

are indexed with a subclause α[x], and there might be exponentially many of those.
Nonetheless, the overall complexity remains the same, since the number of guarded
clauses is doubly exponential in the number of different variables in clauses, and
only singly exponential in the size of the vocabulary (see estimation (C.3) on p.240).

Unfortunately, since vocabulary now can be exponentially large, the complex-
ity remains doubly exponential even for the bounded variable version GFk[TG] of
GF [TG]. In fact, GFk[TG] and even GF2[TG] is 2EXPTIME-hard, as has been
shown by Kieronski [2003]. So, our procedure is theoretically optimal in this case
either. Moreover, for many subclasses of GF2[TG], in particular for the modal frag-
ment FO(MF) (3.6) (see subsection 3.2.1) with transitivity, our procedure is in
EXPTIME. Indeed, it is possible to show that all clauses of form 2 with a transitive
guard, that are obtained from such formulas will be already of form T. Hence, the
Transitive Closure rule is applied only to the input clauses and produces only linear
number of extended predicate symbols. This indicates the "pay as you go" behavior
of our decision procedure: is not only optimal for the full GF [TG], but also for its
simpler subfragments.

Theorem 5.2.8. There is a saturation-based decision procedure for the guarded
fragment with transitive guards GF [TG] without equality, which can be implemented
in 2EXPTIME. This procedure decides the modal fragment FO(MF) with transitive
relations in EXPTIME.

5.2.2 Deciding the Guarded Fragment with Compositional

Guards

In this section we extend the procedure for GF [TG] described in the previous sec-
tion, to a wider class of compositional theories defined by associative compositional
axioms. Such extension seems to be not difficult, since the chaining calculus for
compositional relations is a straightforward generalisation of the one for transitive
relations.



178 Guarded Fragment over Compositional Theories

Let C be a compositional theory consisting of associative compositional axioms
of form S ◦ T ⊆ H (recall terminology from 3.5.4). We define a guarded fragment
with compositional guards GF [CG] (over C) to be the set of guarded formulas in
which every special (compositional) binary atom occurs only in guards.

Redundancy of Negative Chaining inferences

First of all, we extend the Transitive Closure rule to compositional relations in order
to insure redundancy for Negative Chaining inferences. This extension is given in
Figure 5.5. Note that conclusions of this rule are produced for all (intermediate)

Figure 5.5 The Compositional Closure rule

Compositional Closure

CC :
¬(xUy)

♯∨ α[x] ∨ β[y]

¬(xSy) ∨ α[x] ∨ uS

α
(y)

¬(xTy) ∨ ¬uS

α
(x) ∨ uH

α
(y)

¬uU

α
(y) ∨ β[y]

where (i) S ◦ T ⊆ H, (ii) H ◦ V ⊆ U for some V , or H = U ,
and (iii) uS

α
, uH

α
and uU

α
are extended unary predicate symbols

introduced for α and, respectively for S, H and U .

S ◦ T ⊆ H such that H ◦ V ⊆ U or H = U . This is needed to insure not only
redundancy of Negative Chaining inferences with the premise of this rule, but also
with the conclusions of this rule. In other words, the premise and all conclusions
must be properly “closed”. Below we give more details on this.

The Compositional Closure rule is a proper generalisation of the Transitive Closure
rule, and can be proven to be sound in the same way.

Recall from 3.5.4 that in order to demonstrate redundancy of clauses and in-
ferences in the ordered chaining calculus for compositional relations, we need to
additionally supply a redundancy ordering ≻· that is compatible with our main
ordering ≻ according to Definition 3.5.7. In fact, the (partial) ordering induced by
the weight function (5.13) admits all these required properties. Recall, that it also
fulfils all the properties of admissible ordering, except for totality, it is simple, CAP
and CASP. So, from now on we assume such redundancy ordering ≻· to be given.

Now we generalise Lemma 5.2.6 to associative compositional theories as follows:

Lemma 5.2.9. Let N be a clause set such that the following clauses are contained
in N or are redundant w.r.t. N :

R0. ¬(xHy)♯∨ α[x] ∨ β[y];
R1. ¬(xSy) ∨ α[x] ∨ u1(y);

R2. ¬(xTy) ∨ ¬u1(x) ∨ u2(y);
R3. ¬u2(y) ∨ β[y];



5.2. Extensions without Equality 179

for some u1(x), u2(x) and S ◦ T ⊆ H. Then in addition:

(a) If N contains the clauses

1a. C ∨ sSt; OR[1a; R1]: 2a. C ∨ α[s] ∨ u1(t),

then the following Negative Chaining inference is redundant w.r.t. N :

NC[1a; R0]: 3a. C ∨ ¬(tTy) ∨ α[s] ∨ β[y];

(b) If N contains the clauses

1b. C ∨ tTs; OR[1b; R2]: 2b. C ∨ ¬u1(t) ∨ u2(s)

then the following Negative Chaining inference is redundant w.r.t. N :

NC[1b; R0]: 3b. C ∨ ¬(xSt) ∨ α[x] ∨ β[s].

Proof. Can be found in Appendix D.1. 22

Lemma 5.2.10. Let N be a clause set containing clauses:

1. C ∨ sRt, 2. ¬(xUy)♯∨ α[x] ∨ β[y];

together with all conclusions of the Compositional Closure rule from 2 and their re-
solvents with 1:

TC[2] : 3. ¬(xSy) ∨ α[x] ∨ uS

α
(y);

4. ¬(xTy) ∨ ¬uS

α
(x) ∨ uH

α
(y);

5. ¬uU

α
(y) ∨ β[y];

OR[1; 3]:C ∨ α[s] ∨ uS

α
(t) if R = S;

OR[1; 4]:C ∨ ¬uS

α
(s) ∨ uH

α
(t) if R = T ;

Then all Negative Chaining inferences between clause 1 and clauses 2, 3 and 4 are
redundant.

Proof. Can be found in Appendix D.1. 22

From Lemma 5.2.9 and Lemma 5.2.10 we see that not all conclusions of the Com-
positional Closure rule might be used for proving redundancy of Negative Chaining
inferences. It is possible to make this rule more efficient (especially for large compo-
sitional theories over distance or path relations) by producing only those conclusions
that are needed for proving redundancy. This optimised variant of the Compositional
Closure rule is given in Figure 5.6

Redundancy of Negative Hyper-Chaining inferences

In our saturation-based decision procedure for GF [TG], we have used the Negative
Hyper-Chaining rule for clauses containing several transitive guards. In most cases
such inferences were not possible because of the syntactical restrictions on positive
occurrences of transitive atoms. This helped to avoid Negative Chaining inferences
with such clauses.



180 Guarded Fragment over Compositional Theories

Figure 5.6 An optimised variant of the Compositional Closure rule

Conditional Compositional Closure

CCC :
C ∨ sSt ¬(xHy) ∨ α[x] ∨ β[y]

¬(xSy) ∨ α[x] ∨ uS

α
(y)

¬(xTy) ∨ ¬uS

α
(x) ∨ uH

α
(y)

¬uH

α
(y) ∨ β[y]

C ∨ sSt ¬(xHy)
⋆∨ ¬uU

α
(x) ∨ uW

α
(y)

¬(xSy) ∨ ¬uU

α
(x) ∨ uV

α
(y)

¬(xTy) ∨ ¬uV

α
(x) ∨ uW

α
(y)

where (i) C 6� sSt; (ii) t 6� s; (iii) S ◦ T ⊆ H;
(iv) uS

α
and uH

α
are extended unary predicate

symbols.

where (i) C 6� tT s; (ii) t 6� s; (iii) S ◦ T ⊆ H;
U ◦ H ⊆ W ; U ◦ S ⊆ V (iv) uU

α
, uV

α
and uW

α

are extended unary predicate symbols.

C ∨ tTs ¬(xHy) ∨ α[x] ∨ β[y]

¬(xSy) ∨ α[x] ∨ uS

α
(y)

¬(xTy) ∨ ¬uS

α
(x) ∨ uH

α
(y)

¬uH

α
(y) ∨ β[y]

C ∨ tTs ¬(xHy)
⋆∨ ¬uU

α
(x) ∨ uW

α
(y)

¬(xSy) ∨ ¬uU

α
(x) ∨ uV

α
(y)

¬(xTy) ∨ ¬uV

α
(x) ∨ uW

α
(y)

where (i) C 6� tT s; (ii) t 6� s; (iii) S ◦ T ⊆ H;
(iv) uS

α
and uH

α
are extended unary predicate

symbols.

where (i) C 6� tT s; (ii) t 6� s; (iii) S ◦ T ⊆ H;
U ◦ H ⊆ W ; U ◦ S ⊆ V (iv) uU

α
, uV

α
and uW

α

are extended unary predicate symbols.

It turns out, that many Negative Hyper-Chaining inferences can be made re-
dundant using an extension of the Compositional Closure rule given in Figure 5.7.
According to this rule, we introduce extended unary predicate symbols uS̃1..S̃n

α
for

all special guards ¬(xS̃1y), . . . ,¬(xS̃ny) of a clause (recall that S̃ denotes S or its
inverse S`). Semantically, uS̃1..S̃n

α
(y) represents the set of all elements that are reach-

able using all these relations from some element x such that α(x) does not hold,
i.e., we should have xS̃1y, . . . , xS̃ny. It is possible to show that Multi-Compositional
Closure is a sound inference rule and that the following analog of Lemma 5.2.10
holds:

Figure 5.7 An extension of the Compositional Closure rule to several compositional
relations

Multi-Compositional Closure

MCC :
¬(xŨ1y)

♯
∨···∨¬(xŨny)

♯
∨ α[x] ∨ β[y]

¬(xS̃1y) ∨···∨ ¬(xS̃ny) ∨ α[x] ∨ uS̃1..S̃n
α

(y)

¬(xT̃1y) ∨···∨ ¬(xT̃ny) ∨ ¬uS̃1..S̃n
α

(x) ∨ uH̃1..H̃n
α

(y)
¬uŨ1..Ũn

α
(y) ∨ β[y]

where (i) S̃i ◦ T̃i ⊆ H̃i, (ii) H̃i ◦ Ṽi ⊆ Ũi, for some Vi, or Ṽi = H̃i, 1 ≤ i ≤ n,
and (iii) uS̃1..S̃n

α
, uH̃1..H̃n

α
and uŨ1..Ũn

α
are extended unary predicate symbols.



5.2. Extensions without Equality 181

Lemma 5.2.11. Let N be a clause set containing clauses:

1i. Ci ∨ sR̃it, 1 ≤ i ≤ n 2. ¬(xŨ1y)
♯
∨···∨¬(xŨny)

♯
∨ α[x] ∨ β[y];

and all conclusions of Multi-Compositional Closure from 2 and their hyper-resolvents
with 1:

MCC[R0] : 3. ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ α[x] ∨ uS̃1..S̃n

α
(y);

4. ¬(xT̃1y)
♯
∨···∨¬(xT̃ny)

♯
∨ ¬uS̃1..S̃n

α
(x) ∨ uH̃1..H̃n

α
(y);

5. ¬uŨ1..Ũn
α

(y) ∨ β[y];

HR[11,.., 1n; 3]: C1 ∨ · · · ∨ Cn ∨ α[s] ∨ uS̃1..S̃n
α

(t) if R̃i = S̃i, 1 ≤ i ≤ n;

HR[11,.., 1n; 4]: C1 ∨ · · · ∨ Cn ∨ ¬uS̃1..S̃n
α

(s) ∨ uH̃1..H̃n
α

(t) if R̃i = T̃i, 1 ≤ i ≤ n;

Then all Negative Hyper-Chaining inferences between clause 1i and clauses 2, 3 and
4 on variable x or on variable y are redundant.

Note that terms s and t must be the same in all atoms sR̃it of clauses 1i in
order to make inference redundant. In this case a proof for Lemma 5.2.11 goes in
the same way as for Lemma 5.2.10: we just need to duplicate correspondent literals
and clauses. Note also, that redundancy is established when chaining is performed
with either variable x or variable y. The lemma does not say anything when we
have a “mixed” chaining into both variables. However, in the letter case, variables x
and y must be unified because of condition (vi) of the Negative Hyper-Chaining rule
(see Figure 3.5 on p.88). Hence such inferences are not dangerous.

A saturation strategy for GF [CG]

Using of the Multi-Compositional Closure rule allows us to simplify our saturation
strategy for GF [CG]. We might no longer use syntactical restrictions on the positive
occurrences of special atoms, that we had for clauses U.1 – U.3 from clause class (GT )
(see Table 5.2), to block dangerous Negative Hyper-Chaining inferences. Instead of
this, we may use Multi-Compositional Closure for making them redundant according
to Lemma 5.2.11.

Taking these considerations into account, we merge clause schemes U.1 – U.3 into
one clause scheme U: see Table 5.3. Now a Negative Hyper-Chaining inference is
possible only between clauses of form C1 ∨ xS̃1h(x)

⋆
, . . . , Cn ∨ xS̃nh(x)

⋆
from U

and a clause of form S. The main point is that term h(x) must be the same in all
these clauses since they are unified in the inference. This makes it possible to apply
Lemma 5.2.11.

Apart from that, our saturation strategy does not differ much from the one for
(GT ). The case analysis of all inferences between clauses from (GS) can be found
in Appendix D.3.



182 Guarded Fragment over Compositional Theories

Table 5.3 A clause class for the guarded fragment with compositional guards

(GS):

Clause scheme Description

1 β̂[ĉ] a ground clause containing compositional predicate sym-
bols only negatively;

2 ¬â[!x] ∨ α[x] ∨ β̂[!f̂(x), x] a guarded clause whose extended atoms contain func-
tional symbols;

S ¬{!Ŝ}[!x, !y] ∨ α[x] ∨ α[y] an instance of the previous scheme where all literals con-
taining different variables are compositional and occur
negatively

U {¬Ŝ, Ŝ, k̂}[h(x), x] clauses with one variable that may contain a Skolem
function introduced for a compositional guard

where a := p |S; l := p | ¬p | ¬S; α := ∨{l};
q := p |uS

α̂
; b := a |uS

α̂
; k := l |uS

α̂
| ¬uS

α̂
; β := ∨{k};

Theorem 5.2.12. There is a saturation-based decision procedure for the guarded
fragment with transitive guards GF [CG] without equality, which can be implemented
in 2EXPTIME.

GF with conjunctions of compositional guards

It turns out that the extended clause class (GS) makes it possible to obtain decid-
ability results for a larger fragment that GF [CG]. Recall that we have extended a
set of clauses of form U, and, in particular, they can contain several special atoms
positively, and functions h(x) are no longer indexed with special atoms.

Consider a fragment GF [∧CG], which is defined as GF [CG], except that we also
allow guards of form xS1y ∧···∧ xSny, where S1,.., Sn are special predicate symbols,
n ≥ 1. We call such extension of the guarded fragment by the guarded fragment with
conjunction of compositional guards. It is possible to show, that the standard CNF-
transformation for the formulas from this fragment produces clauses from (GS).
Indeed, the only cases that are affected in a translation are listed in Table 4.18 on
p.140, where we should now replace atom r(x, y) with conjunction of such atoms.
This gives us either guarded clauses (6.1) – (6.3) containing possibly several special
guards, or other clauses containing at most one positive occurrence of a special atom,
which might share the same Skolem term h(x). All these clauses belong to (GS),
which implies:

Theorem 5.2.13. There is a saturation-based decision procedure that decides GF [∧CG]
without equality, which can be implemented in 2EXPTIME.



5.2. Extensions without Equality 183

5.2.3 Undecidability of the Guarded Fragment over Rela-

tional Algebras

In the previous section we have demonstrated that when restricting the set of com-
positional axioms to “regular” ones, it is possible to obtain decidable fragments that
subsume many expressive modal and description logics. Now we are wondering
whether this approach can be extended to more general classes of compositional
axioms of form:

S ◦ T ⊆ H1 ∪ · · · ∪Hn (5.14)

Unfortunately, axioms of form 5.14 might lead to undecidable modal and description
logics even if they admit many good properties such as associativity . In this section
we give an example of a simple relational algebra (see Definition 5.1.1) such that a
modal logic defined over relations of this algebra is undecidable.

Consider the following distance relations: xD≤1 y, xD(1,2] y and xD>2 y, which read
as "the distance between x and y is smaller or equal than 1", respectively, "greater
than one but smaller or equal than two", or "greater than two". These relations are
mutually disjoint, symmetric: D≤1 ≡ D≤1

`, D(1,2] ≡ D(1,2]
` D>2 ≡ D>2

`, and admit the
following compositional axioms of form (5.14):

◦ D≤1 D(1,2] D>2

D≤1 D≤1 ∪ D(1,2] D≤1 ∪ D(1,2] ∪ D>2 D(1,2] ∪ D>2

D(1,2] D≤1 ∪ D(1,2] ∪ D>2 D≤1 ∪ D(1,2] ∪ D>2 D≤1 ∪ D(1,2] ∪ D>2

D>2 D(1,2] ∪ D>2 D≤1 ∪ D(1,2] ∪ D>2 D≤1 ∪ D(1,2] ∪ D>2

(5.15)

It is possible to extend the set of these relations to a relational algebra satisfying
all conditions (5.5) from Definition 5.1.1: for the identity Id we take an additional
relation xD=0y and then consider all possible boolean combinations of these relations
for A. In particular, relations D≤1, D(1,2] and D>2 satisfy the associativity property
and the triangle axiom.

We demonstrate that many “interesting” extensions of description logics and
the guarded fragment with relations D≤1, D(1,2] and D>2 are undecidable. Our proof
is, as usual, by a reduction from domino problems, and is in somewhat similar to
undecidability proof given in [Kutz et al., 2003], which shows that certain extensions
of modal logics with distance relations of form D(0;n] might lead to undecidability.
However our construction is much simple.

Using relations D≤1 and D(1,2], we encode a grid structure shown in Figure 5.8.
Here all indicated edges (including diagonal ones) have the length ≤ 1 and distances
between all different nodes that are not connected with an edge is > 1. Such situation
is “physically” possible, if we stretch the angle between the initial axes to 120◦ (see
the small illustration in the left corner).



184 Guarded Fragment over Compositional Theories

Figure 5.8 Undecidability of GF2 with guards over a relational algebra

D≤1

a11 a12

a11 a11 a11

a11 a11 a11

a21 a21 a21

a21 a21 a21

a31 a31 a31

a41 a41 a41

a12 a12 a12

a12 a12 a12

a22 a22 a22

a22 a22 a22

a32 a32 a32

a42 a42 a42

a13 a13 a13

a13 a13 a13

a23 a23 a23

a23 a23 a23

a33 a33 a33

a43 a43 a43

a14

a14

a14

a14

a24

a24

a24

a24

a34 a34

a44 a44

GRID := ∃x.[a11(x) ∧ I(x) ∧ J(x)] ∧ - creates the origin of a grid

∧ ∀x.[I(x)→
∧

i′ = i+1 mod 4

(ai1(x)→∃y.[x D≤1 y ∧ ai′1(y)]) ] ∧ - creates the initial horizontal

∧ ∀x.[J(x)→
∧

j′= j+1 mod 4

(a1j(x)→∃y.[x D≤1 y ∧ a1j′(y)]) ] ∧ - and vertical axes

∧
∧

i′= i+1 mod 4
j′= j+1 mod 4

∀x.(aij(x)→∃y.[x D≤1 y ∧ ai′j′(y)]) ∧ - launches the diagonals

∧ ∀xy.(D(1,2](x, y)→
∧

j′= j+1 mod 4

¬[aij(x) ∧ aij′(x)] ∧ - forbids intermediate

∧
∧

i′= i+1 mod 4

¬[aij(x) ∧ ai′j(x)] ) ∧ - distances for close nodes

∧ ∀xy.[x D≤1 y→(
∨

j′= j+1 mod 4

[aij(x) ∧ aij′ (x)] )→H(x, y)] ∧

∧ ∀xy.[x D≤1 y→(
∨

i′= i+1 mod 4

[aij(x) ∧ ai′j(x)] )→V (x, y)] - entails edges of a grid

In order to enforce a grid structure from Figure 5.8, we first create a “skeleton” of
a grid consisting of the initial axes and diagonal lines, and then make other edges by
forbidding the distances between close nodes to be greater than 1. This can be done
using formula GRID in Figure 5.8. The conjunct starting with ∀xy.(x D(1,2] y→· · · is
the most interesting in this formula. It expresses that the distance between nodes
labelled with consequent labels could not be greater than 1 and smaller then 2. In
other words, all such pairs of nodes must be either within the distance ≤ 1 from each
other, or the distance between them must be > 2. It can be shown by induction,
that the last is not possible for the pairs of neighbouring nodes of the grid: this
follows from compositional axioms (5.15). Indeed, the distance between first two



5.3. Extensions with Equality 185

nodes on the second line (labelled respectively with a21 and a22) could not be greater
than 2 because of the triangular inequalities, since the lengths of the diagonal and
the edge (a11, a21) are not greater than 1. Hence this distance must be ≤ 1 because
of this conjunct of GRID. Similarly, such constrains are propagated to all edges. It
is important that “distant” nodes with consequent labels will not be connected with
an edge, because it is possible for them to be on the distance greater than 2.

It can be shown that formula GRID∧TILING can be expressed in ALC using only
roles D≤1, D(1,2] and D>2 (the last is used only for internalisation of TBox-es in a similar
way as it has been done in the end of subsection 5.1.3). Hence this reduction shows
that subsumption and satisfiability in ALCRA – ALC whose roles are interpreted
over a relational algebra RA – is undecidable in general. In particular, the guarded
fragment with guards from a relational algebra GF [RAG] is undecidable as well.

Theorem 5.2.14. There exists a relational algebra RA such that GF2[RAG] is a
conservative reduction class.

An open question is, do these undecidability results extend for the particular
relational algebras of spatial relations and time intervals?

5.3 Extensions with Equality

In this section we try to extend the results obtained in the previous section to the
case with equality. Unfortunately, as will be seen in a moment, decidability for
most extensions of the guarded fragment with compositional axioms is lost when
equality is allowed. In particular, we show that, neither the guarded fragment with
compositional guards, nor the guarded fragment with conjunctions of transitive
guards remain decidable with equality.

The only fragment that remains decidable with equality is the guarded fragment
with transitive guards GF≃[TG]. This has been first demonstrated in [Szwast &
Tendera, 2001]. We show how our saturation-based procedure can be extended to
this fragment using an analog of the Transitive Closure rule which deals with a case
when equational atoms come to play.

5.3.1 Undecidability for Associative Compositional Axioms

In this section we demonstrate undecidability for the guarded fragment with compo-
sitional guards and equality GF≃[CG]. For proving this result, we enforce the same
grid structure from Figure 5.8, used in subsection 5.2.3 for showing undecidability
of GF [RAG], but now using path relations instead of distance relations.



186 Guarded Fragment over Compositional Theories

Figure 5.9 Undecidability of GF2
≃ with compositional guards

P=1

a11 a12

a11 a12

a21 a22

a22

a22

a11 a11 a11

a11 a11 a11

a21 a21 a21

a21 a21 a21

a31 a31 a31

a41 a41 a41

a12 a12 a12

a12 a12 a12

a22 a22 a22

a22 a22 a22

a32 a32 a32

a42 a42 a42

a13 a13 a13

a13 a13 a13

a23 a23 a23

a23 a23 a23

a33 a33 a33

a43 a43 a43

a14

a14

a14

a14

a24

a24

a24

a24

a34 a34

a44 a44

GRID := ∃x.a11(x) ∧ - creates the origin of a grid

∧
∧

j′= j+1 mod 4

∀x.(aij(x)→∃y.[x P=1 y ∧H(x, y) ∧ aij′ (y)]) ∧ - creates all horizontal edges

∧
∧

i′= i+1 mod 4

∀x.(aij(x)→∃y.[x P=1 y ∧ V (x, y) ∧ ai′j(y)]) ∧ - creates all vertical edges

∧
∧

i′= i+1 mod 4
j′= j+1 mod 4

∀x.(aij(x)→∃y.[y P=1 x ∧ ai′j′ (y)]) ∧ - creates all diagonal edges

∧ ∀xy.[x P=3 y→(
∨

1≤i,j≤4

[aij(x) ∧ aij(y)] )→x ≃ y] - “glues” close nodes

- with the same label

Consider the following path relations: x P=1 y, x P=2 y and x P=3 y, which describe
that there exists a path between x and y of the length respectively 1, 2 and 3. These
relations are symmetric: P=1 ≡ P=1

`, P=2 ≡ P=2
`, P=3 ≡ P=3

` and admit the following
compositional axioms:

P=1 ◦ P=1 ⊆ P=2 P=1 ◦ P=2 ⊆ P=3 P=2 ◦ P=1 ⊆ P=3 (5.16)

We demonstrate that these axioms and equality suffice for encoding a grid structure
given in Figure 5.9. The idea is, to create first all required edges and then to “glue
together” nodes with the same labels that are reachable from each other via three
edges (see the illustration in the left corner of Figure 5.9). This can be expressed
with the formula GRID given in Figure 5.9. The essential part of this formula is
the last conjunct which expresses how the nodes must be “glued” together using an
equational atom x ≃ y. In contrast to special atoms x P=1 y, x P=2 y and x P=3 y, this
equational atom is not in a guard. Note that it makes no sense to restrict equational
atoms only to guards since otherwise, they could be completely eliminated as has
been described in subsection 4.3.2. Note also that symmetry of relations x P=1 y,



5.3. Extensions with Equality 187

x P=2 y and x P=3 y does not play an essential role in our reduction: we may assume
that the paths are directed (for this purpose we have reversed a guard y P=1 x in
conjuncts of GRID corresponded to diagonals).

Theorem 5.3.1. GF2
≃[CG] is a conservative reduction class.

5.3.2 Undecidability for Conjunctions of Transitive Guards

From subsection 5.2.2 we have seen that for the guarded fragment with equality,
not only compositional atoms can be allowed as guards, but also their conjunctions.
Since the extension of GF≃ with associative compositional guards is already un-
decidable, conjunctions of such atoms obviousely cannot be admiteted. However,
there is still a hope that for conjunctions of transitive guards, i.e., for fragment
GF≃[∧TG], decidability is retained. Unfortunately this is not true as we are going
to demonstrate below.

For proving undecidability for GF≃[∧TG] we adapt a grid construction from
[Ganzinger et al., 1999]. The idea is to split nodes on of a grid into equivalence
classes modulo several equivalence relations such that (i) every cell of a grid fully
belongs to some equivalence class and (ii) nodes that are “far enouph” belong to
different equivalence classes. This makes it possible to “glue together” nodes that
are close enouph in a grid, similarly as it has been done in the previous reductions.

What we exactly want to express is a grid structure illustrated in Figure 5.10.
Here the “bricks” are the equivalence classeses induced by three transivie relations
xSy, xTy and xHy. We create a “loop” using a transitive relation, and then “glue”
the end nodes of this loop using equality (see the illustration in the left corner of
Figure 5.10). Since every edge of a grid should belong to two equivalence classes, we
should create these double edges at once. This can be done using conjunctions of
transitive guards as shown in Figure 5.10. Again the essential part of this formula is
the last three conjuncts which express the “gluing” operations. At this very moment
we exploit transitivity of relations S, T and H .

Theorem 5.3.2. GF2
≃[∧TG] is a conservative reduction class.

Note, that the same construction works when S, T and H are equivalence rela-
tions. This sharpens a recent result from [Kieronski & Otto, 2005] who demonstrated
that FO2 with three built-in equivalence relations is undecidable:

Theorem 5.3.3. The guarded fragment with conjunctions of equivalence guards
GF2

≃[∧EG] is a conservative reduction class.

Kieronski & Otto [2005] have also demonstrated that the FO2 with two equiv-
alence relations remains decidable, so the above result is optimal w.r.t. the number
of equivalence relations.



188 Guarded Fragment over Compositional Theories

Figure 5.10 Undecidability of GF2
≃ with conjunctions of transitive guards

S

T

U

a11 a23

a21

a13

a13

a11

a11

a11

a11

a11

a11

a11

a11

a11

a11

a11

a11

a21

a21

a21

a21

a21

a21

a21

a21

a21

a21

a21

a21

a13

a13

a13

a13

a13

a13

a13

a13

a13

a13

a13

a13

a23

a23

a23

a23

a23

a23

a23

a23

a23

a23

a23

a23

a12

a12

a12

a12

a12

a12

a12

a12

a12

a22

a22

a22

a22

a22

a22

a22

a22

a22

GRID := ∃x.a11(x) ∧ - creates the origin of a grid

∧ ∀x.(a11(x)→∃y.[xSy ∧ yUx ∧H(x, y) ∧ a23(y)]) ∧
∧ ∀x.(a23(x)→∃y.[xTy ∧ yUx ∧H(x, y) ∧ a12(y)]) ∧
∧ ∀x.(a12(x)→∃y.[xTy ∧ ySx ∧H(x, y) ∧ a21(y)]) ∧
∧ ∀x.(a21(x)→∃y.[xUy ∧ ySx ∧H(x, y) ∧ a13(y)]) ∧
∧ ∀x.(a13(x)→∃y.[xUy ∧ yTx ∧H(x, y) ∧ a22(y)]) ∧
∧ ∀x.(a22(x)→∃y.[xSy ∧ yTx∧H(x, y) ∧ a11(y)]) ∧
∧ ∀x.(a11(x)→∃y.[xSy ∧ ySx ∧ V (x, y) ∧ a21(y)]) ∧
∧ ∀x.(a21(x)→∃y.[xTy ∧ yTx ∧ V (x, y) ∧ a22(y)]) ∧
∧ ∀x.(a31(x)→∃y.[xUy ∧ yUx ∧ V (x, y) ∧ a32(y)]) ∧
∧ ∀x.(a21(x)→∃y.[xTy ∧ yUx ∧ V (x, y) ∧ a11(y)]) ∧
∧ ∀x.(a22(x)→∃y.[xUy ∧ ySx ∧ V (x, y) ∧ a12(y)]) ∧
∧ ∀x.(a23(x)→∃y.[xSy ∧ yTx∧ V (x, y) ∧ a13(y)]) ∧

- creates the double edges

∧ ∀xy.[xSy→([a21(x) ∧ a21(y)] ∨ [a13(x) ∧ a13(y)])→x ≃ y] ∧
∧ ∀xy.[xTy→([a22(x) ∧ a22(y)] ∨ [a11(x) ∧ a11(y)])→x ≃ y] ∧
∧ ∀xy.[xUy→([a23(x) ∧ a23(y)] ∨ [a12(x) ∧ a12(y)])→x ≃ y]

- “glues” the cells

5.3.3 A Decision Procedure for the Guarded Fragment with

Transitive Guards and Equality

In the previous sections we have demonstrated that both the guarded fragment
with compositional guards and the guarded fragment with conjunctions of transitive
guards become undecidable with equality. However the full guarded fragment with
transitive guards GF≃[TG] is decidable [Szwast & Tendera, 2001].

It is possible to extend our saturation-based decision procedure for this frag-
ment, using additional simplification rules like Compositional Closure, to avoid some
dangerous inferences with transitive relations and equality. However the resulted
procedure is more complicated, since there is a large number of cases that should be



5.4. Conclusions and Future Works 189

Figure 5.11 Summary of (un)decidabile extensions of GF with compositional the-
ories

GF[TG]

GF[CG]

GF[∧TG]

GF[∧CG]

GF≃[TG]

GF≃[∧TG]
GF[RAG]

GF[T]

GF≃[CG]

considered. Please see Appendix D.4 where we have highlighted the main principal
ideas behind this decision procedure.

5.4 Conclusions and Future Works

In this chapter we have studied a variety of extensions of the guarded fragment with
compositional axioms and have identified a border between “safe” and “dangerous”
usage of compositional axioms. Our results are summarized in Figure 5.11. In this
diagram the fragments that we have considered, are arranged in a lattice, where ar-
rows represent inclusion between fragments. The extensions that are located within
the enclosed area, are decidable. The others are not.

More precisely, the following results have been obtained in this chapter:

1. We sharpened the known undecidability results for the guarded fragment with
transitivity [Grädel, 1999; Ganzinger et al., 1999] by demonstrating that the
two-variable guarded fragment without equality is undecidable already with
two transitive relations.

2. We gave several chaining-based decision procedures for extensions of the guar-
ded fragment without equality, by compositional binary relations. The most



190 Guarded Fragment over Compositional Theories

expressive of these fragments is the guarded fragment with conjunctions of
compositional guards. All our procedures are optimal (2EXPTIME).

3. We proved that further extensions of the guarded fragment with composi-
tional axioms are undecidable: (1) the two-variable guarded fragment without
equality, with guards from a relational algebra; (2) the two-variable guarded
fragment with equality and compositional guards; and (3) the two-variable
guarded fragment with equality and conjunctions of transitive guards.

Below are some comments on these results:

Despite the fact that already some simple modal and description logics become
undecidable with general compositional axioms (see subsection 2.5.1), this is not a
reason to give up. We have found that decidability can be regained when restricting
to a quite broad class of associative compositional axioms. Associativity is not an
artificial condition, since most of the compositional theories that come from the “real
world ” (like various orderings, distance and path relations) are in fact associative.
There is a close connection between associative compositional theories and regular
grammars, which can be exploited in the future works.

We hoped that our methods can be extended to a larger class of compositional
axioms of form S ◦ T ⊆ H1 ∪ · · · ∪ Hn, which are related to spatial and interval-
based temporal reasoning. It is well-known that such theories can be characterised
as relational algebras, which admit many regular properties including associativity.
Unfortunately, even with all these properties, extended compositional axioms might
yield undecidable modal and description logics. But still it might be possible that
extensions of modal and description logics with “interesting” relational algebras like
RCC-calculi or Allen’s interval relations are decidable. In this case one should prob-
ably identify some other regular properties of their compositional axioms, perhaps
some variants of “acyclicity”.

The guarded fragment with conjunctions of compositional guards GF [∧CG] opens
some other attractive perspectives for integration of useful theories into modal and
description logics. For example, it is possible to express the Allen’s interval rela-
tions using conjunctions of relations between endpoints of intervals of form x <ll y,
x >rl y, x =lr y, etc., which express that “the left (right) endpoint of interval x
is smaller (greater/equal) than the left (right) endpoint of interval y”. In contrast
to relations between intervals, relations between endpoints admit simple composi-
tional properties like <ll ◦ <lr ⊆ <lr, which are associative, plus totality axioms:
x <lr y ∨ x >lr y ∨ x =lr y, etc. Without totality axioms, the guarded fragment
with “Allen’s guards” could be mapped into GF [∧CG] using this translation. A good
question, is how to extend our decision procedures for totality axioms. Bachmair
& Ganzinger [1998b, Section 6] have demonstrated that chaining inferences with



5.4. Conclusions and Future Works 191

totality axioms for linear orders are redundant, which might be a starting point for
such an investigation.

Totality axioms are also the reason why our results cannot be yet applied to
some simple associative theories like theories of metric distances. While a fully
satisfactory solution for totality is still on its way, our results can be already used
for some restricted versions of such theories, say to distance relations of form xD≤n y,
or to path relations of forms x P<n y, x P=n y and x P>n y.

Finally equality again plays its vicious rôle by making most of the extensions
with compositional axioms undecidable. However, this is not very surprising, since
equality can be seen as a compositional relation which unlike other relations, makes
no sense to restrict to guards only. In this light, the decidability result for the
guarded fragment with transitive guards and equality GF≃[TG] turns out to be
rather exceptional.



Chapter 6

Summary

In this thesis we have presented a variety of (un)decidability and complexity results,
and decision procedures for reasoning in description logics and related fragments
of first-order logic. We have considered a wide range of these formalisms: from a
simple and tractable description logic EL to extensions of the guarded fragment
with compositional axioms, which are 2EXPTIME-complete or even undecidable.
Let us briefly highlight all these results and discuss possible directions for the future
research.

DL EL and its extensions: It should not be regarded as a big success that a poly-
nomial resolution-based decision procedure for EL has been found. The importance
of this result is that it demonstrates how reasoning algorithms for description logics
can be derived formally and directly from first-order translations of DL-constructors.
Surprisingly, no theorem prover is required to implement this procedure, since it can
be encoded as a datalog program. This on the one hand, gives a direct implementa-
tion, which outperforms general-purpose tableau reasoners. On the other hand, this
allows one to apply a range of formal tools for optimisation and complexity analysis
of such programs.

The basic procedure for EL has been extended to capture many other construc-
tors: bottom concept, role hierarchies, conjunction of roles, cross-products of con-
cepts, nominals and restricted role-value maps. For these constructors (not in all
combinations) polynomial-time datalog programs have been derived. This confirms
and generalises some recent results from [Baader et al., 2005].
EL turns out to be essentially the largest DL where one observes decidability

with general role-value maps of form S ◦ T ⊑ H . It was shown that adding either
conjunction of roles, disjunction of concepts, universal value restrictions or inverse
roles, results in an undecidable logic.

192



193

Combinations of fragments: The idea of structural combination of decidable
fragments by joining their constructors is rather natural if we try to mimic de-
scription logics. It became a relatively simple consequence of our uniform presen-
tation of resolution decision procedures for the guarded, two-variable and monadic
fragments, that the structural combinations of these fragment are decidable by res-
olution. Combinations of these fragment are not only decidable – they retain the
maximal complexity of their components. Unfortunately these results do not extend
to equality, but still the new notion of combination might be useful for identifying
more expressive decidable first-order fragments.

Extensions of GF with constants and counting: Two paramodulation-based
decision procedures have been described for the guarded fragment with constants.
First procedure uses elimination of equational guards followed by Grädel’s [1999]
elimination of constants, and is relatively straightforward. The second procedure
does not employ any transformation, and is more involved since it uses splitting
with eager ground rewriting. Both procedures give essentially the same complexity
showing that the (bounded variable) guarded fragment with constants is decidable
in 2EXPTIME (EXPTIME).

Recall that the guarded fragments with functionality and number restrictions
have been considered in connection with description logics with functional roles,
respectively, with (qualified) number restrictions. Because of a general undecid-
ability result for the guarded fragment with functionality GF [F] [Grädel, 1999], we
have considered a restriction of GF [F] where functional atoms, respectively counting
atoms, may appear in guards only: GF [FG] and GFN . For these fragments, optimal
paramodulation-based decision procedures have been formulated (in the case with
number restrictions, assuming the unary coding of numbers).

It is worth noting that the guarded fragment with counting guards does not
capture description logics with role hierarchies, like ALCQIH, since not all roles in
role inclusion axioms are used as guards. For such description logics, the fragment
GF2N considered in [Kazakov, 2004] can be used.

The paramodulation-based decision procedure for GFN does not give us satis-
factory complexity when binary coding of numbers is assumed. This is because the
first-order translation of number restrictions is exponential when numbers are coded
in binary. Perhaps some ideas from [Kazakov, 2004] can be adapted to find optimal
translation and decision procedure.

Extensions of GF with compositional axioms: The most technically involved
result of this thesis is a classification of extensions of the guarded fragment with
compositional axioms of form S ◦ T ⊆ H . As has been mentioned above, some



194 Summary

simple description logics become already undecidable with general axioms of this
form. However, in many cases such axioms can be integrated into logical formalisms:

Despite general undecidability results for the guarded fragment with transitivity
GF [T] [Grädel, 1999; Ganzinger et al., 1999], which we have sharpened to GF2[T]
with two transitive relations, a restricted fragment GF [TG] where transitive rela-
tions appear only in guards, is decidable [Szwast & Tendera, 2001]. We have found
a chaining-based procedure for GF [TG] without equality, which uses a special sim-
plification rule Transitive Closure. This is a novel simplification rule based on an
advanced notion of redundancy – redundancy of inferences.

A careful inspection of our procedure has revealed that it can be actually ex-
tended to a larger class of guarded formulas: transitivity can be generalised to
arbitrary associative compositional axioms, and conditions on occurrences of com-
positional atoms can be relaxed by admitting conjunctions of such atoms in guard
positions. Such compound guards can be used to characterise Allen’s interval rela-
tions, which can be represented as conjunctions of relations admitting simple asso-
ciative compositional axioms.

The above extensions were essentially the border of decidability: we have demon-
strated that generalised compositional axioms of form S ◦ T ⊆ H1 ∪ · · · ∪Hn, which
admit many “natural” algebraic properties, cannot be integrated even into the modal
fragment, and extensions of the guarded fragment with compositional guards and
conjunctions of transitive guards, do not remain decidable with equality. The only
fragment that remains decidable with equality is the guarded fragment with tran-
sitive guards GF≃[TG] [Szwast & Tendera, 2001], for which we have sketched a
chaining-based strategy using additional simplification rules.

On perspectives

This thesis presents many new decision procedures and undecidability results. How-
ever we think that the main value of this thesis is the techniques which allow one to
design saturation-based decision procedures for a broad range of modal, description
logics and first-order fragments.

In particular, by combining our decision procedures for extensions of the guarded
fragment with constants, number restrictions and transitivity, it might be possible
to come up with a reasoning procedure for DL SHOIN which corresponds to the
ontology language OWL for the semantic web [Horrocks & Patel-Schneider, 2004].

Before starting to implement our decision procedures one should first address
certain issues revealed in our first experiments with DL EL. Saturation based pro-
cedures by their very nature, are opposed to search-based procedures, like tableau-
based ones. They win in time, but they lose in memory. This is one of the reasons
why there are so far no optimal saturation-based procedures for PSPACE-complete



195

reasoning problems, like satisfiability of ALC-concepts: the time complexity of de-
terministic saturation procedures is the same as their space complexity. Hence a
challenging direction for the future work could be in integration of search strate-
gies into saturation-based theorem proving. In particular, a combination of res-
olution with instance-based methods [Letz & Stenz, 2001; Ganzinger & Korovin,
2003; Baumgartner & Tinelli, 2003] might bear some fruits. Alternatively, the space
consumption of particular saturation-based procedures might be reduced by using
indexing techniques like BDDs [like in Pan, Sattler & Vardi, 2002]. Memory opti-
misation of completion-based procedures for EL discussed in chapter 2 could open
new possibilities for practical reasoning with very large terminologies like Snomed.

Our procedures for extensions of the guarded fragment with compositional theo-
ries, can be specialised to particular description logics with complex role dependen-
cies. As has been pointed in the end of subsection 5.2.1, many description logics do
not require Transitive Closure or Compositional Closure rules in their full generality.
Many of such logics might be translated to ALCI by employing an extended version
of de Nivelle’s [1999] translation (say the logics of metric distances studied in [Wolter
& Zakharyaschev, 2003]). A particular challenge is to extend our techniques to com-
positional relations that additionally admit totality axioms, like distance relations
x D≤n y, x D<n y, x D≥n y and x D>n y and Allen’s interval relations.

Some proofs in our thesis pose few new questions. For example, the undecid-
ability proof for GF [T] given in subsection 5.1.3 does not work for one transitive
relation, which suggests that the guarded fragment over one transitive relation might
be decidable. In some applications, one transitive relation suffices, for example for
temporal reasoning. The guarded fragment with one transitive relation can ex-
press new properties, say the density axiom: ∀xy.(x < y→∃z.[Between(z, x, y)]) ∧
∀x, y, z.[Between(z, x, y)→ x < z ∧ z < y]. The same question is about the guar-
ded fragment with two equivalence relations, related to the undecidability result
from subsection 5.3.2 (the two-variable fragment with two equivalence relations was
recently shown to be decidable in [Kieronski & Otto, 2005]).

Finally, certain techniques demonstrated in this thesis might be useful for auto-
mated reasoning in general. In particular the Literal Projection rule as a controlled
version of Splitting through New Predicate Symbol, can be applied in many cases to
keep the term depth from growing (see subsection 4.3.3). These were essentially re-
finements of general saturation procedures, which made it possible to obtain many
decidability results. We think that in return, the lessons learned from our decision
procedures, may influence the automated reasoning in first-order logic, since the
quality and success of a general theorem prover depends highly on its ability to
decide expressive first-order fragments.



Appendix A

DL EL and Its Extensions

A.1 Evaluation of Queries in DL EL Using Ordered

Resolution

In this Appendix we demonstrate how subsumption of concepts can be derived for
our simple terminology defined in Table 2.1 using the ordered resolution calculus.
Recall that in section 2.1 we have proved by our “logical reasoning” that concept
Parent subsumes concept Father, which subsumes concept Grandfather. Now we
verify our reasoning formally, using resolution theorem proving.

In order to demonstrate the first subsumption relation, we first translate the
definitions for concepts Man, Parent and Father from (2.3) according to Table 2.3:

C1 ¬Man(x) ∨ Human(x);

C2 ¬Man(x) ∨Male(x);

C3 ¬Human(x) ∨ ¬Male(x) ∨Man(x);

C4 ¬Father(x) ∨Man(x);

C5 ¬Father(x) ∨ A(x);

C6 ¬Man(x) ∨ ¬A(x) ∨ Father(x);

C7 ¬Parent(x) ∨ Human(x);

C8 ¬Parent(x) ∨ A(x);

C9 ¬Human(x) ∨ ¬A(x) ∨ Parent(x);

Concept subsumption query ?- Father ⊑ Parent is translated according to Table 2.4
to clauses:

Q1 Father(c);

Q2 ¬Parent(c);

where c is a fresh (Skolem) constant. For the above clause set we apply a resolution
strategy, according to which, we select the first negative literal in every clause, if
there is one:

196



A.1. Evaluation of Queries in DL EL Using Ordered Resolution 197

OR[Q1;C4]: Father(c); ¬Father(x) ∨Man(x) ⊢ Q3 Man(c);

OR[Q1;C5]: Father(c); ¬Father(x) ∨ A(x) ⊢ Q4 A(c);

OR[Q3;C1]: Man(c); ¬Man(x) ∨ Human(x) ⊢ Q5 Human(c);

OR[Q5;C9]: Human(c); ¬Human(x) ∨ ¬A(x) ∨ Parent(x) ⊢ Q6 ¬A(c) ∨ Parent(c);

OR[Q4;Q6]: A(c); ¬A(c) ∨ Parent(c) ⊢ Q7 Parent(c);

OR[Q7;Q2]: Parent(c); ¬Parent(c) ⊢ ⊥ �.

We have obtained a contradiction, which means that subsumption between con-
cepts Father and Parent is derivable from TBox.

In order to prove the second subsumption relation, we add the CNF-translations
for the remaining concepts A, B and Grandfather:

C10 ¬A(x) ∨ has-child(x, f(x));

C11 ¬A(x) ∨ Human(f(x));

C12 ¬has-child(x, y) ∨ ¬Human(y) ∨ A(x);

C13 ¬B(x) ∨ has-child(x, g(x));

C14 ¬B(x) ∨ Parent(g(x));

C15 ¬has-child(x, y) ∨ ¬Parent(y) ∨ B(x);

C16 ¬Grandfather(x) ∨Man(x);

C17 ¬Grandfather(x) ∨ B(x);

C18 ¬Man(x) ∨ ¬B(x) ∨ Grandfather(x);

where f and g are fresh Skolem functions. The query ?-Grandfather ⊑ Father is
translated to clauses:

S1 Grandfather(d);

S2 ¬Father(d);

where d is a fresh Skolem constant introduced for this query. We need to derive the
empty clause from clauses C1 – C18 and S1, S2. For this, we modify our resolution
strategy. Now we select the first negative literal only in clauses that do not contain
functional symbols. In clauses with functional symbols, namely C10, C11, C13, C14
and perhaps other clauses that will be derived, we select no literals, so we have to
resolve on its maximal literals (which are underlined). Proceeding according this
strategy, we obtain the following inferences:

OR[Q1;C5] :Father(c); ¬Father(x) ∨ A(x) ⊢ Q4 A(c);

OR[C14;C7] :¬B(x) ∨ Parent(g(x)); ¬Parent(x) ∨ Human(x) ⊢

⊢ C19 ¬B(x) ∨ Human(g(x));

OR[C13;C12]:¬B(x) ∨ has-child(x, g(x)); ¬has-child(x, y) ∨ ¬Human(y) ∨ A(x)

⊢ C20 ¬B(x) ∨ ¬Human(g(x)) ∨ A(x);

OR[C19;C20]:¬B(x) ∨ Human(g(x)); ¬B(x) ∨ ¬Human(g(x)) ∨ A(x) ⊢

Continued on next page



198 DL EL and Its Extensions

⊢ ¬B(x) ∨ ¬B(x) ∨ A(x) ⊢ C21 ¬B(x) ∨ A(x);

OR[S1;C16] : Grandfather(d); ¬Grandfather(x) ∨Man(x) ⊢ S3 Man(d);

OR[S1;C17] : Grandfather(d); ¬Grandfather(x) ∨ B(x) ⊢ S4 B(d);

OR[S4;C21] : B(d); ¬B(x) ∨ A(x) ⊢ S5 A(d);

OR[S3;C6] : Man(d); ¬Man(x) ∨ ¬A(x) ∨ Father(x) ⊢ S6 ¬A(d) ∨ Father(d);

OR[S5;S6] : A(d); ¬A(d) ∨ Father(d) ⊢ S7 Father(d);

OR[S7;S2] : Father(d); ¬Father(d) ⊢ ⊥ �.

Note that we have used the Elimination of Duplicate Literals rule in inference
OR[C19; C20] to eliminate duplicate occurrences of literal ¬B(x) in its conclusion.

Finally, we demonstrate that individual John is a Grandfather under ABox-
assertions from Table 2.1. Applying translation for ABox according to Table 2.4,
we obtain clauses:

A1 Man(John);

A2 Father(Bill);

A3 has-child(John, Bill);

Query ?- John : Grandfather is translated according to Table 2.4 to clause:

I1 ¬Grandfather(John);

Repeating the same inferences as for the first query ?- Father ⊑ Parent with c re-
placed with Bill, and using A2 instead of Q1 we obtain clause:

I2 Parent(Bill);

Now, the above clauses can be refuted as follows:

OR[A3; C15]: has-child(John, Bill); ¬has-child(x, y) ∨ ¬Parent(y) ∨ B(x) ⊢

⊢ A4 ¬Parent(Bill) ∨ B(John);

OR[I2; A4] :Parent(Bill); ¬Parent(Bill) ∨ B(John) ⊢ I3 B(John);

OR[A1; C18]:Man(John); ¬Man(x) ∨ ¬B(x) ∨ Grandfather(x) ⊢

⊢ A5 ¬B(John) ∨ Grandfather(John);

OR[I3; A5] :B(John); ¬B(John) ∨ Grandfather(John) ⊢ I4 Grandfather(John);

OR[I4; I1] :Grandfather(John); ¬Grandfather(John) ⊢ ⊥ �.

Well, the above proofs are slightly more complicated than those we sketched using
our “logical reasoning”. However, they are purely formal and can be implemented
using a computer.



A.2. An Example for Query Evaluation in DL EL Using Datalog 199

A.2 An Example for Query Evaluation in DL EL
Using Datalog

In this appendix we continue an example from subsection 2.3.2, demonstrating how
to query our sample terminology of human relations (2.3) using the reduction to
datalog.

Recall that in Table 2.8 we have computed translation for definitions, assertions
and queries for our example, according to Table 2.3 and Table 2.4. Now we need
to compute a deductive closure for the resulted sets of atoms under program in
Table 2.7 to answer queries. First we compute a deductive closure for the set of
atoms that correspond to TBox and ABox, and then we show how ⊥ is obtained
after adding atoms that correspond to each query.

In Table A.3 we have computed a deductive closure for TBox and ABox. Each
table C1 – C5 and D3 – D8 represents the values of respective predicates, which
where computed as follows.

The values indicated by (0) are taken from the translation in Table 2.8. After
that, we iteratively apply inferences A1 – A8 and T1 – T9 from Table 2.3 to derive
new values of predicates from old ones. For example, values (1) of predicate C4 are
computed using rule T5 from values (0) of C4 and values (0) of D4 (see Table A.3).
To compute new values according to this rule, we have to match the values in the
first column of both tables and take the remaining two values as an answer. This
process is repeated until nothing new can be derived. At this moment a deductive
closure of the database for TBox and ABox is computed.

Table A.3: A deductive closure for the database correspondent to TBox and ABox

C4 A B fA

(0) A Human f

B Parent g

(1) T5[C4(0), D4(0)]:

B Human g

B A g

C5 A R fA

(0) A has-child f

B has-child g

C2 R a b
(0) has-father John Bill

D4 A B
(0) Man Human

Man Male
Parent Human
Parent A
Father Man
Father A
Grandfather Man
Grandfather B

(1) T7[C4(0,1), D7(0)]:

A A
B A
B B

D5 A B C
(0) Human Male Man

Human A Parent
Man A Father
Man B Grandfather

D6 R A B
(0) has-child Human A

has-child Parent B

Continued on next page



200 DL EL and Its Extensions

C1 A a
(0) Man John

Father Bill

(1) A3[C1(0), D4(0, 1)] :

Human John
Male John
Man Bill
A Bill

(2) A3[C1(1), D4(0, 1)] :

Human Bill
Male Bill

(3) A2[C1(0, 1, 2), D3(1, 2)] :

Parent Bill
A John

(4) A2[C1(3), D3(1, 2)] :

Parent John
Father John
B John

(5) A2[C1(4), D3(1, 2)] :

Grandfather John

D7 A B C fA

(1) T9[C5(0), D6(0)]:

A Human A f

A Parent B f

B Human A g

B Parent B g

D8 A B C fA

(1) T6[C4(0,1), D5(0)]:

A Male Man f

A A Parent f

B Male Man g

B A Parent g

D3 A B a b

(1) A4[C1(0, 1), D5(0)] :

Male Man John John
Male Man Bill Bill
A Parent John John
A Parent Bill Bill
A Father John John
A Father Bill Bill
B Grandfather John John
B Grandfather Bill Bill

(2) A6[C2(0), D6(0)] :

Human A Bill John
Parent B Bill John

To answer the query ?-Grandfather ⊑ Father we add two correspondent ground
atoms according Table 2.8, and proceed further computing new inferences with these
atoms and computed database for ABox and TBox: see Table A.4.

Table A.4: Answering of the queries ?-Grandfather ⊑ Father and ?- John :
Grandfather

C1 A a
(S.0) Grandfather c

(S.1) A3[C1(S.0), D4(0, 1)] :

Man c
B c

(S.2) A3[C1(S.1), D4(0, 1)] :

Human c
Male c
A c

(S.3) C1[C1(S.0, S.1, S.2), D3(S.1)] :

Father c
Parent c

D3 A B a b

(S.1) A4[C1(S.0, S.1, S.2), D5(0)] :

A Father c c
B Grandfather c c
Male Man c c
A Parent c c

D1 A a
(S.0) Father c
(I.0) Grandfather John

⊥

(S.1) A1[C1(S.3), D1(S.0)]

(I.1) A1[C1(5), D1(I.0)]

We indicate all new instances that where produced for our subsumption query



A.3. Additional Rules for Querying Subsumption in DL EL 201

with prefix “S”. As seen from Table A.4, there is an S-inference producing predicate
⊥. So our query is answered positively.

To answer the other query ?- John : Grandfather, we discard all inferences done
for the previous query, and compute deductive closure of TBox and ABox with
additional atom D1(I.0) that corresponds to this instance problem. Processing of
this particular query is especially easy, since the fact C1(5) computed for ABox and
TBox immediately yields ⊥. Hence our instance query is answered positively as well.

A.3 Additional Datalog Rules for Querying Sub-

sumption Relation in DL EL

In this appendix, we return to subsection 2.3.2 and demonstrate how to derive
additional datalog rules stated in Table 2.10, using which the explicit subsumption
relation in EL can be computed.

Recall that for checking subsumption ?-A ⊑ B, we have to derive ⊥ using
atoms C1(A, c) and D1(B, c), where c = c(A, B) is a fresh constant for this query
(see Table 2.4). For the similar reasons as for the instance query, ⊥ can be derived
only using rules A1 or A7. Hence for showing subsumption A ⊑ B, we have to derive
either C1(B, c(A, B)) or C3(B) using additional assumption C1(A, c(A, B)). Hence,
the subsumption relation can be explicitly computed by the following extension of
our program from Table 2.7:

S0.1 C1(A, c(A, B)) ← .
S1.1 subsumes(B, A) ← C3(B).
S2.1 subsumes(B, A) ← C1(B, c(A, B)).

(A.1)

Although the resulted program can, in principle, be used to query subsumption, it
is not a datalog program because of c(A, B), which is now considered as a function
that assigns a constant to concept names A and B (i.e., to concept subsumption
problem). Hence we would like to transform program (A.1) into an equivalent datalog
program.

In order to transform the program (A.1), we consider instances of inferences
from Table 2.7, using which atoms with functional terms can be produced. Atom
C1(B, c(A, B)) can be derived by rules A2, A3 or A8. By specialising the heads of
these rules for our atom, we obtain rules:

A2.1 C1(B, c(A, B)) ← C1(C, a), D3(C, B, a, c(A, B)).
A3.1 C1(B, c(A, B)) ← C1(C, c(A, B)), D4(C, B).
A8.1 C1(B, c(A, B)) ← C3(C), D3(C, B, a, c(A, B)).

(A.2)



202 DL EL and Its Extensions

The subgoal D3(D, C, a, c(A, B)) of rules A2.1 and A8.1 can be obtained only by
rules A4 and A6. However, A6 cannot produce D3(C, B, a, c(A, B)) since there is no
atom of form C2(R, c(A, B), a) in the initial database and those cannot be produced
(recall that c(A, B) is a fresh constant, so it may not be present in role assertions).
By unfolding D3(C, B, a, c(A, B)) using rule A4, we simplify (A.2) as follows:

A2.2 C1(B, c(A, B)) ← C1(C, c(A, B)), C1(D, c(A, B)), D5(D, C, B).
A3.2 C1(B, c(A, B)) ← C1(C, c(A, B)), D4(C, B).
A8.2 C1(B, c(A, B)) ← C3(C), C1(D, c(A, B)), D5(D, C, B).

(A.3)

Now we proceed to subgoals C1(C, c(A, B)) which can also be obtained only by
rules A2, A3 and A8. Repeating similar steps as above we obtain rules that are more
general than (A.3):

A2.3 C1(E, c(A, B)) ← C1(C, c(A, B)), C1(D, c(A, B)), D5(D, C, E).
A3.3 C1(E, c(A, B)) ← C1(C, c(A, B)), D4(C, E).
A8.3 C1(E, c(A, B)) ← C3(C), C1(D, c(A, B)), D5(D, C, E).

(A.4)

Now every instance of rules from Table 2.7 that can be used to produce an atom
of form C1(C, c(A, B)) is among (A.4) and we have separated a non-datalog part
of our program from a datalog part. The trick now is to treat C1(A, c(B, C)) as a
new relation sb(A, B, C). In this way, the subsumption relation can be computed
by performing this replacement in (A.2) and (A.4):

S0.2 sb(A, A, B) ← .
S1.2 subsumes(B, A) ← C3(B).
S2.2 subsumes(B, A) ← sb(B, A, B).
S3.2 sb(E, A, B) ← sb(C, A, B), D4(C, E).
S4.2 sb(E, A, B) ← sb(C, A, B), sb(D, A, B), D5(D, C, E).
S5.2 sb(E, A, B) ← C3(C), sb(D, A, B), D5(D, C, E).

(A.5)

However this is not the end of our story, as we may notice that in any bottom-up
derivation the last argument of predicate sb(∗, ∗, ∗) is never instantiated. Hence it
might be completely dropped and the following program computes the same sub-
sumption relation as (A.5):

S0 sb(A, A) ← .
S1 subsumes(B, A) ← C3(B).
S2 subsumes(B, A) ← sb(B, A).
S3 sb(E, A) ← sb(C, A), D4(C, E).
S4 sb(E, A) ← sb(C, A), sb(D, A), D5(D, C, E).
S5 sb(E, A) ← C3(C), sb(D, A), D5(D, C, E).

(A.6)



A.4. Extensions of DL EL with Cross-Products of Concepts 203

A.4 Extensions of DL EL with Cross-Products of

Concepts

In this appendix we return to subsection 2.4.2 and describe a resolution decision
procedure for extension of DL EL with cross-products of concepts. We demonstrate
that resolution inferences produce either clauses for EL or clauses of new types
listed in Table A.5. Indeed, in Table A.6 we have enumerated all possible inferences

Table A.5 Additional clause types for the extension of DL EL with cross-products
of concepts
CP1 R(x, a);

CP2 R(a, x);

CP3 ¬A(x) ∨R(fA(x), a);

CP4 ¬A(x) ∨R(a, fA(x));

CP5 R(x, y);

CP6 ¬A(x) ∨R(fA(x), y);

CP7 ¬A(y) ∨R(x, fA(y));

CP8 ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y));

DP1 ¬A(a) ∨B(x);

DP2 ¬A(x) ∨B(a);

DP3 ¬B(y) ∨R(a, y);

DP4 ¬A(x) ∨ ¬B(a) ∨C(fA(x));

DP5 ¬A(x) ∨ ¬B(fA(x)) ∨C(a);

DP6 ¬A(x) ∨B(y);

DP7 ¬R(x, y) ∨A(x);

DP8 ¬R(x, y) ∨B(y);

DP9 ¬B(y) ∨R(x, y);

DP10 ¬A(x) ∨ ¬B(y) ∨R(x, y);

DP11 ¬A(x) ∨ ¬B(y) ∨C(fA(x));

DP12 ¬A(x) ∨ ¬B(fA(x)) ∨C(y);

DP13 ¬A(x) ∨ ¬B(y) ∨R(fA(x), y);

DP14 ¬A(x) ∨ ¬B(y) ∨ ¬C(fA(x)) ∨D(gB(y));

between clauses for EL from Table 2.5 and new clauses for cross-products of concepts
from Table A.5. In the end of this table we have also listed all inferences with clause
DH1 from Table 2.13 which corresponds to an extension of EL with simple role
inclusion axioms. Table A.6 proves that the mentioned types of clauses are closed
under inferences of ordered resolution, which implies that reasoning in the extension
of EL with simple role hierarchies and cross-products of concepts can be done in
polynomial time. This table naturally yields a datalog program given in Table A.7
for reasoning in this description logic.

Table A.6: Summary of inferences for cross-products of concepts in EL

AP1. OR[C1; DP1] : A(a); ¬A(a) ∨B(x) ⊢ B(x) : C3

AP2. OR[C1; DP2] : A(a); ¬A(x) ∨B(b) ⊢ B(b) : C1

AP3. OR[C1; DP3] : A(a); ¬A(y) ∨R(b, y) ⊢ R(b, a) : C2

AP4. OR[C1; DP4] : B(a); ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢ ¬A(x) ∨C(fA(x)) : C4

Continued on next page



204 DL EL and Its Extensions

AP5. OR[C1; DP6] : A(a); ¬A(x) ∨B(y) ⊢ B(x) : C3

AP6. OR[C1; DP9] : A(a); ¬A(y) ∨R(x, y) ⊢ R(x, a) : CP1

AP7. OR[C1; DP10] : A(a); ¬A(x) ∨ ¬B(y) ∨R(x, y) ⊢ ¬B(y) ∨R(a, y) : DP3

AP8. OR[C1; DP11] : B(a); ¬A(x) ∨ ¬B(y) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

AP9. OR[C1; DP13] : B(a); ¬A(x) ∨ ¬B(y) ∨R(fA(x), y) ⊢ ¬A(x) ∨R(fA(x), a) : CP3

AP10. OR[C2; DP7] : R(a, b); ¬R(x, y) ∨A(x) ⊢ A(a) : C1

AP11. OR[C2; DP8] : R(a, b); ¬R(x, y) ∨A(y) ⊢ A(b) : C1

AP12. OR[CP1; D2] : R(x, a); ¬R(b, a) ⊢ � : ⊥

AP13. OR[CP1; D6] : R(x, a); ¬R(x, y) ∨ ¬B(y) ∨A(x) ⊢ ¬B(a) ∨A(x) : DP1

AP14. OR[CP1; DP7] : R(x, a); ¬R(x, y) ∨A(x) ⊢ A(x) : C3

AP15. OR[CP1; DP8] : R(x, a); ¬R(x, y) ∨B(y) ⊢ B(a) : C1

AP16. OR[CP2; D2] : R(a, x); ¬R(a, b) ⊢ � : ⊥

AP17. OR[CP2; D6] : R(a, x); ¬R(x, y) ∨ ¬B(y) ∨A(x) ⊢ ¬B(x) ∨A(a) : DP2

AP18. OR[CP2; DP7] : R(a, x); ¬R(x, y) ∨A(x) ⊢ A(a) : C1

AP19. OR[CP2; DP8] : R(a, x); ¬R(x, y) ∨B(y) ⊢ B(x) : C3

AP20. OR[CP3; D6] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) : DP4

AP21. OR[CP3; DP7] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨B(x) ⊢ ¬A(x) ∨B(fA(x)) : C4

AP22. OR[CP3; DP8] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨B(y) ⊢ ¬A(x) ∨B(a) : DP2

AP23. OR[CP4; D6] : ¬A(x) ∨R(a, fA(x)); ¬R(x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(fA(x)) ∨C(a) : DP5

AP24. OR[CP4; DP7] : ¬A(x) ∨R(a, fA(x)); ¬R(x, y) ∨B(x) ⊢ ¬A(x) ∨B(a) : DP2

AP25. OR[CP4; DP8] : ¬A(x) ∨R(a, fA(x)); ¬R(x, y) ∨B(y) ⊢ ¬A(x) ∨B(fA(x)) : C4

AP26. OR[C3; DP1] : A(x); ¬A(a) ∨B(x) ⊢ B(x) : C3

AP27. OR[C3; DP2] : A(x); ¬A(x) ∨B(a) ⊢ B(a) : C1

AP28. OR[C3; DP3] : A(x); ¬A(y) ∨R(a, y) ⊢ R(a, x) : CP2

AP29. OR[C3; DP4] : B(x); ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

AP30. OR[C3; DP5] : B(x); ¬A(x) ∨ ¬B(fA(x)) ∨ C(a) ⊢ ¬A(x) ∨ C(a) : DP2

AP31. OR[C4; DP2] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ C(a) ⊢ ¬A(x) ∨ C(a) : DP2

AP32. OR[C4; DP3] : ¬A(x) ∨B(fA(x)); ¬B(y) ∨R(a, y) ⊢ ¬A(x) ∨R(a, fA(x)) : CP4

AP33. OR[C4; DP5] : ¬A(x) ∨B(fA(x)); ¬A(x) ∨ ¬B(fA(x)) ∨ C(a) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ C(a) ⊢ ¬A(x) ∨C(a) : DP2

AP34. OR[CP5; D2] : R(x, y); ¬R(a, b) ⊢ � : ⊥

TP1. OR[C3; DP6] : A(x); ¬A(x) ∨B(y) ⊢ B(x) : C3

TP2. OR[C3; DP9] : A(x); ¬B(y) ∨R(x, y) ⊢ R(x, y) : CP5

Continued on next page



A.4. Extensions of DL EL with Cross-Products of Concepts 205

TP3. OR[C3; DP10] : A(x); ¬A(x) ∨ ¬B(y) ∨R(x, y) ⊢ ¬B(y) ∨R(x, y) : DP9

TP4. OR[C3; DP11] : B(x); ¬A(x) ∨ ¬B(y) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

TP5. OR[C3; DP12] : B(x); ¬A(x) ∨ ¬B(fA(x)) ∨ C(y) ⊢ ¬A(x) ∨ C(y) : DP6

TP6. OR[C3; DP13] : B(x); ¬A(x) ∨ ¬B(y) ∨R(fA(x), y) ⊢ ¬A(x) ∨R(fA(x), y) : CP6

TP7. OR[C3; DP14] : C(x); ¬A(x) ∨ ¬B(y) ∨ ¬C(fA(x)) ∨D(gB(y)) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨D(gB(x)) : DP11

TP8. OR[C4; DP6] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ C(y) ⊢ ¬A(x) ∨ C(y) : DP6

TP9. OR[C4; DP9] : ¬A(x) ∨B(fA(x)); ¬B(y) ∨R(x, y) ⊢ ¬A(y) ∨R(x, fA(y)) : CP7

TP10. OR[C4; DP10] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ ¬C(y) ∨R(x, y) ⊢

⊢ ¬A(x) ∨ ¬C(y) ∨R(fA(x), y) : DP13

TP11. OR[C4; DP11] : ¬A(x) ∨ C(fA(x)); ¬B(x) ∨ ¬C(y) ∨D(gB(x)) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨D(gB(x)) : DP11

TP12. OR[C4; DP12] : ¬A(x) ∨B(fA(x)); ¬A(x) ∨ ¬B(fA(x)) ∨ C(y) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ C(y) ⊢ ¬A(x) ∨ C(y) : DP6

TP13. OR[C4; DP13] : ¬A(x) ∨ C(fA(x)); ¬B(x) ∨ ¬C(y) ∨R(gB(x), y) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨R(fB(x), gA(y)) : CP8

TP14. OR[C4; DP14] : ¬A(x) ∨ C(fA(x)); ¬A(x) ∨ ¬B(y) ∨ ¬C(fA(x)) ∨D(gB(y)) ⊢

⊢ ¬A(y) ∨ ¬B(x) ∨ ¬A(y) ∨D(gB(x)) ⊢ ¬B(x) ∨ ¬A(y) ∨D(gB(x)) : DP11

TP15. OR[C5; DP7] : ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨B(x) ⊢ ¬A(x) ∨B(x) : D4

TP16. OR[C5; DP8] : ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨B(y) ⊢ ¬A(x) ∨B(fA(x)) : C4

TP17. OR[CP5; D6] : R(x, y); ¬R(x, y) ∨ ¬B(y) ∨A(x) ⊢ ¬B(x) ∨A(y) : DP6

TP18. OR[CP5; DP7] : R(x, y); ¬R(x, y) ∨A(x) ⊢ A(x) : C3

TP19. OR[CP5; DP8] : R(x, y); ¬R(x, y) ∨B(y) ⊢ B(x) : C3

TP20. OR[CP6; D6] : ¬A(x) ∨R(fA(x), y); ¬R(x, y) ∨ ¬B(y) ∨C(x) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨ C(fA(x)) : DP11

TP21. OR[CP6; DP7] : ¬A(x) ∨R(fA(x), y); ¬R(x, y) ∨B(x) ⊢ ¬A(x) ∨B(fA(x)) : C4

TP22. OR[CP6; DP8] : ¬A(x) ∨R(fA(x), y); ¬R(x, y) ∨B(y) ⊢ ¬A(x) ∨B(y) : DP6

TP23. OR[CP7; D6] : ¬A(y) ∨R(x, fA(y)); ¬R(x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(fA(x)) ∨ C(y) : DP12

TP24. OR[CP7; DP7] : ¬A(y) ∨R(x, fA(y)); ¬R(x, y) ∨B(x) ⊢ ¬A(x) ∨B(y) : DP6

TP25. OR[CP7; DP8] : ¬A(y) ∨R(x, fA(y)); ¬R(x, y) ∨B(y) ⊢ ¬A(x) ∨B(fA(x)) : C4

TP26. OR[CP8; D6] : ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)); ¬R(x, y) ∨ ¬C(y) ∨D(x) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨ ¬C(gB(x)) ∨D(fA(y)) : DP14

TP27. OR[CP8; DP7] : ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)); ¬R(x, y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨ C(fA(x)) : DP11

TP28. OR[CP8; DP8] : ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)); ¬R(x, y) ∨ C(y) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨ C(gB(x)) : DP11

Continued on next page



206 DL EL and Its Extensions

AHP1. OR[CP1; DH1] : R(x, a); ¬R(x, y) ∨ S(x, y) ⊢ S(x, a) : CP1

AHP2. OR[CP2; DH1] : R(a, x); ¬R(x, y) ∨ S(x, y) ⊢ S(a, x) : CP2

AHP3. OR[CP3; DH1] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨ S(x, y) ⊢ ¬A(x) ∨ S(fA(x), a) : CP3

AHP4. OR[CP4; DH1] : ¬A(x) ∨R(a, fA(x)); ¬R(x, y) ∨ S(x, y) ⊢ ¬A(x) ∨ S(a, fA(x)) : CP4

THP1. OR[CP5; DH1] : R(x, y); ¬R(x, y) ∨ S(x, y) ⊢ S(x, y) : CP5

THP2. OR[CP6; DH1] : ¬A(x) ∨R(fA(x), y); ¬R(x, y) ∨ S(x, y) ⊢ ¬A(x) ∨ S(fA(x), y) : CP6

THP3. OR[CP7; DH1] : ¬A(y) ∨R(x, fA(y)); ¬R(x, y) ∨ S(x, y) ⊢ ¬A(y) ∨ S(x, fA(y)) : CP7

THP4. OR[CP8; DH1] : ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)); ¬R(x, y) ∨ S(x, y) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨ S(fA(x), gB(y)) : CP8

Table A.7: An extension of the datalog program for reasoning with cross-products
of concepts in EL

AP1. C3(B) ← C1(A, a), DP1(A, B, a);
AP2. C1(B, b) ← C1(A, a), DP2(A, B, b);
AP3. C2(R, b, a) ← C1(A, a), DP3(A, R, b);

AP4. C4(A, C, fA) ← C1(B, a), DP4(A, B, C, fA, a);
AP5. CP1(R, a) ← C1(A, a), DP9(A, R);

AP6. CP1(R, a) ← C1(A, a), DP9(A, R);

AP7. DP3(B, R, a) ← C1(A, a), DP10(A, B, R);

AP8. C4(A, C, fA) ← C1(B, a), DP11(A, B, C, fA);
AP9. CP3(A, R, fA, a) ← C1(B, a), DP13(A, B, R, fA);

AP10. C1(A, a) ← C2(R, a, b), DP7(R, A);

AP11. C1(A, b) ← C2(R, a, b), DP8(R, A);

AP12. ⊥ ← CP1(R, a), D2(R, b, a);

AP13. DP1(B, A, a) ← CP1(R, a), D6(R, B, A);

AP14. C3(A) ← CP1(R, a), DP7(R, A);

AP15. C1(B, a) ← CP1(R, a), DP8(R, B);

AP16. ⊥ ← CP2(R, a), D2(R, a, b);

AP17. DP2(B, A, a) ← CP2(R, a), D6(R, B, A);

AP18. C1(A, a) ← CP2(R, a), DP7(R, A);

AP19. C3(B) ← CP2(R, a), DP8(R, B);

AP20. DP4(A, B, C, fA, a) ← CP3(A, R, fA, a), D6(R, B, C);

AP21. C4(A, B, fA) ← CP3(A, R, fA, a), DP7(R, B);

AP22. DP2(A, B, a) ← CP3(A, R, fA, a), DP8(R, B);

AP23. DP5(A, B, C, fA, a) ← CP4(A, R, fA, a), D6(R, B, C);

AP24. DP2(A, B, a) ← CP4(A, R, fA, a), DP7(R, B);

AP25. C4(A, B, fA) ← CP4(A, R, fA, a), DP8(R, B);

AP26. C3(B) ← C3(A), DP1(A, B, a);
AP27. C1(B, a) ← C3(A), DP2(A, B, a);

Continued on next page



A.4. Extensions of DL EL with Cross-Products of Concepts 207

AP28. CP2(R, a) ← C3(A), DP3(A, R, a);

AP29. C4(A, C, fA) ← C3(B), DP4(A, B, C, fA, a);
AP30. DP2(A, C, a) ← C3(B), DP5(A, B, C, fA, a);
AP31. DP2(A, C, a) ← C4(A, B, fA), DP2(B, C, a);
AP32. CP4(A, R, fA, a) ← C4(A, B, fA), DP3(B, R, a);

AP33. DP2(A, C, a) ← C4(A, B, fA), DP5(A, B, C, fA, a);
AP34. ⊥ ← CP5(R), D2(R, a, b);

TP1. C3(B) ← C3(A), DP6(A, B);
TP2. CP5(R) ← C3(A), DP9(B, R);

TP3. DP9(B, R) ← C3(A), DP10(A, B, R);

TP4. C4(A, C, fA) ← C3(B), DP11(A, B, C, fA);
TP5. DP6(A, C) ← C3(B), DP12(A, B, C, fA);
TP6. CP6(A, R, fA) ← C3(B), DP13(A, B, R, fA);

TP7. DP11(B, A, D, gB) ← C3(C), DP14(A, B, C, D, fA, gB);
TP8. DP6(A, C) ← C4(A, B, fA), DP6(B, C);
TP9. CP7(A, R, fA) ← C4(A, B, fA), DP9(B, R);

TP10. DP13(A, C, R, fA) ← C4(A, B, fA), DP10(B, C, R);

TP11. DP11(B, A, D, gB) ← C4(A, C, fA), DP11(B, C, D, gB);
TP12. DP6(A, C) ← C4(A, B, fA), DP12(A, B, C, fA);
TP13. CP8(B, A, R, fA, gB) ← C4(A, C, fA), DP13(B, C, R, gB);

TP14. DP11(B, A, D, gB) ← C4(A, C, fA), DP14(A, B, C, D, fA, gB);
TP15. D4(A, B) ← C5(A, R, fA), DP7(R, B);

TP16. C4(A, B, fA) ← C5(A, R, fA), DP8(R, B);

TP17. DP6(B, A) ← CP5(R), D6(R, B, A);

TP18. C3(A) ← CP5(R), DP7(R, A);

TP19. C3(B) ← CP5(R), DP8(R, B);

TP20. DP11(A, B, C, fA) ← CP6(A, R, fA), D6(R, B, C);

TP21. C4(A, B, fA) ← CP6(A, R, fA), DP7(R, B);

TP22. DP6(A, B) ← CP6(A, R, fA), DP8(R, B);

TP23. DP12(A, B, C, fA) ← CP7(A, R, fA), D6(R, B, C);

TP24. DP6(A, B) ← CP7(A, R, fA), DP7(R, B);

TP25. C4(A, B, fA) ← CP7(A, R, fA), DP8(R, B);

TP26. DP14(B, A, C, D, gB, fA)← CP8(A, B, R, fA, gB), D6(R, C, D);

TP27. DP11(A, B, C, fA) ← CP8(A, B, R, fA, gB), DP7(R, C);

TP28. DP11(B, A, C, gB) ← CP8(A, B, R, fA, gB), DP8(R, C);

AHP1. CP1(S, a) ← CP1(R, a), DH1(R, S);

AHP2. CP2(S, a) ← CP2(R, a), DH1(R, S);

AHP3. CP3(A, S, f, a) ← CP3(A, R, f, a), DH1(R, S);

AHP4. CP4(A, S, f, a) ← CP4(A, R, f, a), DH1(R, S);

THP1. CP5(S) ← CP5(R), DH1(R, S);

THP2. CP6(A, S, f) ← CP6(A, R, f), DH1(R, S);

THP3. CP7(A, S, f) ← CP7(A, R, f), DH1(R, S);

Continued on next page



208 DL EL and Its Extensions

THP4. CP8(A, B, S, f, g) ← CP8(A, B, R, f, g), DH1(R, S);

A.5 Extensions of DL EL with Nominals

In this appendix we provide additional details about the paramodulation-based de-
cision procedure for extensions of EL with nominals considered in subsection 2.4.3.
We demonstrate that all new clauses that can be derived from the input clauses for
EL with nominals are of the types given in Table A.8.

Table A.8 Clause types for extensions of EL with nominals
CO1 a ≃ b;
CO2 x ≃ o;
CO3 R(x, a);

CO4 ¬A(x) ∨ fA(x) ≃ a;

CO5 ¬A(x) ∨R(fA(x), a);

DO1 ¬A(x) ∨ a ≃ b;

DO2 ¬A(x) ∨ x ≃ a;

DO3 ¬A(a) ∨B(x);

DO4 ¬A(x) ∨B(a);

DO5 ¬A(x) ∨R(a, b);

DO6 ¬A(x) ∨R(x, a);

DO7 ¬A(x) ∨ ¬B(a) ∨C(b);

DO8 ¬A(x) ∨ ¬B(a) ∨C(x);

DO9 ¬A(x) ∨ ¬B(a) ∨C(fA(x));

DHXO1 ¬S(x, a) ∨ T (x, b);

DHXO2 ¬A(x) ∨ ¬S(x, a) ∨ T (x, b);

DHXO3 ¬A(x) ∨ ¬S(a, b) ∨ T (fA(x), c);

DHXO4 ¬A(x) ∨ ¬S(fA(x), a) ∨ T (fA(x), b);

DPO1 ¬A(x) ∨ ¬B(a) ∨C(y);

DPO2 ¬A(x) ∨R(a, y)

DPO3 ¬A(x) ∨R(y, a)

DPO4 ¬A(x) ∨ ¬B(y) ∨R(fA(x), a);

DPO5 ¬A(x) ∨ ¬B(y) ∨R(a, fA(x));

DPO6 ¬A(x) ∨ ¬B(y) ∨ ¬C(a) ∨D(fA(x));

Clause types CO1 – CO5 and DO1 – DO9 correspond to the extension of EL with
nominals. Simple role hierarchies do not give any new clause types, whereas role
conjunctions or cross-products of concepts give new clause types DHXO1 – DHXO4
and DPO1 – DPO6 respectively (recall that we cannot use both of these constructors
since the resulted logic is already intractable without nominals).

In Table A.9 we have listed all possible inferences between clause types for EL
and its extensions with cross-products and (extended) role hierarchies that we have
derived before, and new clause types for nominals given in Table A.8. We have
used the standard paramodulation calculus described by rules from Figure 2.1 and
Figure 2.2, except for couple of modifications that we did to simplify an (already
large) case analysis of possible inferences.

First, we assume that every clause of form x ≃ a is immediately simplified to
x ≃ o, where o is a special constant that is least in the ordering (see inference
AO11). This simplification is correct, since clause x ≃ a semantically means that



A.5. Extensions of DL EL with Nominals 209

the underlying model consists of one element. The simplification is done to avoid
paramodulation inferences from variable a, which otherwise were possible. Second,
in inferences AHXO14 and AHXO25 we use simultaneous paramodulation into terms
fA(x). This strategy is discussed in 3.5.3 on p. 87. Many other simplification
techniques discussed in this thesis can be applied to simplify the case analysis of
inferences and the resulted procedure.

A correspondent extensions of a datalog program for reasoning with nominals
are summarised in Table A.10.

Table A.9: Summary of inferences for nominals in EL

AO1. OR[C1; DO1] : A(a); ¬A(x) ∨ b ≃ c ⊢ b ≃ c : CO1

AO2. OR[C1; DO2] : A(a); ¬A(x) ∨ x ≃ b ⊢ a ≃ b : CO1

AO3. OR[C1; DO3] : A(a); ¬A(a) ∨B(x) ⊢ B(x) : C3

AO4. OR[C1; DO4] : A(a); ¬A(x) ∨B(b) ⊢ B(b) : C1

AO5. OR[C1; DO5] : A(a); ¬A(x) ∨R(a, b) ⊢ R(a, b) : C2

AO6. OR[C1; DO6] : A(a); ¬A(x) ∨R(x, b) ⊢ R(a, b) : C2

AO7. OR[C1; DO7] : B(a); ¬A(x) ∨ ¬B(a) ∨ C(b) ⊢ ¬A(x) ∨ C(b) : DO4

AO8. OR[C1; DO8] : B(a); ¬A(x) ∨ ¬B(a) ∨ C(x) ⊢ ¬A(x) ∨ C(x) : D4

AO9. OR[C1; DO9] : B(a); ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

AO10. OR[C3; DO1] : A(x); ¬A(x) ∨ b ≃ c ⊢ b ≃ c : CO1

AO11. OR[C3; DO2] : A(x); ¬A(x) ∨ x ≃ b ⊢ x ≃ b ⊢ x ≃ o : CO2

AO12. OR[C3; DO3] : A(x); ¬A(a) ∨B(x) ⊢ B(x) : C3

AO13. OR[C3; DO4] : A(x); ¬A(x) ∨B(b) ⊢ B(b) : C1

AO14. OR[C3; DO5] : A(x); ¬A(x) ∨R(a, b) ⊢ R(a, b) : C2

AO15. OR[C3; DO6] : A(x); ¬A(x) ∨R(x, a) ⊢ R(x, a) : CO3

AO16. OR[C3; DO7] : B(x); ¬A(x) ∨ ¬B(a) ∨ C(b) ⊢ ¬A(x) ∨C(b) : DO4

AO17. OR[C3; DO8] : B(x); ¬A(x) ∨ ¬B(a) ∨ C(x) ⊢ ¬A(x) ∨ C(x) : D4

AO18. OR[C3; DO9] : B(x); ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢ ¬A(x) ∨ C(fA(x)) : C4

AO19. OR[C4; DO1] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ b ≃ c ⊢ ¬A(x) ∨ b ≃ c : DO1

AO20. OR[C4; DO2] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ x ≃ b ⊢ ¬A(x) ∨ fA(x) ≃ b : CO4

AO21. OR[C4; DO4] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ C(b) ⊢ ¬A(x) ∨ C(b) : DO4

AO22. OR[C4; DO5] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨R(a, b) ⊢ ¬A(x) ∨R(a, b) : DO5

AO23. OR[C4; DO6] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨R(x, a) ⊢ ¬A(x) ∨R(fA(x), a) : CO5

AO24. OP[CO1; C1] : a ≃ b; A(a) ⊢ A(b) : C1

AO25. OP[CO1; C2] : a ≃ b; R(a, c) ⊢ R(b, c) : C2

AO26. OP[CO1; C2] : a ≃ b; R(c, a) ⊢ R(c, b) : C2

AO27. OP[CO1; D1] : a ≃ b; ¬A(a) ⊢ ¬A(b) : D1

Continued on next page



210 DL EL and Its Extensions

AO28. OP[CO1; D2] : a ≃ b; ¬R(a, c) ⊢ ¬R(b, c) : D2

AO29. OP[CO1; D2] : a ≃ b; ¬R(c, a) ⊢ ¬R(c, b) : D2

AO30. OP[CO1; D3] : a ≃ b; ¬A(a) ∨B(c) ⊢ ¬A(b) ∨B(c) : D3

AO31. OP[CO1; CO1] : a ≃ b; a ≃ c ⊢ b ≃ c : CO1

AO32. OP[CO1; CO1] : a ≃ b; c ≃ a ⊢ c ≃ b : CO1

AO33. OP[CO1; CO3] : a ≃ b; R(x, a) ⊢ R(x, b) : CO3

AO34. OP[CO1; CO4] : a ≃ b; ¬A(x) ∨ fA(x) ≃ a ⊢ ¬A(x) ∨ fA(x) ≃ b : CO4

AO35. OP[CO1; CO5] : a ≃ b; ¬A(x) ∨R(fA(x), a) ⊢ ¬A(x) ∨R(fA(x), b) : CO5

AO36. OP[CO1; DO3] : a ≃ b; ¬A(a) ∨B(x) ⊢ ¬A(b) ∨B(x) : DO3

AO37. OP[CO1; DO7] : a ≃ b; ¬A(x) ∨ ¬B(a) ∨ C(c) ⊢ ¬A(x) ∨ ¬B(b) ∨C(c) : DO7

AO38. OP[CO1; DO8] : a ≃ b; ¬A(x) ∨ ¬B(a) ∨ C(x) ⊢ ¬A(x) ∨ ¬B(b) ∨ C(x) : DO8

AO39. OP[CO1; DO9] : a ≃ b; ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(b) ∨ C(fA(x)) : DO9

AO40. OP[CO2; C1] : x ≃ o; A(a) ⊢ A(o) : C1

AO41. OP[CO2; C2] : x ≃ o; R(a, c) ⊢ R(o, c) : C2

AO42. OP[CO2; C4] : x ≃ o; ¬A(x) ∨B(fA(x)) ⊢ ¬A(x) ∨B(o) : DO4

AO43. OP[CO2; C5] : x ≃ o; ¬A(x) ∨R(x, fA(x)) ⊢ ¬A(x) ∨R(x, o) : DO6

AO44. OP[CO2; D1] : x ≃ o; ¬A(a) ⊢ ¬A(o) : D1

AO45. OP[CO2; D2] : x ≃ o; ¬R(a, c) ⊢ ¬R(o, c) : D2

AO46. OP[CO2; D2] : x ≃ o; ¬R(c, a) ⊢ ¬R(c, o) : D2

AO47. OP[CO2; D3] : x ≃ o; ¬A(a) ∨B(c) ⊢ ¬A(o) ∨B(c) : D3

AO48. OP[CO2; D7] : x ≃ o; ¬A(x) ∨ ¬B(fA(x)) ∨ C(x) ⊢ ¬A(x) ∨ ¬B(o) ∨ C(x) : DO8

AO49. OP[CO2; D8] : x ≃ o; ¬A(x) ∨ ¬B(fA(x)) ∨ C(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬B(o) ∨ C(fA(x)) : DO9

AO50. OP[CO2; CO1] : x ≃ o; a ≃ c ⊢ o ≃ c : CO1

AO51. OP[CO2; CO1] : x ≃ o; c ≃ a ⊢ c ≃ o : CO1

AO52. OP[CO2; CO3] : x ≃ o; R(x, a) ⊢ R(x, o) : CO3

AO53. OP[CO2; CO4] : x ≃ o; ¬A(x) ∨ fA(x) ≃ c ⊢ ¬A(x) ∨ o ≃ c : DO1

AO54. OP[CO2; CO4] : x ≃ o; ¬A(x) ∨ fA(x) ≃ a ⊢ ¬A(x) ∨ fA(x) ≃ o : CO4

AO55. OP[CO2; CO5] : x ≃ o; ¬A(x) ∨R(fA(x), c) ⊢ ¬A(x) ∨R(o, c) : DO5

AO56. OP[CO2; CO5] : x ≃ o; ¬A(x) ∨R(fA(x), a) ⊢ ¬A(x) ∨R(fA(x), o) : CO5

AO57. OP[CO2; DO3] : x ≃ o; ¬A(a) ∨B(x) ⊢ ¬A(o) ∨B(x) : DO3

AO58. OP[CO2; DO7] : x ≃ o; ¬A(x) ∨ ¬B(a) ∨ C(c) ⊢ ¬A(x) ∨ ¬B(o) ∨ C(c) : DO7

AO59. OP[CO2; DO8] : x ≃ o; ¬A(x) ∨ ¬B(a) ∨ C(x) ⊢ ¬A(x) ∨ ¬B(o) ∨ C(x) : DO8

AO60. OP[CO2; DO9] : x ≃ o; ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(o) ∨ C(fA(x)) : DO9

AO61. OR[CO3; D2] : R(x, b); ¬R(a, b) ⊢ � : ⊥

Continued on next page



A.5. Extensions of DL EL with Nominals 211

AO62. OR[CO3; D6] : R(x, b); ¬R(x, y) ∨ ¬B(y) ∨A(x) ⊢ ¬B(b) ∨A(x) : DO3

AO63. OP[CO4; C4] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨B(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨B(a) ⊢ ¬A(x) ∨B(a) : DO4

AO64. OP[CO4; C5] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨R(x, fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨R(x, a) ⊢ ¬A(x) ∨R(x, a) : DO6

AO65. OP[CO4; D7] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨ ¬B(fA(x)) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬B(a) ∨ C(x) ⊢ ¬A(x) ∨ ¬B(a) ∨ C(x) : DO8

AO66. OP[CO4; D8] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨ ¬B(fA(x)) ∨ C(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢ ¬A(x) ∨ ¬B(a) ∨C(fA(x)) : DO9

AO67. OP[CO4; CO4] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨ fA(x) ≃ b ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ a ≃ b ⊢ ¬A(x) ∨ a ≃ b : DO1

AO68. OP[CO4; CO5] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨R(fA(x), b) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨R(a, b) ⊢ ¬A(x) ∨R(a, b) : DO5

AO69. OR[CO5; D6] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨ ¬B(y) ∨ C(x) ⊢

⊢ ¬A(x) ∨ ¬B(a) ∨C(fA(x)) : DO9

AHO1. OR[CO3; DH1] : R(x, a); ¬R(x, y) ∨ S(x, y) ⊢ S(x, a) : CO3

AHO2. OR[CO5; DH1] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨ S(x, y) ⊢

⊢ ¬A(x) ∨ S(fA(x), a) : CO5

AHXO1. OR[C1; DHXO2] : A(a); ¬A(x) ∨ ¬S(x, b) ∨ T (x, c) ⊢ ¬S(a, c) ∨ T (a, c) : DHX1

AHXO2. OR[C2; DHXO1] : R(a, b); ¬R(x, b) ∨ S(x, c) ⊢ S(a, c) : C2

AHXO3. OR[C2; DHXO3] : R(a, b); ¬A(x) ∨ ¬R(a, b) ∨ S(fA(x), c) ⊢

⊢ ¬A(x) ∨ S(fA(x), c) : CO5

AHXO4. OR[C3; DHXO2] : A(x); ¬A(x) ∨ ¬S(x, b) ∨ T (x, c) ⊢ ¬S(x, b) ∨ T (x, c) : DHXO1

AHXO5. OR[C4; DHXO2] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨ ¬S(x, b) ∨ T (x, c) ⊢

⊢ ¬A(x) ∨ ¬S(fA(x), b) ∨ T (fA(x), c) : DHXO4

AHXO6. OP[CO1; DHX1] : a ≃ c; ¬R(a, b) ∨ S(a, b) ⊢ ¬R(c, b) ∨ S(c, b) : DHX1

AHXO7. OP[CO1; DHX1] : b ≃ c; ¬R(a, b) ∨ S(a, b) ⊢ ¬R(a, c) ∨ S(a, c) : DHX1

AHXO8. OP[CO1; DHXO1] : a ≃ c; ¬S(x, a) ∨ T (x, b) ⊢ ¬S(x, c) ∨ T (x, b) : DHXO1

AHXO9. OP[CO1; DHXO3] : a ≃ c; ¬A(x) ∨ ¬S(a, b) ∨ T (fA(x), d) ⊢
⊢ ¬A(x) ∨ ¬S(c, b) ∨ T (fA(x), d) : DHXO3

AHXO10. OP[CO1; DHXO3] : b ≃ c; ¬A(x) ∨ ¬S(a, b) ∨ T (fA(x), d) ⊢
⊢ ¬A(x) ∨ ¬S(a, c) ∨ T (fA(x), d) : DHXO3

AHXO11. OP[CO1; DHXO4] : a ≃ c; ¬A(x) ∨ ¬S(fA(x), a) ∨ T (fA(x), b) ⊢
⊢ ¬A(x) ∨ ¬S(fA(x), c) ∨ T (fA(x), b) : DHXO4

AHXO12. OP[CO2; DHX1] : x ≃ o; ¬R(a, b) ∨ S(a, b) ⊢ ¬R(o, b) ∨ S(o, b) : DHX1

AHXO13. OP[CO2; DHX1] : x ≃ o; ¬R(a, b) ∨ S(a, b) ⊢ ¬R(a, o) ∨ S(a, o) : DHX1

AHXO14. OP[CO2; DHX3] : x ≃ o; ¬A(x) ∨ ¬S(x, fA(x)) ∨ T (x, fA(x)) ⊢

⊢ ¬A(x) ∨ ¬S(x, o) ∨ T (x, o) : DHXO2

Continued on next page



212 DL EL and Its Extensions

AHXO15. OP[CO2; DHXO1] : x ≃ o; ¬S(x, a) ∨ T (x, b) ⊢ ¬S(x, o) ∨ T (x, b) : DHXO1

AHXO16. OP[CO2; DHXO3] : x ≃ o; ¬A(x) ∨ ¬S(a, b) ∨ T (fA(x), d) ⊢
⊢ ¬A(x) ∨ ¬S(o, b) ∨ T (fA(x), d) : DHXO3

AHXO17. OP[CO2; DHXO3] : x ≃ o; ¬A(x) ∨ ¬S(a, b) ∨ T (fA(x), d) ⊢
⊢ ¬A(x) ∨ ¬S(a, o) ∨ T (fA(x), d) : DHXO3

AHXO18. OP[CO2; DHXO4] : x ≃ o; ¬A(x) ∨ ¬S(fA(x), a) ∨ T (fA(x), b) ⊢
⊢ ¬A(x) ∨ ¬S(fA(x), o) ∨ T (fA(x), b) : DHXO4

AHXO19. OP[CO2; DHXO4] : x ≃ o; ¬A(x) ∨ ¬S(fA(x), a) ∨ T (fA(x), b) ⊢

⊢ ¬A(x) ∨ ¬S(o, a) ∨ T (fA(x), b) : DHXO3

AHXO20. OR[CO3; DHX1] : R(x, b); ¬R(a, b) ∨ S(a, b) ⊢ S(a, b) : C2

AHXO21. OR[CO3; DHX2] : R(x, b); ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y) ⊢ ¬S(x, b) ∨ T (x, b) : DHXO1

AHXO22. OR[CO3; DHXO1] : R(x, a); ¬R(x, a) ∨ S(x, b) ⊢ S(x, b) : CO3

AHXO23. OR[CO3; DHXO3] : R(x, b); ¬A(x) ∨ ¬R(a, b) ∨ S(fA(x), c) ⊢

⊢ ¬A(x) ∨ S(fA(x), c) : CO5

AHXO24. OR[CO3; DHXO4] : R(x, b); ¬A(x) ∨ ¬R(fA(x), b) ∨ S(fA(x), c) ⊢

⊢ ¬A(x) ∨ S(fA(x), c) : CO5

AHXO25. OP[CO4; DHX3] : ¬A(x) ∨ fA(x) ≃ c; ¬A(x) ∨ ¬S(x, fA(x)) ∨ T (x, fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬S(x, c) ∨ T (x, c) ⊢ ¬A(x) ∨ ¬S(x, c) ∨ T (x, c) : DHXO2

AHXO26. OP[CO4; DHXO4] : ¬A(x) ∨ fA(x) ≃ c; ¬A(x) ∨ ¬R(fA(x), a) ∨ S(fA(x), b) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬R(c, a) ∨ S(fA(x), b) ⊢ ¬A(x) ∨ ¬R(c, a) ∨ S(fA(x), b) : DHXO3

AHXO27. OR[CO5; DHX2] : ¬A(x) ∨R(fA(x), a); ¬R(x, y) ∨ ¬S(x, y) ∨ T (x, y) ⊢

⊢ ¬A(x) ∨ ¬S(fA(x), a) ∨ T (fA(x), a) : DHXO4

AHXO28. OR[CO5; DHXO1] : ¬A(x) ∨R(fA(x), a); ¬R(x, a) ∨ S(x, b) ⊢

⊢ ¬A(x) ∨ S(fA(x), b) : CO5

AHXO29. OR[CO5; DHXO4] : ¬A(x) ∨R(fA(x), a); ¬A(x) ∨ ¬R(fA(x), a) ∨ S(fA(x), b) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ S(fA(x), b) ⊢ ¬A(x) ∨ S(fA(x), b) : CO5

APO1. OR[C1; DPO1] : B(a); ¬A(x) ∨ ¬B(a) ∨ C(y) ⊢ ¬A(x) ∨ C(y) : DP6

APO2. OR[C1; DPO2] : A(b); ¬A(x) ∨R(a, y) ⊢ R(a, x) : CP2

APO3. OR[C1; DPO3] : A(a); ¬A(x) ∨R(y, b) ⊢ R(x, b) : CP1

APO4. OR[C1; DPO4] : B(a); ¬A(x) ∨ ¬B(y) ∨R(fA(x), a) ⊢ ¬A(x) ∨R(fA(x), a) : CP3

APO5. OR[C1; DPO5] : B(a); ¬A(x) ∨ ¬B(y) ∨R(a, fA(x)) ⊢ ¬A(x) ∨R(a, fA(x)) : CP4

APO6. OR[C1; DPO6] : C(a); ¬A(x) ∨ ¬B(y) ∨ ¬C(a) ∨D(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨D(fA(x)) : DP11

APO7. OR[C3; DPO1] : B(x); ¬A(x) ∨ ¬B(a) ∨C(y) ⊢ ¬A(x) ∨ C(y) : CP6

APO8. OR[C1; DPO2] : A(x); ¬A(x) ∨R(a, y) ⊢ R(a, x) : CP2

APO9. OR[C1; DPO3] : A(x); ¬A(x) ∨R(y, b) ⊢ R(x, b) : CP1

APO10. OR[C3; DPO4] : B(x); ¬A(x) ∨ ¬B(y) ∨R(fA(x), a) ⊢ ¬A(x) ∨R(fA(x), a) : CP3

APO11. OR[C3; DPO5] : B(x); ¬A(x) ∨ ¬B(y) ∨R(a, fA(x)) ⊢ ¬A(x) ∨R(a, fA(x)) : CP4

Continued on next page



A.5. Extensions of DL EL with Nominals 213

APO12. OR[C3; DPO6] : C(x); ¬A(x) ∨ ¬B(y) ∨ ¬C(a) ∨D(fA(x)) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨D(fA(x)) : DP11

APO13. OR[C4; DPO2] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨R(a, y) ⊢ ¬A(x) ∨R(a, y) : DPO2

APO14. OR[C4; DPO3] : ¬A(x) ∨B(fA(x)); ¬B(x) ∨R(y, b) ⊢ ¬A(x) ∨R(y, b) : DPO3

APO15. OR[C4; DPO4] : ¬A(x) ∨ C(fA(x)); ¬B(x) ∨ ¬C(y) ∨R(gB(x), a) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨R(gB(x), a) : DPO4

APO16. OR[C4; DPO5] : ¬A(x) ∨ C(fA(x)); ¬A(x) ∨ ¬C(y) ∨R(a, gA(x)) ⊢

⊢ ¬A(x) ∨ ¬C(y) ∨R(a, gA(x)) : DPO5

APO17. OP[CO1; CP2] : a ≃ b; R(a, x) ⊢ R(b, x) : CP2

APO18. OP[CO1; CP4] : a ≃ b; ¬A(x) ∨R(a, fA(x)) ⊢ ¬A(x) ∨R(b, fA(x)) : CP4

APO19. OP[CO1; DP1] : a ≃ b; ¬A(a) ∨B(x) ⊢ ¬A(b) ∨B(x) : DP1

APO20. OP[CO1; DP4] : a ≃ b; ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(b) ∨C(fA(x)) : DP4

APO21. OP[CO1; DPO1] : a ≃ b; ¬A(x) ∨ ¬B(a) ∨ C(y) ⊢ ¬A(x) ∨ ¬B(b) ∨C(y) : DPO1

APO22. OP[CO1; DPO6] : a ≃ b; ¬A(x) ∨ ¬B(y) ∨ ¬C(a) ∨D(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(y) ∨ ¬C(b) ∨D(fA(x)) : DPO6

APO23. OP[CO2; CP2] : x ≃ o; R(a, x) ⊢ R(o, x) : CP2

APO24. OP[CO2; CP4] : x ≃ o; ¬A(x) ∨R(a, fA(x)) ⊢ ¬A(x) ∨R(o, fA(x)) : CP4

APO25. OP[CO2; CP4] : x ≃ o; ¬A(x) ∨R(a, fA(x)) ⊢ ¬A(x) ∨R(a, o) : DO5

APO26. OP[CO2; CP6] : x ≃ o; ¬A(x) ∨R(fA(x), y) ⊢ ¬A(y) ∨R(o, y) : DP3

APO27. OP[CO2; CP7] : x ≃ o; ¬A(y) ∨R(x, fA(y)) ⊢ ¬A(x) ∨R(x, o) : DO6

APO28. OP[CO2; CP8] : x ≃ o; ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)) ⊢

⊢ ¬A(x) ∨ ¬B(y) ∨R(fA(x), o) : DPO4

APO29. OP[CO2; CP8] : x ≃ o; ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨R(o, gB(x)) : DPO5

APO30. OP[CO2; DP1] : x ≃ o; ¬A(a) ∨B(x) ⊢ ¬A(o) ∨B(x) : DP1

APO31. OP[CO2; DP4] : x ≃ o; ¬A(x) ∨ ¬B(a) ∨ C(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(o) ∨C(fA(x)) : DP4

APO32. OP[CO2; DP5] : x ≃ o; ¬A(x) ∨ ¬B(fA(x)) ∨ C(a) ⊢

⊢ ¬A(x) ∨ ¬B(o) ∨ C(a) : DO7

APO33. OP[CO2; DP12] : x ≃ o; ¬A(x) ∨ ¬B(fA(x)) ∨ C(y) ⊢

⊢ ¬A(x) ∨ ¬B(o) ∨C(y) : DPO1

APO34. OP[CO2; DP14] : x ≃ o; ¬A(x) ∨ ¬B(y) ∨ ¬C(fA(x)) ∨D(gB(y)) ⊢

⊢ ¬B(x) ∨ ¬A(y) ∨ ¬C(o) ∨D(gB(x)) : DPO6

APO35. OP[CO2; DPO1] : x ≃ o; ¬A(x) ∨ ¬B(a) ∨ C(y) ⊢ ¬A(x) ∨ ¬B(o) ∨ C(y) : DPO1

APO36. OP[CO2; DPO6] : x ≃ o; ¬A(x) ∨ ¬B(y) ∨ ¬C(a) ∨D(fA(x)) ⊢
⊢ ¬A(x) ∨ ¬B(y) ∨ ¬C(o) ∨D(fA(x)) : DPO6

APO37. OR[CO3; DP7] : R(x, b); ¬R(x, y) ∨A(x) ⊢ A(x) : C3

APO38. OR[CO3; DP8] : R(x, b); ¬R(x, y) ∨B(y) ⊢ B(b) : C1

Continued on next page



214 DL EL and Its Extensions

APO39 OP[CO4; CP4] : ¬A(x) ∨ fA(x) ≃ b; ¬A(x) ∨R(a, fA(x)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨R(a, b) ⊢ ¬A(x) ∨R(a, b) : DO5

APO40 OP[CO4; CP6] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨R(fA(x), y) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨R(a, y) ⊢ ¬A(x) ∨R(a, y) : DPO2

APO41 OP[CO4; CP7] : ¬A(x) ∨ fA(x) ≃ b; ¬A(y) ∨R(x, fA(y)) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨R(y, b) ⊢ ¬A(x) ∨R(y, b) : DPO3

APO42. OP[CO4; CP8] : ¬B(x) ∨ gB(x) ≃ b; ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)) ⊢

⊢ ¬B(y) ∨ ¬A(x) ∨ ¬B(y) ∨R(fA(x), b) ⊢ ¬A(x) ∨ ¬B(y) ∨R(fA(x), b) : DPO4

APO43. OP[CO4; CP8] : ¬A(x) ∨ fA(x) ≃ b; ¬A(x) ∨ ¬B(y) ∨R(fA(x), gB(y)) ⊢

⊢ ¬A(x) ∨ ¬B(x) ∨ ¬A(y) ∨R(b, gB(x)) ⊢ ¬B(x) ∨ ¬A(y) ∨R(b, gB(x)) : DPO5

APO44. OP[CO4; DP5] : ¬A(x) ∨ fA(x) ≃ a; ¬A(x) ∨ ¬B(fA(x)) ∨C(b) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬B(a) ∨C(b) ⊢ ¬A(x) ∨ ¬B(a) ∨ C(b) : DO7

APO45. OP[CO4; DP12] : ¬A(x) ∨ fA(x) ≃ b; ¬A(x) ∨ ¬B(fA(x)) ∨ C(y) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ ¬B(b) ∨ C(y) ⊢ ¬A(x) ∨ ¬B(b) ∨ C(y) : DPO1

APO46. OP[CO4; DP14] : ¬A(x) ∨ fA(x) ≃ b;

¬A(x) ∨ ¬B(y) ∨ ¬C(fA(x)) ∨D(gB(y)) ⊢

⊢ ¬A(y) ∨ ¬B(x) ∨ ¬A(y) ∨ ¬C(b) ∨D(gB(x)) ⊢
⊢ ¬B(x) ∨ ¬A(y) ∨ ¬C(b) ∨D(gB(x)) : DPO6

Table A.10: An extension of the datalog program for reasoning with nominals in
EL

AO1. CO1(b, c) ← C1(A, a), DO1(A, b, c);
AO2. C1(A, a) ← DO2(A, b); CO1(a, b);
AO3. C3(B) ← C1(A, a), DO3(A, B, a);
AO4. C1(B, b) ← C1(A, a), DO4(A, B, b);
AO5. C2(R, a, b) ← C1(A, a), DO5(A, R, a, b);
AO6. C2(R, a, b) ← C1(A, a), DO6(A, R, b);
AO7. DO4(A, C, b) ← C1(B, a), DO7(A, B, C, a, b);
AO8. D4(A, C) ← C1(B, a), DO8(A, B, C, a);
AO9. C4(A, C, fA) ← C1(B, a), DO9(A, B, C, fA, a);
AO10. CO1(b, c) ← C3(A), DO1(A, b, c);
AO11. CO2 ← C3(A), DO2(A, o);
AO12. C3(B) ← C3(A), DO3(A, B, a);
AO13. C1(B, b) ← C3(A), DO4(A, B, b);
AO14. C2(R, a, b) ← C3(A), DO5(A, R, a, b);
AO15. CO3(R, a) ← C3(A), DO6(A, R, a);
AO16. DO4(A, C, b) ← C3(B), DO7(A, B, C, a, b);
AO17. D4(A, C) ← C3(B), DO8(A, B, C, a);
AO18. C4(A, C, fA) ← C3(B), DO9(A, B, C, fA, a);
AO19. DO1(A, b, c) ← C4(A, B, fA), DO1(B, b, c);
AO20. CO4(A, fA, b) ← C4(A, B, fA), DO2(B, b);

Continued on next page



A.5. Extensions of DL EL with Nominals 215

AO21. DO4(A, C, b) ← C4(A, B, fA), DO4(B, C, b);
AO22. DO5(A, R, a, b) ← C4(A, B, fA), DO5(B, R, a, b);
AO23. CO5(A, R, fA, a) ← C4(A, B, fA), DO6(B, R, a);
AO24. C1(A, b) ← CO1(a, b), C1(A, a);
AO25. C2(R, b, c) ← CO1(a, b), C2(R, a, c);
AO26. C2(R, c, b) ← CO1(a, b), C2(R, c, a);
AO27. D1(A, b) ← CO1(a, b), D1(A, a);
AO28. D2(R, b, c) ← CO1(a, b), D2(R, a, c);
AO29. D2(R, c, b) ← CO1(a, b), D2(R, c, a);
AO30. D3(A, B, b, c) ← CO1(a, b), D3(A, B, a, c);
AO31. CO1(b, c) ← CO1(a, b), CO1(a, c);
AO32. CO1(c, b) ← CO1(a, b), CO1(c, a);
AO33. CO3(R, b) ← CO1(a, b), CO3(R, a);
AO34. CO4(A, fA, b) ← CO1(a, b), CO4(A, fA, a);
AO35. CO5(A, R, fA, b) ← CO1(a, b), CO5(A, R, fA, a);
AO36. DO3(A, B, b) ← CO1(a, b), DO3(A, B, a);
AO37. DO7(A, B, C, b, c) ← CO1(a, b), DO7(A, B, C, a, c);
AO38. DO8(A, B, C, b) ← CO1(a, b), DO8(A, B, C, a);
AO39. DO9(A, B, C, fA, b) ← CO1(a, b), DO9(A, B, C, fA, a);
AO40. C1(A, o) ← CO2, C1(A, a);
AO41. C2(R, o, c) ← CO2, C2(R, a, c);
AO42. DO4(A, B, o) ← CO2, C4(A, B, fA);
AO43. DO6(A, R, o) ← CO2, C5(A, R, fA);
AO44. D1(A, o) ← CO2, D1(A, a);
AO45. D2(R, o, c) ← CO2, D2(R, a, c);
AO46. D2(R, c, o) ← CO2, D2(R, c, a);
AO47. D3(A, B, o, c) ← CO2, D3(A, B, a, c);
AO48. DO8(A, B, C, o) ← CO2, D7(A, B, C, fA);
AO49. DO9(A, B, C, fA, o) ← CO2, D8(A, B, C, fA);
AO50. CO1(o, c) ← CO2, CO1(a, c);
AO51. CO1(c, o) ← CO2, CO1(c, a);
AO52. CO3(R, o) ← CO2, CO3(R, a);
AO53. DO1(A, o, c) ← CO2, CO4(A, fA, c);
AO54. CO4(A, fA, o) ← CO2, CO4(A, fA, a);
AO55. DO5(A, R, o, c) ← CO2, CO5(A, R, fA, c);
AO56. CO5(A, R, fA, o) ← CO2, CO5(A, R, fA, a);
AO57. DO3(A, B, o) ← CO2, DO3(A, B, a);
AO58. DO7(A, B, C, o, c) ← CO2, DO7(A, B, C, a, c);
AO59. DO8(A, B, C, o) ← CO2, DO8(A, B, C, a);
AO60. DO9(A, B, C, fA, o) ← CO2, DO9(A, B, C, fA, a);
AO61. � ← CO3(R, b), D2(R, a, b);
AO62. DO3(B, A, b) ← CO3(R, b), D6(R, B, A);
AO63. DO4(A, B, a) ← CO4(A, fA, a), C4(A, B, fA);
AO64. DO6(A, R, a) ← CO4(A, fA, a), C5(A, R, fA);
AO65. DO8(A, B, C, a) ← CO4(A, fA, a), D7(A, B, C, fA);
AO66. DO9(A, B, C, fA, a) ← CO4(A, fA, a), D8(A, B, C, fA);

Continued on next page



216 DL EL and Its Extensions

AO67. DO1(A, a, b) ← CO4(A, fA, a), CO4(A, fA, b);
AO68. DO5(A, R, a, b) ← CO4(A, fA, a), CO5(A, R, fA, b);
AO69. DO9(A, B, C, fA, a) ← CO5(A, R, fA, a), D6(R, B, C);

AHO1. CO3(S, a) ← CO3(R, a), DH1(R, S);
AHO2. CO5(A, S, fA, a) ← CO5(A, R, fA, a), DH1(R, S);

AHXO1. DHX1(S, T, a, c) ← C1(A, a), DHXO2(A, S, T, b, c);
AHXO2. C2(S, a, c) ← C2(R, a, b), DHXO1(R, S, b, c);
AHXO3. CO5(A, S, fA, c) ← C2(R, a, b), DHXO3(A, R, S, fA, a, b, c);
AHXO4. DHXO1(S, T, b, c) ← C3(A), DHXO2(A, S, T, b, c);
AHXO5. DHXO4(A, S, T, fA, b, c) ← C4(A, B, fA), DHXO2(B, S, T, b, c);
AHXO6. DHX1(R, S, c, b) ← CO1(a, c), DHX1(R, S, a, b);
AHXO7. DHX1(R, S, a, c) ← CO1(b, c), DHX1(R, S, a, b);
AHXO8. DHXO1(S, T, c, b) ← CO1(a, c), DHXO1(S, T, a, b);
AHXO9. DHXO3(A, S, T, fA, c, b, d) ← CO1(a, c), DHXO3(A, S, T, fA, a, b, d);
AHXO10. DHXO3(A, S, T, fA, a, c, d) ← CO1(b, c), DHXO3(A, S, T, fA, a, b, d);
AHXO11. DHXO4(A, S, T, fA, c, b) ← CO1(a, c), DHXO4(A, S, T, fA, a, b);
AHXO12. DHX1(R, S, o, b) ← CO2, DHX1(R, S, a, b);
AHXO13. DHX1(R, S, a, o) ← CO2, DHX1(R, S, a, b);
AHXO14. DHXO2(A, S, T, o, o) ← CO2, DHX3(A, S, T, fA);
AHXO15. DHXO1(S, T, o, b) ← CO2, DHXO1(S, T, a, b);
AHXO16. DHXO3(A, S, T, fA, o, b, d) ← CO2, DHXO3(A, S, T, fA, a, b, d);
AHXO17. DHXO3(A, S, T, fA, a, o, d)← CO2, DHXO3(A, S, T, fA, a, b, d);
AHXO18. DHXO4(A, S, T, fA, o, b) ← CO2, DHXO4(A, S, T, fA, a, b);
AHXO19. DHXO3(A, S, T, fA, o, a, b) ← CO2, DHXO4(A, S, T, fA, a, b);
AHXO20. C2(S, a, b) ← CO3(R, b), DHX1(R, S, a, b);
AHXO21. DHXO1(S, T, b, b) ← CO3(R, b), DHX2(R, S, T );
AHXO22. CO3(S, b) ← CO3(R, a), DHXO1(R, S, a, b);
AHXO23. CO5(A, S, fA, c) ← CO3(R, b), DHXO3(A, R, S, fA, a, b, c);
AHXO24. CO5(A, S, fA, c) ← CO3(R, b), DHXO4(A, R, S, fA, b, c);
AHXO25. DHXO2(A, S, T, c, c) ← CO4(A, fA, c), DHX3(A, S, T, fA);
AHXO26. DHXO3(A, R, S, fA, c, a, b) ← CO4(A, fA, c), DHXO4(A, R, S, fA, a, b);
AHXO27. DHXO4(A, S, T, fA, a, a) ← CO5(A, R, fA, a), DHX2(R, S, T );
AHXO28. CO5(A, S, fA, b) ← CO5(A, R, fA, a), DHXO1(R, S, a, b);
AHXO29. CO5(A, S, fA, b) ← CO5(A, R, fA, a), DHXO4(A, R, S, fA, a, b);

APO1. DP6(A, C) ← C1(B, a), DPO1(A, B, C, a);
APO2. CP2(R, a) ← C1(A, b), DPO2(A, R, a);
APO3. CP1(R, b) ← C1(A, a), DPO3(A, R, b);
APO4. CP3(A, R, fA, a) ← C1(B, a), DPO4(A, B, R, fA, a);
APO5. CP4(A, R, fA, a) ← C1(B, a), DPO5(A, B, R, fA, a);
APO6. DP11(A, B, D, fA) ← C1(C, a), DPO6(A, B, C, D, fA, a);
APO7. DP6(A, C) ← C3(B), DPO1(A, B, C, a);
APO8. CP2(R, a) ← C3(A), DPO2(A, R, a);
APO9. CP1(R, b) ← C3(A), DPO3(A, R, b);
APO10. CP3(A, R, fA, a) ← C3(B), DPO4(A, B, R, fA, a);
APO11. CP4(A, R, fA, a) ← C3(B), DPO5(A, B, R, fA, a);

Continued on next page



A.6. Extensions of DL EL with Restricted Role-Value Maps 217

APO12. DP11(A, B, D, fA) ← C3(C), DPO6(A, B, C, D, fA, a);
APO13. DPO2(A, R, a) ← C4(A, B, fA), DPO2(B, R, a);
APO14. DPO3(A, R, b) ← C4(A, B, fA), DPO3(B, R, b);
APO15. DPO4(B, A, R, gB, a) ← C4(A, C, fA), DPO4(B, C, R, gB, a);
APO16. DPO5(A, C, R, gB, a) ← C4(A, C, fA), DPO5(A, C, R, gB, a);
APO17. CP2(R, b) ← CO1(a, b), CP2(R, a);
APO18. CP4(A, R, fA, b) ← CO1(a, b), CP4(A, R, fA, a);
APO19. DP1(A, B, b) ← CO1(a, b), DP1(A, B, a);
APO20. DP4(A, B, C, fA, b) ← CO1(a, b), DP4(A, B, C, fA, a);
APO21. DPO1(A, B, C, b) ← CO1(a, b), DPO1(A, B, C, a);
APO22. DPO6(A, B, C, D, fA, b) ← CO1(a, b), DPO6(A, B, C, D, fA, a);
APO23. CP2(R, o) ← CO2, CP2(R, a);
APO24. CP4(A, R, fA, o) ← CO2, CP4(A, R, fA, a);
APO25. DO5(A, R, a, o) ← CO2, CP4(A, R, fA, a);
APO26. DP3(A, R, a) ← CO2(a), CP6(A, R, fA);
APO27. DO6(A, R, o) ← CO2, CP7(A, R, fA);
APO28. DPO4(A, B, R, fA, o) ← CO2, CP8(A, B, R, fA, gB);
APO29. DPO5(B, A, R, gB, o) ← CO2, CP8(A, B, R, fA, gB);
APO30. DP1(A, B, o) ← CO2, DP1(A, B, a);
APO31. DP4(A, B, C, fA, o) ← CO2, DP4(A, B, C, fA, a);
APO32. DO7(A, B, C, o, a) ← CO2, DP5(A, B, C, fA, a);
APO33. DPO1(A, B, C, o) ← CO2, DP12(A, B, C, fA);
APO34. DPO6(B, A, C, D, gB, o) ← CO2, DP14(A, B, C, D, fA, gB);
APO35. DPO1(A, B, C, o) ← CO2, DPO1(A, B, C, a);
APO36. DPO6(A, B, C, D, fA, o) ← CO2, DPO6(A, B, C, D, fA, a);
APO37. C3(A) ← CO3(R, b), DP7(R, A);
APO38. C1(B, b) ← CO3(R, b), DP8(R, B);
APO39. DO5(A, R, a, b) ← CO4(A, fA, b), CP4(A, R, fA, a);
APO40. DPO2(A, R, a) ← CO4(A, fA, a), CP6(A, R, fA);
APO41. DPO3(A, R, b) ← CO4(A, fA, b), CP7(A, R, fA);
APO42. DPO4(A, B, R, fA, b) ← CO4(B, gB, b), CP8(A, B, R, fA, gB);
APO43. DPO5(B, A, R, gB, b) ← CO4(A, fA, b), CP8(A, B, R, fA, gB);
APO44. DO7(A, B, C, a, b) ← CO4(A, fA, a), DP5(A, B, C, fA, b);
APO45. DPO1(A, B, C, b) ← CO4(A, fA, b), DP12(A, B, C, fA);
APO46. DPO6(B, A, C, D, gB, b) ← CO4(A, fA, b), DP14(A, B, C, D, fA, gB);

A.6 Extensions of DL EL with Restricted Role-Value

Maps

In this appendix we describe a resolution-based decision procedure for the exten-
sion of EL with restricted role-value maps that was sketched in subsection 2.5.2.
We demonstrate that all new clauses that are obtained for this extensions can be
captured by the clause types given in Table A.11. Intuitively, the new atoms T a(x)



218 DL EL and Its Extensions

Table A.11 Clause types for extensions of EL with for restricted role-value maps
CM1 T a(b);

CM2 T A(a);

CM3 ¬A(x) ∨ T B(x);

CM4 R¬(x, y) ∨R(x, y);

DM1 ¬A(a) ∨ T B(b);

DM2 ¬S(x, a) ∨A(x);

DM3 ¬S(x, a) ∨ T A(x);

DM4 ¬S(x, a) ∨ T b(x);

DM5 ¬S(a, x) ∨ ¬T b(x)

DM6 ¬S(x, y) ∨ ¬T a(y) ∨A(x)

DM7 ¬S(x, y) ∨ ¬T a(y) ∨HA(x);

DM8 ¬S(x, y) ∨ ¬T a(y) ∨Hb(x);

DM9 ¬S(x, y) ∨ ¬T A(y) ∨B(x);

DM10 ¬S(x, y) ∨ ¬T A(y) ∨HB(x);

DM11 ¬S(x, y) ∨ ¬A(y) ∨ T B(x);

DM12 ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z);

DM13 ¬A(x) ∨ ¬B(fA(x)) ∨ T C(x);

have a similar meaning as TA(x) discussed subsection 2.5.2, and originate from Split-
ting through New Predicate Symbol, where a are individuals. When atom TA(x), as
has been pointed out, corresponds to concept ∃T .A, atom T a(x) has a semantical
meaning ∃T .{a}.

In Table A.12 we have listed all possible resolution inferences between clauses
for this description logic from Table A.11. All inferences are straightforward except
for those that employ splitting rule (2.17), which we comment on below.

In inferences AM13 – AM16, TM5 and TM6 we have simulated resolution with
the conclusions of compositional axioms, as has been demonstrated for the transi-
tivity axiom in subsection 2.5.2. For this, we have used the “renamed” clauses CM4
and DM12 corresponding to these compositional axioms. Every such inference is
simulated by a sequence of two resolution inferences with these clauses, and results
in a clause which is split into two clauses using rule (2.17).

The analysis of possible inferences shows that the described set of clauses is
closed under ordered resolution, which implies that reasoning tasks for the consid-
ered description logic can be solved in polynomial time. The exact complexity bound
can be extracted by analysing an extension of datalog program for restricted RVMs
given in Table A.13. Applying usual calculations of prefix firings (the number of
dots-underlined atoms is bounded by O(n4)), we observe that the complexity of EL
with restricted RVMs is considerably higher than of EL: O(n5) versus O(n3).

We haven’t investigated further extensions of EL with restricted RVMs, simple
role hierarchies and nominals, but we think that these extensions are fairly straight-
forward.



A.6. Extensions of DL EL with Restricted Role-Value Maps 219

Table A.12: Summary of inferences for restricted role-value maps in EL

AM1. OR[C1; DM1] : A(a); ¬A(a) ∨ T B(b) ⊢ T B(b) : CM2

AM2. OR[C2; DM2] : R(a, b); ¬R(x, b) ∨A(x) ⊢ A(a) : C1

AM3. OR[C2; DM3] : R(a, b); ¬R(x, b) ∨ T A(x) ⊢ T A(a) : CM2

AM4. OR[C2; DM4] : R(a, b); ¬R(x, b) ∨ T c(x) ⊢ T c(a) : CM1

AM5. OR[C2; DM11] : R(a, b); ¬R(x, y) ∨ ¬A(y) ∨ T B(x) ⊢ ¬A(b) ∨ T B(a) : DM1

AM6. OR[C3; DM1] : A(x); ¬A(a) ∨ T B(b) ⊢ T B(b) : CM2

AM7. OR[CM1; DM5] : T a(b); ¬S(c, x) ∨ ¬T a(x) ⊢ ¬S(c, b) : D2

AM8. OR[CM1; DM6] : T a(b); ¬S(x, y) ∨ ¬T a(y) ∨A(x) ⊢ ¬S(x, b) ∨A(x) : DM2

AM9. OR[CM1; DM7] : T a(b); ¬S(x, y) ∨ ¬T a(y) ∨HA(x) ⊢ ¬S(x, b) ∨HA(x) : DM3

AM10. OR[CM1; DM8] : T a(b); ¬S(x, y) ∨ ¬T a(y) ∨Hc(x) ⊢ ¬S(x, b) ∨Hc(x) : DM4

AM11. OR[CM2; DM9] : T A(a); ¬S(x, y) ∨ ¬T A(y) ∨B(x) ⊢ ¬S(x, a) ∨B(x) : DM2

AM12. OR[CM2; DM10] : T A(a); ¬S(x, y) ∨ ¬T A(y) ∨HB(x) ⊢ ¬S(x, a) ∨HB(x) : DM3

AM13. OR[CM4; D2] : H¬(x, y) ∨H(x, y); ¬H(a, b) ⊢ H¬(a, b);

OR[ · ; DM12] : H¬(a, b); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(a, x) ∨ ¬T (x, b) ]] ⊢ ¬S(a, x) ∨ ¬T b(x) : DM5

⊢ ¬T (x, b) ∨ T b(x) : DM4

AM14. OR[CM4; DM2] : H¬(x, y) ∨H(x, y); ¬H(x, a) ∨A(x) ⊢ H¬(x, a) ∨A(x);

OR[ · ; DM12] : H¬(x, a) ∨A(x); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(x, y) ∨ ¬T (y, a) ∨A(x) ]] ⊢ ¬S(x, y) ∨ ¬T a(y) ∨A(x) : DM6

⊢ ¬T (x, a) ∨ T a(x) : DM4

AM15. OR[CM4; DM3] : H¬(x, y) ∨H(x, y); ¬H(x, a) ∨RA(x) ⊢ H¬(x, a) ∨RA(x);

OR[ · ; DM12] : H¬(x, a) ∨RA(x); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(x, y) ∨ ¬T (y, a) ∨RA(x) ]] ⊢ ¬S(x, y) ∨ ¬T a(y) ∨RA(x) : DM7

⊢ ¬T (x, a) ∨ T a(x) : DM4

AM16. OR[CM4; DM4] : H¬(x, y) ∨H(x, y); ¬H(x, a) ∨Rb(x) ⊢ H¬(x, a) ∨Rb(x);

OR[ · ; DM12] : H¬(x, a) ∨Rb(x); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(x, y) ∨ ¬T (y, a) ∨Rb(x) ]] ⊢ ¬S(x, y) ∨ ¬T a(y) ∨Rb(x) : DM8

⊢ ¬T (x, a) ∨ T a(x) : DM4

TM1. OR[C3; DM13] : B(x); ¬A(x) ∨ ¬B(fA(x)) ∨ T C(x) ⊢ ¬A(x) ∨ T C(x) : CM3

TM2. OR[C4; DM13] : ¬A(x) ∨B(fA(x)); ¬A(x) ∨ ¬B(fA(x)) ∨ T C(x) ⊢

⊢ ¬A(x) ∨ ¬A(x) ∨ T C(x) ⊢ ¬A(x) ∨ T C(x) : CM3

TM3. OR[C5; DM11] : ¬A(x) ∨R(x, fA(x)); ¬R(x, y) ∨ ¬B(y) ∨ T C(x) ⊢

⊢ ¬A(x) ∨ ¬B(fA(x)) ∨ T C(x) : DM13

TM5. OR[CM3; DM9] : ¬A(x) ∨ T B(x); ¬S(x, y) ∨ ¬T B(y) ∨ C(x) ⊢

⊢ ¬S(x, y) ∨ ¬A(y) ∨ C(x) : D6

Continued on next page



220 DL EL and Its Extensions

TM4. OR[CM3; DM10] : ¬A(x) ∨ T B(x); ¬S(x, y) ∨ ¬T B(y) ∨HC(x) ⊢

⊢ ¬S(x, y) ∨ ¬A(y) ∨HC(x) : DM11

TM5. OR[CM4; D6] : H¬(x, y) ∨H(x, y); ¬H(x, y) ∨ ¬B(y) ∨A(x) ⊢

⊢ H¬(x, y) ∨ ¬B(y) ∨A(x);
OR[ · ; DM12] : H¬(x, y) ∨ ¬A(y) ∨B(x); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(x, y) ∨ ¬T (y, z) ∨ ¬A(y) ∨B(x) ]] ⊢ ¬S(x, y) ∨ ¬T A(y) ∨B(x) : DM9

⊢ ¬T (x, y) ∨ ¬A(y) ∨ T A(x) : DM11

TM6. OR[CM4; DM11] : H¬(x, y) ∨H(x, y); ¬H(x, y) ∨ ¬A(y) ∨RB(x) ⊢

⊢ H¬(x, y) ∨ ¬A(y) ∨RB(x);
OR[ · ; DM12] : H¬(x, y) ∨ ¬A(y) ∨RB(x); ¬S(x, y) ∨ ¬T (y, z) ∨ ¬H¬(x, z) ⊢

⊢ [[¬S(x, y) ∨ ¬T (y, z) ∨ ¬A(y) ∨RB(x) ]] ⊢ ¬S(x, y) ∨ ¬T A(y) ∨RB(x) : DM10

⊢ ¬T (x, y) ∨ ¬A(y) ∨ T A(x) : DM11

Table A.13: An extension of the datalog program for reasoning with restricted
role-value maps in EL

AM1. CM2(B, T, b) ← C1(A, a), DM1(A, B, T, a, b);
AM2. C1(A, a) ← C2(R, a, b), DM2(R, b, A);
AM3. CM2(A, T, a) ← C2(R, a, b), DM3(R, b, A, T );
AM4. CM1(c, T, a) ← C2(R, a, b), DM4(R, b, c, T );
AM5. DM1(A, B, T, b, a) ← C2(R, a, b), DM11(R, A, B, T );
AM6. CM2(B, T, b) ← C3(A), DM1(A, B, T, a, b);
AM7. D2(S, c, b) ← CM1(a, T , b), DM5(S, c, a, T );
AM8. DM2(S, b, A) ← CM1(a, T , b), DM6(S, a, T , A);
AM9. DM3(S, b, A, H) ← CM1(a, T , b), DM7(S, a, T , A, H)..............................;

AM10. DM4(S, b, c, H) ← CM1(a, T , b), DM8(S, a, T , c, H)............................ ;

AM11. DM2(S, a, B) ← CM2(A, T , a), DM9(S, A, T , B);
AM12. DM3(S, a, B, H) ← CM2(A, T , a), DM10(S, A, T , B, H)................................ ;

AM13. DM5(S, a, b, T ) ← D2(H, a, b), DM12(S, T, H);

AM13′. DM4(T, b, b, T ) ← D2(H, a, b), DM12(S, T, H);

AM14. DM6(S, a, T, A) ← DM2(H, a, A), DM12(S, T, H);

AM14′. DM4(T, a, a, T ) ← DM2(H, a, A), DM12(S, T, H);

AM15. DM7(S, a, T, A, R) ← DM3(H, a, A, R), DM12(S, T, H);

AM15′. DM4(T, a, a, T ) ← DM3(H, a, A, R), DM12(S, T, H);

AM16. DM8(S, a, T, b, R) ← DM4(H, a, b, R), DM12(S, T, H);

AM16′. DM4(T, a, a, T ) ← DM4(H, a, b, R), DM12(S, T, H);

TM1. CM3(A, C, T ) ← C3(B), DM13(A, B, C, T, fA);
TM2. CM3(A, C, T ) ← C4(A, B, fA), DM13(A, B, C, T, fA);
TM3. DM13(A, B, C, T, fA)← C5(A, R, fA), DM11(R, B, C, T );
TM5. D6(S, A, C) ← CM3(A, B, T ), DM9(S, B, T , C);
TM4. DM11(S, A, C, H) ← CM3(A, B, T ), DM10(S, B, T , C, H)................................ ;

Continued on next page



A.7. Prolog Programs for Reasoning in DL EL 221

TM5. DM9(S, A, T, B) ← D6(H, B, A), DM12(S, T, H);

TM5′. DM11(T, A, A, T ) ← D6(H, B, A), DM12(S, T, H);

TM6. DM10(S, A, T, B, R) ← DM11(H, A, B, R), DM12(S, T, H);

TM6′. DM11(T, A, A, T ) ← DM11(H, A, B, R), DM12(S, T, H);

A.7 Prolog Programs for Reasoning in DL EL

In this appendix we include the source codes of two prolog programs that were used
in experiments described in section 2.6. The first program implements the comple-
tion algorithm given in (2.4). The second is based on the datalog program given
in Table 2.7. Both programs process a TBox given by a list of concept definitions
C1

·
=C2 according to the syntax:

define_concept(C1,C2).

where C1 and C2 are concepts that are defined by the grammar:

CN ::= a | and(C1,C2) | some(r,C1) .

where C1, C2 ∈ CN , a is any concept name identifier, and r is any role name identi-
fier (both are strings starting with a small letter). Both programs process the input
definitions by first introducing simple definitions for every compound subconcept.
After that, the respective completion rules are applied.

In lines 4 – 5 of the programs there are some compiler options for XSB prolog
system specified, which turn on automatic optimisations and static analysis for
determining tabled predicates (line 4), and additional declarations in order to cache
the set of subconcepts (line 5).

It is well-known that the order of atoms in the body of a prolog rules may have
a dramatical impact on the running times of logical programs. For some rules we
have manually rearranged the atoms in their bodies to obtain a better performance.

Classification of a TBox is done by issuing command “classify.” This forces
XSB to compute all pairs of concepts (A, B) such that “subsumes(A,B).” holds.
After that, command “print.” prints all computed subsumption relations.

XSB+CR
1 %% A prolog program for classification of EL-terminologies

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Options for enabling tabling in XSB prolog

4 :- compiler_options([optimize,auto_table]).

5 :- table(sub_c/1). % optimization of simplification

6

7 /* Simplification */

8

9 sub_c(X,X). % sub concept



222 DL EL and Its Extensions

10 sub_c(C,and(X,Y)) :- sub_c(C,X).

11 sub_c(C,and(X,Y)) :- sub_c(C,Y).

12 sub_c(C,some(R,X)) :- sub_c(C,X).

13 sub_c(C) :- define_concept(X,Y), sub_c(C,X).

14 sub_c(C) :- define_concept(Y,X), sub_c(C,X).

15

16 /* Definitions of Atoms */

17

18 in(A,B) :- define_concept(A,B).

19 in(A,B) :- define_concept(B,A).

20

21 in(and(A,B),A) :- sub_c(and(A,B)).

22 in(and(A,B),B) :- sub_c(and(A,B)).

23 and_in(A,B,and(A,B)) :- sub_c(and(A,B)).

24

25 some_in(R,B,some(R,B)) :- sub_c(some(R,B)).

26 in_some(some(R,B),R,B) :- sub_c(some(R,B)).

27

28 /* Datalog Program */

29

30 subsumes(C,C) :- sub_c(C).

31 subsumes(top,C) :- sub_c(C).

32

33 subsumes(D,C) :- in(Ca,D), subsumes(Ca,C).

34 subsumes(D,C) :- and_in(Ca,Cb,D), subsumes(Ca,C), subsumes(Cb,C).

35 reachable_R(C,D,R) :- in_some(Ca,R,D), subsumes(Ca,C).

36 subsumes(E,C) :- some_in(R,Da,E), subsumes(Da,D), reachable_R(C,D,R).

37

38 /* Computing a subsumption relation */

39

40 classify :- subsumes(A,B),fail. % compute subsumption

41

42 % printing subsumption for non-equal concept names

43

44 print_subsumes(A,B) :- subsumes(A,B),A\==B,atom(A),atom(B),

45 writeq(subsumes(A,B)),nl,fail.

46

47 print :- print_subsumes(A,B).

XSB+OR
1 %% A prolog program for classification of EL-terminologies

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Options for enabling tabling in XSB prolog

4 :- compiler_options([optimize,auto_table]).

5 :- table(sub_c/1). % optimization of simplification

6

7 /* Simplification */

8



A.7. Prolog Programs for Reasoning in DL EL 223

9 sub_c(X,X). % sub concept

10 sub_c(C,and(X,Y)) :- sub_c(C,X).

11 sub_c(C,and(X,Y)) :- sub_c(C,Y).

12 sub_c(C,some(R,X)) :- sub_c(C,X).

13 sub_c(C) :- define_concept(X,Y), sub_c(C,X).

14 sub_c(C) :- define_concept(Y,X), sub_c(C,X).

15

16 /* CNF-translation */

17

18 d4(A,B) :- define_concept(A,B).

19 d4(A,B) :- define_concept(B,A).

20

21 d4(and(A,B),A) :- sub_c(and(A,B)).

22 d4(and(A,B),B) :- sub_c(and(A,B)).

23 d5(A,B,and(A,B)) :- sub_c(and(A,B)).

24

25 c5(some(R,B),R,f(R,B)) :- sub_c(some(R,B)).

26 c4(some(R,B),B,f(R,B)) :- sub_c(some(R,B)).

27 d6(R,B,some(R,B)) :- sub_c(some(R,B)).

28

29 c1(A,Xa) :- instance(Xa,A).

30 c2(R,Xa,Xb) :- relation(Xa,Xb,R).

31

32 /* Datalog Program */

33

34 bot :- c1(A,Xa), d1(A,Xa).

35 c1(B,Xb) :- c1(A,Xa), d3(A,B,Xa,Xb).

36 c1(B,Xa) :- c1(A,Xa), d4(A,B).

37 d3(B,C,Xa,Xa) :- c1(A,Xa), d5(A,B,C).

38 bot :- c2(R,Xa,Xb), d2(R,Xa,Xb).

39 d3(B,A,Xb,Xa) :- c2(R,Xa,Xb), d6(R,B,A).

40 bot :- c3(A), d1(A,Xa).

41 c1(B,Xb) :- c3(A), d3(A,B,Xa,Xb).

42

43 c3(B) :- c3(A), d4(A,B).

44 d4(B,C) :- c3(A), d5(A,B,C).

45 d4(B,C) :- c3(A), d7(B,A,C,F).

46 c4(B,C,F) :- c3(A), d8(B,A,C,F).

47 c4(A,C,F) :- d4(B,C), c4(A,B,F).

48 d8(A,C,D,F) :- d5(B,C,D), c4(A,B,F).

49 d4(A,C) :- c4(A,B,F), d7(A,B,C,F).

50 c4(A,C,F) :- d8(A,B,C,F), c4(A,B,F).

51 d7(A,B,C,F) :- d6(R,B,C), c5(A,R,F).

52

53 /* Computing a subsumption relation */

54

55 sb(A,A) :- sub_c(A).

56 subsumes(B,A) :- c3(B).



224 DL EL and Its Extensions

57 subsumes(B,A) :- sb(B,A).

58

59 sb(E,A) :- d4(C,E), sb(C,A).

60 sb(E,A) :- d5(D,C,E), sb(C,A), sb(D,A).

61 sb(E,A) :- d5(D,C,E), c3(C), sb(D,A).

62

63 classify :- subsumes(A,B),fail. % compute subsumption

64

65 % printing subsumption for non-equal concept names

66

67 print_subsumes(A,B) :- subsumes(A,B),A\==B,atom(A),atom(B),

68 writeq(subsumes(A,B)),nl,fail.

69 print :- print_subsumes(A,B).

70

71 /* Computing queries */

72

73 instances(Xa,A) :- c1(A,Xa),atom(A).

74 relations(Xa,R,Xb) :- c2(R,Xa,Xb).

75

76 print_instances(Xa,A) :- instances(Xa,A),

77 writeq(instance(Xa,A)),nl,fail.

78

79 print_relations(Xa,R,Xb) :- relations(Xa,R,Xb),

80 writeq(relation(Xa,R,Xb)),nl,fail.

Below we give a simple session demonstrating how to use the last program for
querying of a knowledge base. For this we consider a simple terminology of human
relations described in Table 2.1. This terminology is represented in our input syntax
as follows:

terminology “Humans”
1 :- [el].

2

3 /* T-Box */

4

5 define_concept(man, and(human,male) ).

6 define_concept(parent, and(human, some(has_child,human) ) ).

7 define_concept(father, and(man, some(has_child,human) ) ).

8 define_concept(grandfather, and(man, some(has_child,parent) ) ).

9

10 /* A-Box */

11

12 instance(john,man).

13 instance(bill,father).

14 relation(john,bill,has_child).

When we load this terminology into XSB, this automatically loads a reasoner for
EL, which is in our case XSB+OR given above. The queries discussed in section 2.1
are evaluated as follows:



A.7. Prolog Programs for Reasoning in DL EL 225

XSB Version 2.7 (Kinryo) of January 4, 2005

[sparc-sun-solaris2.9; mode: optimal; engine: slg-wam; gc: indirection;

scheduling: local]

| ?- [humans].

[humans loaded]

[el loaded]

yes

| ?- classify.

no

| ?- subsumes(parent,father).

yes

| ?- print.

subsumes(man,grandfather)

subsumes(man,father)

subsumes(parent,grandfather)

subsumes(parent,father)

subsumes(father,grandfather)

subsumes(male,man)

subsumes(male,grandfather)

subsumes(male,father)

subsumes(human,man)

subsumes(human,grandfather)

subsumes(human,parent)

subsumes(human,father)

no

| ?- instances(john,grandfather).

yes

| ?- print_instances(X,human).

instance(bill,human)

instance(john,human)

no

| ?-



Appendix B

Schemes of Expressions and Clauses

To describe clause classes and inferences between them in saturation-based decision
procedures, we introduce a special language. Using this language, sets of expressions
and clauses can be described in a concise form by means of scheme expressions, or
shortly schemes. The goal of the scheme notation is to visualize case analysis of
possible inferences between clauses in proving termination for different saturation
strategies.

Formulas from decidable fragments usually correspond to clauses having certain
structural properties, characterized by functional depth, occurrences of variables,
functional and predicate symbols in clauses. This structural information plays a
crucial role for showing decidability of these fragments by ordered resolution or other
calculi. So far, there was no notation for this sort of information and traditionally,
the natural language has been used for describing saturation-based decision proce-
dures [Joyner Jr., 1976; Fermüller et al., 1993; Bachmair et al., 1993b; Ganzinger
& de Nivelle, 1999; Hustadt & Schmidt, 1999; Ganzinger et al., 2001; de Nivelle &
Pratt-Hartmann, 2001; de Nivelle & de Rijke, 2003]. This worked well for relatively
simple clause classes. In this theses, we extend many decidability results in a non-
trivial way and obtain decision procedures with large number of nuances. Thus,
compact and readable notation is required to give a detailed description of these
decision procedures.

We came up with a scheme notation that is on one hand, subsumes the standard
notation for expressions and clauses, and on the other hand, gives a possibility of
defining classes of clauses using additional constructors. The scheme notation has
been designed mostly for presentation purposes (to write down clause classes and
case analyses compactly in the proofs) and is not completely formal in the moment.
Nonetheless, it allows to give a comprehensive account for decision procedures de-
scribed in the thesis.

In the next sections we introduce the scheme notation and give a semantic for

226



B.1. Signature Parameters and the Choice Operator 227

it. Many examples demonstrating the usage and meaning of scheme expressions are
provided as well.

B.1 Signature Parameters and the Choice Operator

To represent clause classes independent of a signature, we use special elements called
signature parameters. Intuitively a signature parameter is a meta-variable ranging
over a set of signature elements (predicate or functional symbols). For example,
given a signature of arithmetics ΣA = ({Nat1}, {+2,×2, s1, exp1, zero0}) consisting
of the unary predicate symbol Nat and the functional symbols: binary + and ×
representing the arithmetical operations, unary s and exp representing the succes-
sor and exponential functions, and a constant zero, we can introduce a signature
parameter f ::= +|× |s|exp|zero, that ranges over all functional symbols (and con-
stants). Now we can use the expression f(x, y) for representing the terms +(x, y)
or ×(x, y). Note that f(x, y) does not represent s(x, y), exp(x, y) or zero(x, y) be-
cause they are not well-formed terms. Additionally, one can introduce parameters
for the predicate symbols a ::= Nat; for the binary and unary functional symbols:
f2 ::= +|×; f1 ::= s|exp; and for the constants c ::= zero. These, parameters can
be used, say, to form the expression f2(f1(x), f1(y)) that represents any of the terms
+(s(x), s(y)), ×(s(x), s(y)), +(exp(x), exp(y)) and ×(exp(x), exp(y)), but not, say,
the terms +(s(x), exp(y)) or ×(exp(x), s(y)), since every occurrence of the param-
eter f1 should correspond to the same functional symbol. For the same reason the
scheme f(f(x), f(y)) does not represent any terms, since no functional symbol can
be binary and unary at the same time.

Sometimes it is desirable to evaluate different occurrences of a parameter by dif-
ferent signature elements. One can introduce several variants of parameters for all
those occurrence, but this is not very convenient, since the mechanism of renaming
should be provided as well. Instead of doing this, we will limit the scope of a param-
eter, so that the same parameter name can be reused. The bounding operator 〈. . . 〉
limits the scope of every parameter within its region. The parameters whose scope is
not bounded in a scheme are called free parameters . For example, the term scheme
f〈(f(x), f(y))〉 represents the same terms as the scheme f2(f1(x), f1(y)) considered
above. We mostly will make use of a special case of the bounding operator, when a
parameter is bounded immediately: 〈f〉. Such expressions will be called bounded pa-
rameters and we shorten them to f̂ . For example, the term f̂(f̂(x), f̂(y)) represents
any of the terms +(s(x), exp(y)), +(s(x), s(y)), +(exp(x), s(y)), +(exp(x), exp(y)),
×(s(x), exp(y)), . . . etc.

Using signature parameters one can represent sets of terms having similar struc-
ture. We augment the scheme language with the additional constructor that allows



228 Schemes of Expressions and Clauses

Table B.1 Summary for the usage of signature parameters in schemes
ΣA = ({Nat1}, {+2,×2, s1, exp1, zero0})
f ::= +| × |s|exp|zero; a ::= Nat; f2 ::= +|×; f1 ::= s|exp; c ::= zero.

schemes represent do not represent, why

f(x, y) +(x, y) s(x, y) : not well-formed
×(x, y) zero(x, y) expressions

f(x, x) +(x, x) s(x) : arguments should match exactly
f2(f1(x), f1(y)) +(s(x), s(y)) +(s(x), exp(y)) : f1 is a free
≡ f〈(f(x), f(y))〉 ×(exp(x), exp(y)) ×(exp(x), s(y)) parameter

f̂(f̂(x), f̂ (y)) +(s(x), exp(y))
×(s(x), s(y))

one to represent sets of terms having different structures.
Given term schemes t̂1 and t̂2 we can construct a new term scheme (t̂1|t̂2) using

the choice operator (·|·). This term scheme represents every clause that is repre-
sented by either t1 or t2. For example, the clause scheme (f(x)|f(x, y)) represents
exactly the terms {exp(x), s(x), +(x, y),×(x, y)} over signature ΣA. The choice op-
erator does not bound any occurrences of signature parameters, so, in particular, the
scheme f(f(x)|f(x, y)) represents exactly the same terms as the scheme f(f(x)).

B.2 Sets of Terms and Literals

The scheme notation allows one to define simple patterns of terms. However, its
expressive power (i.e. the sets of terms it can define) is rather limited, since, in par-
ticular, the number of arguments of every functional parameter has to be explicitly
given. It is not possible to represent, say, the set of all ground terms with depth
two. For expressing this and other things, we introduce an additional constructor for
representing sets of expressions. Using this constructor, one can give more flexible
specification of possible arguments of an expression or possible literals of a clause.

Given scheme expressions ŝi with 1 ≤ i ≤ n and t̂j with 1 ≤ j ≤ m for
some n ≥ 0, m ≥ 0, the set scheme Ŝ = {!ŝ1,.., !ŝn, t̂1,.., t̂m} represents any set
of expressions of the form S = S1 ∪···∪ Sn ∪ T1 ∪···∪ Tm, where (i) each Si with
1 ≤ i ≤ n is a non-empty set of expressions represented by the scheme ŝi; and (ii)
each Tj with 1 ≤ j ≤ m is a (possibly empty) set of expressions represented by the
scheme t̂j.

Intuitively, the set scheme Ŝ represents any set S of expressions, whose ele-
ments are represented by one of the schemes ŝ1,.., ŝn, t̂1,.., t̂m with the additional
requirement that there should be at least one representative for every scheme ŝi

with 1 ≤ i ≤ n. This is indicated by the non-emptiness operator used in front of



B.3. Variable-Vectors and Scheme definitions 229

the scheme expression: !ŝi.
For example, the set scheme {ĉ} represents any set of constants, whereas {!ĉ}

represents any non-empty set of constants. The set scheme {!f̂(x), x} in the signa-
ture ΣA represents any subset of {s(x), exp(x), x} containing at least one of the first
two terms.

The set operator {..} does not bound the free parameters of expressions, so
different occurrences of the same free parameter should correspond to the same
signature element for every set. According to this, the sets represented by the
scheme {!f̂(x), f(x, x), x} may additionally contain one the terms +(x, x) or ×(x, x)
(but not both of them).

We will use the set schemes for specifying arguments of expressions. Let T̂ be
a set scheme that represents sets of terms. Then the scheme f(T̂ ) represents the
terms, whose set of direct arguments is represented by T̂ . Continuing the previ-
ous example, the scheme f({!f̂(x), x}) represents the terms +(s(x), x), s(exp(x)),
×(s(x), exp(x)), but not, say, ×(x, x). A more exotic example can be given by
the scheme f({f(x, x), x}), which represents the terms +(x, +(x, x)), s(x) and
×(×(x, x),×(x, x)), but not the terms s(+(x, x)) or exp(exp(x)). For conciseness
we will replace the pair of braces ({..}) by [..]. So the term schemes given above can
be shortly written as f [!f̂(x), x] and f [f(x, x), x] respectively.

The set constructor can be also used for specifying literals in clauses. If L̂ repre-
sents a set of literals {l1,.., ln}, then we write ∨L̂ to represent the clause l1 ∨···∨ ln.
For example, the clause scheme ∨{!¬a[x], a[f̂ (x, x)]} ∨ a[!f̂(x)] represents the clause
¬Nat(x) ∨ Nat(s(x)), but not the clauses Nat(s(x)), ¬Nat(x) ∨ Nat(+(x, x)), or
¬Nat(x)∨ Nat(s(x)) ∨ Nat(exp(x)). We usually omit the disjunction symbol before
the set expression ∨L̂ in clause schemes, when it is clearly used in a clause context.
Note, that the clause schemes ¬a(x) ∨ {!a(f(x))} and ¬a(x) ∨ a(f(x)) represent es-
sentially the same clause sets (modulo duplicate literals), but ¬a(x)∨{!a(f̂(x))} and
¬a(x)∨ a(f̂(x)) don’t: the first scheme represents the clause ¬Nat(x)∨ Nat(s(x))∨
Nat(exp(x)) but doesn’t represent the second scheme.

B.3 Variable-Vectors and Scheme definitions

The set constructor allows one to represent expressions with an unbounded number
of arguments. But so far, all variables that may appear in expressions have to be
explicitly mentioned in a scheme. Thus, it was not possible to represent, say, the set
of shallow terms (terms containing only variables), or terms of the functional depth
two (except than enumerating them explicitly).

To represent expressions with unbounded number of variables, we will use variable-
vectors. A variable-vector (parameter) x represents any (possibly empty) sequence



230 Schemes of Expressions and Clauses

Table B.2 Summary for the usage of the set constructor in schemes
schemes represent do not represent, why

{ĉ} {zero}, {}
{!ĉ} {zero} {} : non-emptiness operator

f̂ [c] : ground terms of depth two

{!f̂(x), x} {s(x), x} {x} : non-emptiness operator
{s(x), exp(x)}

{!f̂(x), f(x, x), x} {exp(x), +(x, x), x} {exp(x), +(x, x),×(x, x), x}
{s(x),×(x, x)} : f is a free in the set scheme

f [f(x, x), x] +(x, +(x, x)), s(x) s(+(x, x)) : free parameter f
×(×(x, x),×(x, x)) exp(exp(x)) : f is a binary symbol

{!¬a[x], a[f̂(x, x)]} ∨ ¬Nat(x) ∨ Nat(s(x)) Nat(s(x)) : !¬a[x]

∨ a[!f̂(x)] ¬Nat(x) ∨ Nat(+(x, x))
¬Nat(x) ∨ Nat(s(x)) ∨ Nat(exp(x))

: the literal for a[!f̂(x)] is unique

¬a(x) ∨ a(f̂(x)) 6≡ ¬a(x) ∨ a(exp(x)) a(x) ∨ a(s(x)) ∨ a(exp(x))

¬a(x) ∨ {!a(f̂(x))} ¬a(x) ∨ a(s(x)) : first scheme ⇒ two-literal clauses

of (not necessarily disjoint) variables x1, x2,.., xn, n ≥ 0. Variable-vectors can be
used as arguments of scheme expressions: (.., x,..), [.., x,..], [.., !x,..] which should
expand to (.., x1, x2,.., xn,..), [.., x1, x2,.., xn,..] and [.., !x1, !x2,.., !xn,..] respectively.
The variable-vectors are not bounded in schemes, so different occurrences of the
same variable-vector should correspond to the same sequence of variables. For ex-
ample, the scheme f̂(x, f̂(x)) represents the terms +(x, exp(x)) and s(zero) (with
x being the empty sequence), but not the terms +(s(x), x) or ×(x, +(x, x)). The
scheme f [!f̂(x), x] represents the terms +(s(x), exp(x)), ×(+(x, y),×(x, y)), and
×(x, +(y, x)) but not +(zero, x) or ×(+(x, y),×(y, x)). The scheme f(f(x), x) rep-
resents no terms.

A variable-vector refers to the same sequence of variables in every position of
its occurrence in a scheme. It would be nice to have this property not only for
sequences of variables, but also for other scheme expressions. For instance, in some
situations we need to represent clauses which have the same sequence of arguments
in every functional term. For expressing this sort of conditions, we will use scheme
definitions. Informally, a scheme definition associates a scheme expression with a
scheme parameter . This scheme parameter can be used in a scheme instead of the
scheme expressions it is assigned to. However, when a scheme parameter is used in
a scheme expressions in several positions, all these positions should correspond to
the same value of the scheme parameter.

For example, we can define a scheme parameter s := f̂ [x] for shallow terms
and use it in a clause scheme ∨{â[s, x],¬â[s, x]}. This clause scheme represents



B.4. The Formal Semantics for Clause Schemes 231

the set of clauses containing (several occurrences of) at most one functional sub-
term. If we replace the scheme variable by the correspondent scheme expression it
defines: ∨{â[f̂ [x], x],¬â[f̂ [x], x]}, we will capture more clauses, namely all clauses
with functional depth at most two.

For another example, define a scheme variable v := [!x, ĉ] representing vectors
of variables and constants. We can use this scheme variable in the clause scheme
∨{â[f̂(v), x, ĉ],¬â[f̂(v), x, ĉ]}, which represents the set of clauses whose functional
subterms are either constants, or otherwise have a fixed (within a clause) vector of
arguments, consisting of all variables of the clause and constants.

The scheme expressions in definitions of scheme parameters may possibly contain
other scheme parameters, but we do not admit cyclic definitions. So, both v :=
[f̂(v), x] and s := f̂ [f̂(u), ĉ]; u := [s, x] are not admissible scheme definitions.

Table B.3 Summary for the usage of variable-vectors and scheme definitions in
schemes

schemes represent do not represent, why

f̂(x, f̂(x)) +(x, exp(x)), +(s(x), x) : the variable should go first
s(zero). ×(x, +(x, x)) : all x have to be the same vectors

f [!f̂(x), x] +(s(x), exp(x)), +(zero, x) : f̂(x) contains all variables
×(+(x, y),×(x, y)), ×(+(x, y),×(y, x))
×(x, +(y, x)). : all x have to be the same vectors

f(f(x), x) (nothing) : inconsistent conditions on the arity of f

s := f̂ [x], +(s(x), s(x)) +(s(x), exp(x))

f̂ [s, x] ×(×(x, y), z) ×(×(x, y),×(y, x)) : different functional subterms
v :=[!x, ĉ], +(+(x, y),×(x, y)) +(+(x, y),×(y, x)) : different vectors of arguments

f̂(f̂(v), x) ×(x, +(zero, x)) ×(y, +(zero, x)) : +(zero, x) does not contain y

B.4 The Formal Semantics for Clause Schemes

Table B.4 Recursive definitions for schemes of expressions and clauses
t̂ ::= x | a(V̂ ) | p(V̂ ) | p̂(V̂ ) | (t̂1|t̂2) | 〈t̂〉 .

â ::= f(V̂ ) | p(V̂ ) | p̂(V̂ ) | (â1|â2) | 〈â〉 .

l̂ ::= â | ¬â .

Ĉ ::= � | l̂ | (∨L̂) | (Ĉ1∨ Ĉ2) | 〈Ĉ〉 .

V̂ ::= () | (t̂) | (x) | (T̂ ) | (V̂1; V̂2) | 〈V̂ 〉 .

T̂ ::= {} | {t̂} | {!t̂} | {x} | {!x} | (T̂1 ∪ T̂2) | 〈T̂ 〉 .

L̂ ::= {} | {l̂} | {!l̂} | (L̂1 ∪ L̂2) | 〈L̂〉 .



232 Schemes of Expressions and Clauses

Table B.5 The formal semantics for schemes of expressions and clauses
[t̂]η,ν

t̂
: = [x]η,ν

t̂
= {x} |

[f(V̂ )]η,ν

t̂
= {f([V̂ ]η,ν

V̂
)} |

[p(V̂ )]η,ν

t̂
= {pη([V̂ ]η,ν

V̂
)} |

[p̂(V̂ )]η,ν

t̂
= ∪η′{pη′

([V̂ ]η,ν

V̂
)} |

[(t̂1|t̂2)]η,ν

t̂
= [t̂1]η,ν

t̂
∪ [t̂2]η,ν

t̂
|

[〈t̂〉]η,ν

t̂
= ∪η′ [t̂]η

′,ν

t̂
. ∩ TmΣ

[â]η,ν

â
: =

[a(V̂ )]η,ν

t̂
= {a([V̂ ]η,ν

V̂
)} |

[p(V̂ )]η,ν

â
= {pη([V̂ ]η,ν

V̂
)} |

[p̂(V̂ )]η,ν

â
= ∪η′{pη′

([V̂ ]η,ν

V̂
)} |

[(â1|â2)]η,ν

â
= [â1]η,ν

t̂
∪ [â2]η,ν

t̂
|

[〈â〉]η,ν

â
= ∪η′ [â]η

′,ν

t̂
. ∩AtΣ

[l̂]η,ν

l̂
: =

[â]η,ν

l̂
= [â]η,ν

â
|

[¬â]η,ν

l̂
= ¬[â]η,ν

â
.

[Ĉ]η,ν

Ĉ
: =
[�]η,ν

Ĉ
= � |

[l̂]η,ν

Ĉ
= [l̂]η,ν

l̂
|

[∨(L̂)]η,ν

Ĉ
= {∨{S} |S ∈ [L̂]η,ν

L̂
} |

[Ĉ1 ∨ Ĉ2]η,ν

Ĉ
= {C1∨C2 |Ci ∈ [Ĉi]

η,ν

Ĉ
}|

[〈Ĉ〉]η,ν

Ĉ
= ∪η′ [Ĉ]η

′,ν

Ĉ
.

[V̂ ]η,ν

V̂
: = [()]η,ν

V̂
: () |

[(t̂)]η,ν

V̂
= {(t) | t ∈ [t̂]η,ν

t̂
} |

[(x)]η,ν

V̂
= {ν(x)} |

[(T̂ )]η,ν

V̂
= {(t1,.., tn) | {t1,.., tn} ∈ [T̂ ]η,ν

T̂
}|

[(V̂1; V̂2)]η,ν

V̂
= {(V1; V2) |Vi ∈ [V̂i]

η,ν

V̂
} |

[〈V̂ 〉]η,ν

V̂
= ∪η′ [V̂ ]η

′,ν

V̂
.

[T̂ ]η,ν

T̂
: = [{}]η,ν

T̂
= {} |

[{t̂}]η,ν

T̂
= {T |T ⊆ [t̂]η,ν

t̂
} |

[{!t̂}]η,ν

T̂
= {T | {} 6= T ⊆ [t̂]η,ν

t̂
} |

[{x}]η,ν

T̂
= {T |T ⊆ ν(x)} |

[{!x}]η,ν

T̂
= Set(ν(x)) |

[T̂1 ∪ T̂2]η,ν

T̂
= {T1 ∪ T2 |Ti ∈ [T̂i]

η,ν

T̂
}|

[〈T̂ 〉]η,ν

T̂
= ∪η′ [T̂ ]η

′,ν

T̂
.

[L̂]η,ν

L̂
: = [{}]η,ν

L̂
= {} |

[{l̂}]η,ν

L̂
= {S |S ⊆ [l̂]η,ν

t̂
} |

[{!l̂}]η,ν

L̂
= {S | {} 6= S ⊆ [l̂]η,ν

t̂
} |

[L̂1 ∪ L̂2]η,ν

L̂
= {S1 ∪ S2 |Si ∈ [L̂i]

η,ν

L̂
}|

[〈L̂〉]η,ν

L̂
= ∪η′ [L̂]η

′,ν

L̂
.

where ∨{L1,.., Ln} = L1 ∨···∨ Ln;
i = 1, 2; Set(x1,.., xn) = {x1,.., xn}.

The syntax for clause schemes Ĉ is defined recursively on Table B.4 using term
schemes t̂, atom schemes â, literal schemes l̂ and other auxiliary schemes: V̂ for
vectors of terms, T̂ for sets of terms and L̂ for sets of literals. Here a, f denote
predicate and functional symbols, and p is a signature parameter. Note, that for
simplicity we have restricted the application of the bounding operator. It can be
applied either to a parameter, or to a well-formed scheme expression.

The semantics of scheme expressions is given in terms of a parameter assignment
η and a variable-vector assignment ν. A (signature) parameter assignment η is a
function that assigns a signature element to every signature parameter according
to its range. For example, for the parameter definitions given before, η : f →
{+,×, s, exp, zero}, η : a → {Nat}, η : f2 → {+,×}, η : f1 → {s, exp}, η : c →
{zero}. The value of a parameter p under a parameter assignment η is denoted by
pη. A variable-vector assignment ν is a function that assigns a vector of variables
to every variable-vector parameter. For example, ν can map the variable-vector x
to the vector ν(x) = (x, y, x, x), or to the empty vector ν(x) = ().

The value of a clause scheme Ĉ ∈ Ĉ under a parameter assignment η and



B.5. Scheme Contexts and Defined Parameters 233

a variable-vector assignment ν is a clause set [Ĉ]η,ν

Ĉ
, where the function [Ĉ]η,ν

Ĉ
is

defined on Tab. B.5 by mutual recursion using the functions [t̂]η,ν

t̂
, [â]η,ν

â
, [l̂]η,ν

l̂
that

map a term scheme, an atom scheme or a literal scheme to a set of terms, literals
and clauses respectively; and the functions [V̂ ]η,ν

V̂
, [T̂ ]η,ν

T̂
, [L̂]η,ν

L̂
that map a scheme

expression to a set of term vectors, term sets and literal sets respectively. Note,
that a value of a bounded scheme expression [〈ŝ〉]η,ν

∗ is the union of its values for
all parameter assignments ∪η′ [ŝ]η

′,ν

∗ , therefore, it does not depend on η, as expected.
Here TmΣ and AtΣ are the sets of terms and atoms over the signature Σ. As usual,
∪ is a union operator for sets and ; is a concatenation operator for lists.

To evaluate scheme expressions involving scheme parameters (defined by other
scheme expressions) the above definitions should be modified as follows. Suppose,
ŝ is a scheme containing free occurrences of scheme parameters p1, .., pn, n ≥ 1
defined by pi := ŝi, i = 1 . . . n. Given a parameter assignment η and a variable-
vector assignment ν, the value of the scheme ŝ is defined by inductively as

[ŝ]η,ν

∗ :=
⋃

s1∈[ŝ1]η,ν
∗ ,..,sn∈[ŝn]η,ν

∗

[ŝ[p1/s1,.., pn/sn]]
η,ν

∗ ,

that is, the union of the values of the scheme over all substitution of free scheme
parameters by its values under η and ν (where different occurrences of the same
parameter are evaluated by the same expression).

B.5 Scheme Contexts and Defined Parameters

The scheme language described above is sufficient for representing most of our
clause classes and inference cases. In this section we introduce additional abbre-
viations that allow us to write clause schemes even more compactly. For example,
it would be possible to shorten, say, the clause scheme ∨{p̂[!f̂(x), x],¬p̂[!f̂(x), x]}
to ∨{¬p̂, p̂}[!f̂(x), x] and even to α̂[!f̂(x), x] by defining a clause context parameter
α := ∨{¬p̂, p̂}.

An expression context is either a functional symbol (constant), a predicate sym-
bol or a negated predicate symbol. Loosely speaking, an expression context is an
expression without its arguments. If E = {e1,.., ek} is a set of expression con-
texts and (t1,.., tn) is a vector of arguments, k ≥ 0, n ≥ 0, then E(t1, . . . , tn) de-
notes the set of expressions {e1(t1, . . . , tn),..ek(t1, . . . , tn)}. Similarly, we can at-
tach scheme arguments (t̂1,.., t̂n) or [!t̂1,.., !t̂n, t̂n+1..t̂n+m], n ≥ 0, m ≥ 0 to a
scheme context of the form Ê = {!ê1,.., !êk, êk+1,.., êk+s} where êi are (possibly
bounded) signature parameters or negated signature parameters, k ≥ 0, s ≥ 0.
The schemes Ê(·) and Ê[·] should expand to {!ê1(·),.., !êk(·), êk+1(·),.., êk+s(·)} and
{!ê1[·],.., !êk[·], êk+1[·],.., êk+s[·]} respectively. We will allow to form new scheme



234 Schemes of Expressions and Clauses

contexts using the same operations as for schemes expressions. These context ex-
pressions attached to scheme arguments should expand similarly.

To avoid repetition of the same context expressions, we introduce labels for
them called context parameters. Context parameters in schemes should be simply
expanded to the correspondent expression which they define. For instance, we can
define a literal parameter l := (p|¬p) and use it in the scheme l[x], that should
be expanded to (p[x]|¬p[x]). Note that according to this definition, different free
occurrences of the same context parameters do not necessary correspond to the same
expression. For instance, the clause scheme l(x)∨ l(x) is expanded to (p(x)|¬p(x))∨
(p(x)|¬p(x)) which represent, say, the clause Nat(x) ∨ ¬Nat(y). In order to avoid
confusions caused by this, we will refrain from using free occurrences of context
parameters.1

Table B.6 Summary for the usage of context parameters in schemes
α := {a,¬a}; k := (b|¬b)

schemes ⇒ expand to

α̂[x] ∨ α̂[y] ⇒ {â,¬â}[x] ∨ {â,¬â}[y];

∨¬{!a, b̂}[f(x), x] ⇒ ∨{!¬a[f(x), x],¬b̂[f(x), x]};

∨¬{!k̂,¬a}[ĉ] ⇒ ∨{!(b̂[ĉ]|¬b̂[ĉ]),¬a[ĉ]};

B.6 Indexing of Signature Elements and Parame-

ters

For certain situations we need to use predicate or functional symbols that are in-
dexed by other syntactical objects (signature elements, predicates, literals etc.). For
example, when skolemizing the expression ∀x.∃y1...yn.a(y1,.., yn, x), n ≥ 0, we would
like to “remember” that the Skolem functions introduced for variables y1,.., yn came
from the one sequence of existential quantifiers. This can be achieved by skolem-
izing the above expression ad follows: ∀x.a(fp1(x),.., fpn(x), x), where p is a special
label (index) introduced for the position below the last existential quantifier in the
sequence, and f

p

1,.., f
p
n are Skolem functions indexed by p. The skolemized formula

correspond to the clause a(x, fp1(x),..fpn(x)).

1It is possible to give a semantics, where different free occurrences of the defined parameters
correspond to the same expression context. However this is not trivial to do. For example, one
can define the parameter ϕ := {f̂} that represents sets of functional symbols. Then the semantics
for the scheme ϕ(ϕ[x]) is rather difficult to give, when all occurrences of ϕ denote the same set.
Hopefully, we will not need this feature in our proofs.



B.7. Conclusions 235

To preserve this structural information in clause schemes we use indexed param-
eters. The above clause can be represented by the clause scheme a[f̂ p(x), x], where
index parameter p is free. For any choice of this parameter p := p, the indexed
parameter f̂ p represent the set of functional symbols indexed by p.

B.7 Conclusions

Table B.7 Summary for the usage of clause schemes
Σ = ({a3, b2, T2,≃2, u1, p0}, {f2, g2, h1, c0, d0})
a ::= a|b|p|≃|u; T ::= T; f ::= f|g|h|c|d; c ::= c|d; α := {a,¬a}; l := (a|¬a)

schemes represent do not represent, why

¬(a|T )[x] ∨ α̂[f̂(x), x] ¬a(x, y, x) ∨ b(y, f(x, y)), ¬a(x, y, x) ∨ b(f(x, y), f(y, x))
¬T(x, y) ∨ ¬a(y, x), a(x, y) ∨ ¬T(y, f(x, y)).
¬p ∨ ¬b(c1, c2). : no literal for ¬(a|T )[x]

α̂(x, f(x)) ∨ ¬{a, T }(x) ¬a(x, y, f(x, y)) ∨ x 6≃ y, ¬a(x, y, f(x, y)) ∨ a(x, y, g(x, y)),

¬b(x, y) ∨ ¬T(x, y), ¬b(x, y) ∨ x 6≃ y, : a is free
u(c) ∨ ¬p, ¬a(x, y, f(x, y)) ∨ a(x, x, f(x, x)),
x ≃ f(x) ∨ ¬b(x, f(x)), ¬T(x, h(x)), : ¬T 6∈ α
�. u(c) ∨ u(d) ∨ p.

The scheme notation allows one to define sets of expressions and clauses. There
are many other possibilities to represent sets of expressions (for instance, tree au-
tomata or context-free grammars), so why we have not used those methods? Unfor-
tunately almost nothing from these representations fits to our purposes. The reasons
are (1) the clause language is already involved: it subsumes lists (for defining the
arguments of expressions) and multisets (for defining sets of literals); (2) there seems
to be no regularity in the sets that we define: we would like, for instance, to capture
expressions, with equal arguments, but (3) the sets of clauses defined by our scheme
are usually finite for a given (finite) signature (this is the main argument used in
decidability proofs), thus every formalism defining infinite sets of terms would be
too overkill.

As has been mentioned, the main purpose of the scheme notation is to present
clause classes and saturation inferences for particular classes of formulas in a com-
pact form. However, the scheme notation opens perspectives in defining a language,
where saturation-based decision procedures can be specified in terms of the clause
classes and saturation strategies similar to those that will be given in the next sec-
tions. It might be possible to develop automated tools (that implement the calculus
lifted on the scheme level), using which those procedures can be formally verified.
So, our scheme notation can be considered as a step towards a framework for formal
development of saturation-based decision procedures.



Appendix C

Complexity of Saturation-Based

Decision Procedures

In this appendix we give details of complexity calculations for saturation-based
decision procedures formulated in chapter 4.

C.1 Resolution-Based Decision Procedures

C.1.1 Complexity of the Procedure for GF

In this section we provide a detailed complexity analysis for the resolution-based pro-
cedure deciding the guarded fragment without equality described in subsection 4.1.1,
Table 4.3.

A direct estimation of space complexity

In the literature on resolution decision procedures [Ganzinger & de Nivelle, 1999;
de Nivelle & de Rijke, 2003], complexity estimation is usually done by computing
the maximal number of clauses from the considered clause class that might be con-
structed over the signature of the input clauses. This number bounds the number
of clauses that can be generated during saturation and allows one to establish space
and time complexity for a decision procedure. We will show, that although this
approach gives us an optimal 2EXPTIME complexity for the full guarded fragment
GF , it does not give a better complexity for its bounded-variable version GFk, which
is “only” EXPTIME-complete (see [Grädel, 1999]). Hopefully this is only a draw-
back of this rough calculation. After additional observations we will demonstrate
that our saturation-based decision procedure has an optimal complexity for GFk as
well.

236



C.1. Resolution-Based Decision Procedures 237

Let F ∈ GF be a guarded formula. We estimate the maximal number of nor-
malised clauses from (G) that can appear in a saturation for F in terms of:

n - := |F |, the size of F ;

w - := width(F ), the width of F ;

f - the number of different functional symbols (including
constants) in CNF for F ;

p - the number of different predicate symbols in CNF for F ;

a - the maximal arity of predicate symbols in CNF for F .

(C.1)

By Proposition 4.1.3, after CNF-transformation for F , we obtain at most n clauses,
each having at most 3 literals and at most w different variables. For the number of
different functional symbols in these clauses, we have f < n , since each functional
symbol is a Skolem function or a Skolem constant that corresponds to an existentially
quantified or free variable in F . Similarly, p < 2·n , since both the number of initial
and the number of introduced predicate symbols are strictly bounded by n. For a,
we have a ≤ n− 1 . Below we give an estimation for the maximal number of clauses
of forms 1 and 2 from (G) without duplicate literals, that can be constructed over
this signature in terms of n and w.

The number of clauses of form 1: The number of ground atoms, that can be
constructed in our signature is bounded by A := p·fa < 2·nn which is a product
of different choices for a predicate symbol × a vector of constants of length a. So,
the number of different non-tautological clauses without duplicate literals of form 1

from (G) that can be constructed from these atoms is bounded by c1 := 3A < 32·nn

:
each atom may either occur positively, or negatively or do not occur in a clause.

The number of clauses of form 2: In order to estimate the number of clauses of
form 2 from (G), let us fix a sequence of variables x = x1,.., xk, k ≤ n consisting of
at most w different variables. Each atom of form p[f̂(x), x], has at most a argument
positions which can be filled with at most f different functional terms of form f̂(x)
and at most w different variables from x. So, the number of such atoms for a fixed
x is bounded by Ax := p·(f + w)a < 2·(n + w)n. And the number of clauses that
can be constructed from them is bounded by cx

2 = 3Ax < 32·(n+w)n

. The number of
different sequences of variables x of the length smaller or equal than n constructed
from at most w variables is bounded by v =

∑

k≤n

wk ≤ n·wn. So, the total number of

normalised clauses of from 2 from (G) is bounded by c2 = v·cx
2 < n·wn·32·(n+w)n

.



238 Complexity of Saturation-Based Decision Procedures

Summing up these numbers, we obtain a bound on the number of normalised
clauses from (G) that are relevant to F :

c = c1 + c2 < 32·nn

+ n·wn·32·(n+w)n

= 22O(n· log n)
(C.2)

As seen from this estimation, there are at most doubly exponential number of nor-
malised clauses that can be generated by a resolution-based theorem prover for a
given guarded formula. This means that the guarded fragment can be decided in
doubly exponential space and, as will be seen later, in doubly exponential time. So,
resolution yields an optimal decision procedure for GF . However, if we are now
concerned with a bounded-variable variant of the guarded fragment GFk (which
consists of guarded formulas whose width is bounded by k), we see, that the calcu-
lations above do not give us complexity better than 2EXPTIME, because the size
n of a formula F but not its width w is on the top of the tower of exponent in es-
timation (C.2). This parameter originates from the maximal arity a of a predicate
symbol. It seems that nothing can be improved, since a can be as large as n − 1
in a guarded formula even with bounded width: take just an atom p(x, . . . , x) with
n− 1 occurrences of the same variable x.

It is, in principle, possible to translate a formula from GFk in a satisfiability-
preserving way to another formula from GFk, which has only symbols of the arity
smaller than k (such technique has been used, for instance in [Grädel, Kolaitis &
Vardi, 1997] for the two-variable fragment). However we show that our procedure
has already the best known complexity for GFk, even without additional transfor-
mations. Below we present a different estimation for the number of clauses c which
shows that our the decision procedure restricted to GFk can be implemented to run
in time 2O(n).

A more accurate analysis of space complexity

Our calculations are now based on the following key observations about the initial
clauses that are resulted from CNF-transformation for a guarded formula F ∈ GF
(see Table 4.1) and about resolution inferences for guarded clauses (G) shown in
Table 4.3. As usual, let n := |F | and w := width(F ).

Observation 1: All literals in a conclusion of OR≻
Sel-inferences are instances of

literals in premises of these inferences. Therefore, all literals that may appear
in saturation are instances of some literals from the initial clauses.

Observation 2: The set of functional symbols (including constants) of the initial
clauses from Table 4.1 Fun can be partitioned into pairwise disjoint sets: Fun =
Fun1 ⊔ · · · ⊔ Funr such that (i) all functional symbols occurring in one clause



C.1. Resolution-Based Decision Procedures 239

belong to some Funi with 1 ≤ i ≤ r and (ii) each set Funi with 1 ≤ i ≤ r,
contains at most w functional symbols, i.e., |Funi| ≤ w.

Observation 3: Two guarded functional clauses from (G) can be resolved only if
they contain a common functional symbol. By Observation 2, this implies that
for every clause in saturation, the set of its functional symbols is contained in
some Funi with 1 ≤ i ≤ r.

Summarising these observations, each clause from (G) that appears in saturation
for F , consists only from instances of literals from the input clauses and may contain
at most w different functional symbols from one of the set Funi with 1 ≤ i ≤ r ≤ n.
Now we repeat calculations for number of clauses of forms 1 and 2 from (G), by
taking into account this new information.

The number of clauses of form 1: The number of ground clauses that have
the above property can be estimated in the following way. Let us fix a set Funi with
1 ≤ i ≤ r and compute the number of ground clauses containing constants only
from Funi. The literals of these clauses are ground instances of the initial literals.
We have at most n initial clauses, each having at most 3 literals, and containing at
most w variables. So, the number of ground literals with at most w constants from
Funi that can be constructed from them is bounded by Li ≤ 3·n·ww. The number
of ground clauses for the set Funi is bounded by ci

1 = 2Li ≤ 23n·ww

. Summing up
all these values for all sets Funi with 1 ≤ i ≤ r ≤ n, we obtain that the number of
clauses of form 1 is bounded by c1 ≤ n·23n·ww

.

The number of clauses of form 2: Let us fix a sequence of variables x consisting
of at most w different variables, and a set of functional symbols Funi with 1 ≤ i ≤ r.
We estimate the number of instances of the initial literals of form l[f̂(x), x] where
all functional symbols are from Funi. We have at most 3n initial literals, each with
at most w variables which can be instantiated by either one of w variables from
x, or by one of w terms f(x), where f ∈ Funi. So the number of such literals is
bounded by Li,x ≤ 3·n·(w + w)w, and the number of clauses of form 2 constructed
from them is bounded by c

i,x
2 = 2Li,x ≤ 23n·(2w)w

. Summing up these values for
all Funi, and all x, we obtain that the number of clauses of form 2 is bounded by

c2 ≤ n·(n·wn)·23n·(2w)w

.

Now, our calculations yield a much better bound than (C.2) for the maximal
number of normalised clauses from (G) that can be produced in saturation for a



240 Complexity of Saturation-Based Decision Procedures

formula F :

c = c1 + c2 ≤ n·23n·ww

+ n·(n·wn)·23n·(2w)w

≤ 2n·2w·(log w+ǫ)
(C.3)

where ǫ is some constant. One can see how complexity is parametrized w.r.t. the
size and the width of a formula: the number of clauses generated by resolution is
doubly exponential in the width of the input formula and “only” exponential in its
size. This means that for guarded formulas with bounded width (i.e. from GFk),
the procedure generates only 2O(n) clauses.

Time complexity

To obtain a time complexity bound for the resolution decision procedure given in
Table 4.1, we make use of formula (3.24) derived 3.5.6. First, we have to estimate
the size |N | of the input clause set, the maximal size m of a normalised clause from
(G), the maximal number s of clauses in a normalised clause set, and the maximal
number k of premises in an inference rule of the calculus.

Since all inferences and simplification rules in OR≻
Sel

have at most two premises,
we have k ≤ 2. The value of s is bounded by c, which has been derived in (C.3).
The size of a clause can be estimated as follows. Each literal in clauses from (G) has
either form l[ĉ] or l[f̂(x), x], so its size is bounded by O(a2). The number of such
literals in each clause is bounded by Li ≤ 3n·(2w)w: see calculations for the number
of clauses above. Hence the maximal size of a clause m ≤ O(a2)·3n·(2w)w ≤
n3·2w·(log w+ǫ), where ǫ is some constant. The size of the initial clause set can be
estimated by |N | ≤ 3·2n·O(a2) ≤ O(n3) (see Proposition 4.1.3). Summarising,
from (C.3) we obtain the following bound on the running time of our procedure:

t ≤ p(O(n3)) + c · p(n3·2w·(log w+ǫ)·c) ≤ 2n·2w·(log w+ǫ)
(C.4)

where ǫ is some constant. So, the time complexity for our decision procedure, as
expected, is asymptotically the same as its space complexity.

C.1.2 Complexity of the Procedure for FO2

In this section we provide a detailed complexity analysis for the resolution-based
procedure deciding the two-variable fragment without equality described in subsec-
tion 4.1.2, Table 4.6.



C.1. Resolution-Based Decision Procedures 241

Space complexity

We estimate the number of clauses from (T) that can be generated for the two-
variable fragment, similarly as it has been done for the guarded fragment. Let
T ∈ FO2 be a two-variable formula and n, w, f , p and a be parameters for
this formula defined as in (C.1) on p. 237. Note that w ≤ 2 , and similar to the

guarded fragment, f < n , p < 2 · n and a ≤ n− 1 . The following observation
is analogous to observations given for the guarded fragment:

Observation 1: All literals in clauses derived from the input clauses for T accord-
ing to the strategy described in Table 4.6, are either instances of some literals
occurring in the input clauses, or a literal of form (¬)pL(x), or its instances,
where L is an instance of some literal contained in the initial clauses.

The number of clauses of form 1: First, we estimate the number of ground
clauses of form 1 from (T). We have at most 3 · n different literals in the initial
clauses, each containing at most two different variables. Hence the Literal Projection
rule can introduce at most 6 · n new literals with one variable. So the number of
literals of form l[c1, c2] is bounded by L1 ≤ 3n · 22 +6n · 21 = O(n), and the number

of clauses of form 1 is bounded by c1 ≤ 2L1 ≤ 2O(n) .

The number of clauses of form 2: The estimation is exactly the same as in
the previous case, the only difference is that the variables of the relevant literals are

instantiated not with constant, but with other two variables: c2 ≤ 2L2 ≤ 2O(n)

The number of clauses of form 3: If we fix the functional term f(x) that occurs
in a clause of form 3 then the number of such clauses is estimated exactly as in the
previous cases: c3,f ≤ 2L3,f ≤ 2O(n). Summing up these numbers for all functional

symbols, we obtain: c3 ≤ f · 2O(n) .

So the maximal number of clauses that can be generated by our strategy for the
two-variable fragment is bounded by:

c = c1 + c2 + c3 ≤ 2O(n) + 2O(n) + f · 2O(n) ≤ 2O(n) (C.5)

Time complexity

Time complexity of our procedure is estimated according to the general formula
(3.24) derived in 3.5.6 on p. 92 similarly, as it has been done for the guarded frag-
ment. The required parameters can be estimated as follows: the size of the input



242 Complexity of Saturation-Based Decision Procedures

clause set |N | ≤ O(n), the maximal size of a normalised clause set from (T) is
s ≤ 2O(n), the maximal size of a normalised clause is m ≤ O(n2) (each from O(n)
literals has the size O(n)), and the maximal number of premises in the rules is
k ≤ 2. After substituting these parameters to (3.24), we obtain:

t ≤ 2O(n) (C.6)

However, we should remember that our saturation procedure is non-deterministic
because of the Splitting rule.

C.1.3 Complexity of the Procedure for Mf

In this we estimate complexity of our decision procedure for the full monadic frag-
ment given in subsection 4.1.3, Table 4.9.

Space complexity

The estimation for the number of clauses from (T) is relatively easy to carry out:

The number of clauses of form 1: If we fix a functional term f(x) with |x| ≤ 1,
then the number of literals of form l[f(x), x] that can be obtained in saturation is
bounded by by L1,f(x) ≤ O(n) (recall these literals must be instances of some
initial literals), and so, the number of clauses for these parameters is bounded by
c1,f(x) = 2L1,f(x) ≤ 2O(n). Summing up these values for all f(x) with |x| ≤ 1, we

obtain: c1 ≤ O(n) · c1,f(x) ≤ 2O(n) .

The number of clauses of form 2: Let us fix a vector of variables (x, y) used in
clauses of this form. Its length is at most n: the length of such a vector is bounded
by the maximal arity of a definitional predicate, which is w ≤ n. For every choice
of such vector, we have at most O(n) literals of forms lm(x, y) and lm(x) and at
most O(n2) unary literals of form l1

m
[x, y] (we have additionally n choices to pick

a variable for every literal symbol). Hence the number of the clauses that can be
constructed from these literals is bounded by c2,(x,y) ≤ 2O(n2). Multiplying this
estimation to the number of different variable-vectors of form (x, y) of length n, we

obtain: c2 ≤ nn · c2,(x,y) ≤ 2O(n2) .

The number of clauses of form 3: Every clause of form 3 can be obtained from
some clause of form 2 by a substitution of functional term f(x) for variable y. Hence

the number of such clauses is bounded by: c3 ≤ f · c2 ≤ 2O(n2) .



C.2. Paramodulation-Based Decision Procedures 243

The number of clauses of form 4: The estimation is analogous to the previous

cases: c4 ≤ 2O(n2) .

So the maximal number of clauses that can be produced for a monadic formula is
bounded by:

c = c1 + c2 + c3 + c4 ≤ 2O(n2) (C.7)

A better bound c ≤ 2O(n) can be extracted after the following observations:

Observation 1: Note that for initial clauses of form 2, 3 and 4, variable vectors
(x) and (x, y) consist of disjoint variables and this property is preserved under
inferences given in Table 4.9. Hence the number of such variable-vectors (up
to renaming) is O(n).

Observation 2: The maximal number of unary literals of form l1[x, y], l1[x, f(x)]
and l1[x, y] that may occur in every clause of form 2, 3 and 4 is at most O(n)
either: every literal symbol correspond uniquely to the position of its variable
in the vector of variables of a clause, and this correspondence does not change
after inferences.

C.2 Paramodulation-Based Decision Procedures

C.2.1 Complexity of the Procedure for GF≃

In order to estimate the complexity of a decision procedure given in Table 4.13, we
compute, as usual, the maximal number of relevant clauses that can be generated
for a guarded formula with equality. Unfortunately, refined calculations given for
the clause class (G) in subsection 4.1.1 on p. 238, do not extend directly to clause
class (G≃), because Observation 1 does not hold for paramodulation inferences
anymore. Indeed, if we apply Ordered Paramodulation, say, for atoms f(x) ≃ g(x)
and a(f(x), x), we obtain a new atom a(g(x), x) that is not an instance of any of
these atoms. Fortunately, we can find a weaker invariant, that suffices to extract
the same complexity bounds:

Observation 1′: All literals in a conclusion of OP≻
Sel-inferences are obtained from

literals in its premises, by replacing some terms with other ones. In addition,
if the Ordered Paramodulation rule is applied simultaneously, then different oc-
currences of the same term would be replaced with the same terms. Therefore,
all literals that may appear in saturation are obtained from some initial literals
by such a replacement.



244 Complexity of Saturation-Based Decision Procedures

Observations 2 and 3 given for the clauses from (G) can be straightforwardly ex-
tended for class (G≃) and paramodulation inferences. Applying similar calculations,
we obtain the same space and time complexity bounds of our paramodulation-based
procedure:

c, t ≤ 2n·2w ·(log w+ǫ)
(C.8)

C.2.2 Complexity of the Procedure for GF≃ with Constants

In this section we estimate the complexity of two procedures for the guarded frag-
ment with equality and constants, given, respectively in Table 4.15 and in Table 4.17
of subsection 4.3.2.

The complexity of the procedure through elimination of constants

Let us estimate the maximal number of clauses from class (Gz) given in Table 4.14.
For a fixed prefix v of constants (of the length k), and a fixed group Funi of other
(Skolem) constants (of the size at most w), we may obtain at most O(n · (w +
k)w) literals of form l(v, {ĉ}) or (≃|6≃)[ĉ] from the initial literals by simulteneous
replacement of its arguments: initial k arguments we must replace with constants
to match v (we do not have a choice for this), for the remaining at most w other
arguments, we have a choice between constants from v, or constants from Funi.
This gives us at most 2O(n·(w+k)w ) clauses of type 1, which we should multiply on kk

choices for v and n choices for Funi. The number of clauses of type 2 is estimated
similarly (here we also fix a vector of variables x with at most w variables which do
not belong to z) to be bounded by kk ·(w+k)(w+k) ·n ·2O(n·(2w+k)w ) ≤ 2n·(2w+k)(w+ǫ)

Hence the maximal number of clauses from (Gz), and the time required to compute
the saturation are bounded by:

c, t ≤ 2n·(2w+k)(w+ǫ)
(C.9)

which is now optimal even for GFk
≃ with constants (since k ≤ n).

The complexity of the direct procedure

In order to estimate the complexity described in Table 4.16 , note, that for every
clause that is derived according to our strategy, every literal is obtained from some
initial literals by (i) simulteneously replacing non-constant arguments (their number
is at most w) with some terms and (ii) applying a substitution of constants for
constants, which is fixed for a clause (this substitution is uniquely determined by
unit clauses of form 1.1.4). The number of such clauses can be computed analogously



C.2. Paramodulation-Based Decision Procedures 245

as in non-direct approach (see the calculations before). Although the procedure is
non-deterministic, we may notice that every branch is uniquely determined by a
set of (in)equalities between constants obtained after splitting clauses of form 1.0.
Hence the number of such branches is at most O(2k2

).1 Multiplying the number of
clauses on the number of branches, we obtain the same complexity as in (C.9).

1This is a very rough, but still sufficient estimation. In fact, the number of branches is bounded
by the number of partitions of constants on equivalent classes, which is at most kk



Appendix D

GF with Compositional Guards

In this appendix we give some technical details on decision procedures for extensions
of the guarded fragment with compositional axioms described in chapter 5.

D.1 Redundancy Lemmas

In this appendix we give the proofs for the lemmas showing redundancy of inferences
with compositional relations formulated in chapter 5.

Proof of Lemma 5.2.6. According to the definition of redundancy for inferences, it
suffices to prove the lemma only for the case when clause 1 is ground:

Inference (a): For any ground instance of the first inference:

1. C ∨ sT t;
R′0. ¬(sTh) ∨ α[s] ∨ β[h];
NC[1a; R

′
0]: 3′a. C ∨ ¬(tTh) ∨ α[s] ∨ β[h]

there should be s ≻ t, s ≻ h and sT t ≻ C because of, respectively, the conditions
(iv), (v) and (ii) of the Negative Chaining rule (see System 6 on p.84). The conclu-
sion of this inference follows from the clause 2a and the following instances of the
clauses R2 and R3:

2a. C ∨ α[s] ∨ u(t).

R′2. ¬(tTh) ∨ ¬u(t) ∨ u(h);

R′3. ¬u(h) ∨ β[h];

All the above clauses are smaller than the clause R′0 which has been used in the
inference. This can be shown using the following sequences of ordering relations
between literals:

246



D.1. Redundancy Lemmas 247

(1) ¬(sTh) ≻ sT t ≻ C;
(2) ¬(sTh) ≻ sTh ≻ ¬(tTh) ≻ ¬u(t) ≻ u(t);
(3) ¬(sTh) ≻ ¬u(h) ≻ u(h).

The first sequence follows from the condition (C1) of admissible orderings (see Def-
inition 3.5.4 on p.84) and condition (i) of the Negative Chaining rule. The second
sequence is follows from conditions (R1) (see Definition 3.5.1 on p.79) and (C3) of
admissible ordering, and the fact that ≻ is CASP (see Definition 5.2.5), which also
imply the third sequence. Now R′0 ≻ 2a follows from (1) and (2), R′0 ≻ R′2 follows
from (2) and (3), and R′0 ≻ R′3 follows from (3). Since the result of the inference
follows from smaller clauses than its maximal premise, the inference is redundant.

Inference (b): Similarly to case (a), for any ground instance of the second inference:

1. C ∨ tTs;
R′′0. ¬(hTs) ∨ α[h] ∨ β[s];
NC[1; R′′0]: 3′b. C ∨ ¬(hT t) ∨ α[h] ∨ β[s]

there should be s ≻ t, s � h and tT s ≻ C because of the conditions of the Negative
Chaining rule. The conclusion 3′b of the inference is a logical consequence of the
following instances of the clauses R1, 2b and R3:

R′1. ¬(hTt) ∨ α[h] ∨ u(t);

2b. C ∨ ¬u(t) ∨ u(s);

R′′3. ¬u(s) ∨ β[s];

Again, the following sequences of ordering relations between literals can be derived:

(1) ¬(hTs) ≻ tT s ≻ C, when s ≻ h;
(1a) ¬(sTs) ≻ tT s ≻ C;
(2) ¬(hTs) ≻ hTs ≻ ¬(hT t) ≻ ¬u(t) ≻ u(t), when s ≻ h;
(2a) ¬(sTs) ≻ ¬(sT t) ≻ ¬u(t) ≻ u(t);
(3) ¬(hTs) ≻ ¬u(s) ≻ u(s).

where (1), (2), (3) are symmetric analog of those from case (a), and (1a), (2a) cover
a special case s = h, which is possible for Negative Chaining with right arguments.
For them we should use the last cases from conditions (C1) and (C2) of admissible
ordering. Now R′′0 ≻ R′1 follows from (2) and (2a), R′′0 ≻ 2b follows from (1), (1a), (2),
(2a) and (3), and R′′0 ≻ R′′3 follows from (3). This completes the proof of redundancy
for inference (b). 22

Proof of Lemma 5.2.9. This lemma is proven analogously to Lemma 5.2.6. As usual,
we may assume that the clauses 1a and 1b are ground.

Case (a): For any ground instance of the first inference:



248 GF with Compositional Guards

1a. C ∨ sSt;
R′0. ¬(sHh) ∨ α[s] ∨ β[h];

NC[1a; R
′
0]: 3′a. C ∨ ¬(tTh) ∨ α[s] ∨ β[h]

we have s ≻ t, s ≻ h and sSt ≻ C. The conclusion of the inference follows from
clause 2a and the following instances of clauses R2 and R3:

2a. C ∨ α[s] ∨ u1(t).

R′2. ¬(tTh) ∨ ¬u1(t) ∨ u2(h);

R′3. ¬u2(h) ∨ β[h];

All the above clauses are ≻· -smaller than the clause R′0 which has been used in the
inference because of the following sequences of inequalities:

(1) ¬(sHh) ≻· sSt ≻· C [ (C1), NC.(i) ];
(2) ¬(sHh) ≻· sHh ≻· ¬(tTh) ≻· ¬u1(t) ≻· u1(t) [ (R1), (C3), CASP ];
(3) ¬(sHh) ≻· ¬u2(h) ≻· u2(h) [CASP, (R1) ];

Therefore, the inference producing the clause 3′a is redundant.

Case (b): For any ground instance of the second inference:

1. C ∨ tTs;
R′′0. ¬(hHs) ∨ α[h] ∨ β[s];
NC[1; R′′0]: 3′b. C ∨ ¬(hSt) ∨ α[h] ∨ β[s]

there should be s ≻ t, s � h and tT s ≻ C. The conclusion 3′b of the inference follows
from the following instances of the clauses R1, 2b and R3:

R′1. ¬(hSt) ∨ α[h] ∨ u1(t);

2b. C ∨ ¬u1(t) ∨ u2(s);

R′′3. ¬u2(s) ∨ β[s];

All the above clauses are ≻· -smaller than the clause R′′0, because of the following
sequences of inequalities (in (1) and (2) we assume that s ≻ h):

(1) ¬(hHs) ≻· tT s ≻· C, [ (C1), NC.(i) ];
(1a) ¬(sHs) ≻· tT s ≻· C [ (C1), NC.(i) ];
(2) ¬(hHs) ≻· hHs ≻· ¬(hSt) ≻· ¬u1(t) ≻· u1(t) [ (R1), (C3), CASP ];
(2a) ¬(sHs) ≻· ¬(sSt) ≻· ¬u1(t) ≻· u1(t) [ (C2), CASP ];
(3) ¬(hHs) ≻· ¬u2(s) ≻· u2(s) [CASP, (R1) ];

This completes the proof of redundancy for the inference in case (b). 22

Proof of Lemma 5.2.10. If a Negative Chaining between clauses 1 and 2 is possible,
then S ′ ◦ T ′ ⊆ H ′ = U for some S ′, T ′ and H ′, and either (a) R = S ′ (for left
chaining), or (b) R = T ′ (for right chaining). By condition of this lemma, N should



D.1. Redundancy Lemmas 249

contain the following clauses:

TC[2]: 3′. ¬(xS′y) ∨ α[x] ∨ uS′

α
(y);

4′. ¬(xT ′y) ∨ ¬uS′

α
(x) ∨ uH′

α
(y);

5′. ¬uH′

α
(y) ∨ β[y];

OR[1; 3′]: 6′. C ∨ α[s] ∨ uS′

α
(t) if R = S ′;

OR[1; 4′]: 7′. C ∨ ¬uS′

α
(s) ∨ uH′

α
(t) if R = T ′;

Now, redundancy follows from Lemma 5.2.9 with R0 := 2, R1 := 3′, R3 := 4′ and
R4 := 5′.

Redundancy of Negative Chaining inferences with clause 3 follows similarly as
above: except that now S ′ ◦ T ′ ⊆ H ′ = S and β[y] in clause 5′ must be replaced
with ¬uS

α
[y] = uH′

α
[y], which makes clause 5′ redundant w.r.t. N .

To prove redundancy of Negative Chaining inferences with clause 4, i.e., when
S ′◦T ′ ⊆ H ′ = T and either (a) R = S ′, or (b) R = T ′, note than since S ◦(S ′◦T ′) ⊆
H , by associativity of composition (see subsection 3.5.4, p.82), there must be some
S ′′ such that S ◦ S ′ ⊆ S ′′ and S ′′ ◦ T ′ ⊆ H . Hence N contains the following clauses:

TC[2]: 4′. ¬(xS′y) ∨ ¬uS

α
(x) ∨ uS′′

α
(y);

4′′. ¬(xT ′y) ∨ ¬uS′′

α
(x) ∨ uH

α
(y);

OR[1; 4′] : 6′. C ∨ α[s] ∨ uS

α
(t) if R = S ′;

OR[1; 4′′]: 7′. C ∨ ¬uS

α
(s) ∨ uH

α
(t) if R = T ′;

Now, redundancy of [1; 4] follows from Lemma 5.2.9 with R0 := 4, R1 := 4′, R3 := 4′′

and R4 := ¬uH

α
(y) ∨ uH

α
[y]. 22



250 GF with Compositional Guards

D.2 Deciding The Guarded Fragment With Transi-

tive Guards

Table D.1: Possible inferences between clauses for the guarded fragment with tran-
sitive guards

a := p |T ; l := p | ¬p | ¬T ; α := ∨{l};
q := p |uT

α̂
; b := a |uT

α̂
; k := l |uT

α̂
| ¬uT

α̂
; β := ∨{k};

1 β̂[ĉ]

1.1 β̂[ĉ] ∨ k[ĉ]

1.1.1 β̂[ĉ] ∨ q[ĉ]⋆ :OR.1

1.1.2 β̂[ĉ] ∨¬q[ĉ] :OR.2

1.1.3 β̂[ĉ] ∨¬T [ĉ] :OR.2

1.1.4 β̂[ĉ] ∨¬(c1T̃ c2) :NC

OR[1.1.1; 1.1.2]: β̂[ĉ]:1

2 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]

2.1 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ k[!f̂(x), x]

2.1.1 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬q[!f̂(x), x] :OR.2

2.1.3 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[f̂(x), x] ∨ q[!f̂(x), x] :OF

2.1.4 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬T [!f̂(x), x] :OR.2

2.1.5 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬(f(x)T̃ (f̂(x)|x)) :NC

OR[2.1.1; 2.1.2]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] :2

OF[2.1.3] :¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[!f̂(x), x]:2

2.2 ¬q̂[!x]♯∨ α̂[x]
2.2.1 ¬q[!x] ∨ α̂[x] :OR.2

OR[1.1.1; 2.2.1]: β̂[ĉ] ∨ α̂[ĉ] :1

OR[2.1.1; 2.2.1]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]:2

2.3 ¬T̂ [!x] ∨ α̂[x] ∨ p[!x]

2.3.1 ¬T̂ [!x] ∨ α̂[x] ∨ p[!x]⋆ :OR.1

2.3.2 ¬T̂ [!x] ∨ α̂[x] ∨ p[x] ∨ p[!x] :OF

OR[2.3.1; 1.1.2]:¬T̂ [ĉ] ∨ α̂[ĉ] ∨ β̂[ĉ] :1

OR[2.3.1; 2.1.2]:¬T̂ [!x] ∨ α̂[x] ∨ ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]:2

OR[2.3.1; 2.2.1]:¬T̂ [!x] ∨ α̂[x] ∨ α̂[x] :3

OF[2.3.2] :¬T̂ [!x] ∨ α̂[x] ∨ p[!x] :3

2.4 [[¬T̂ [!x, !y] ∨ α̂[x, y] ∨ l[!x]
♯
]] :LP

LP[2.4]:¬T̂ [!x, !y] ∨ α̂[x, y] ∨ pl[·](x):2
:¬pl[·](x) ∨ l[!x] :2

Continued on next page



D.2. Deciding GF [TG] 251

2.5 ¬T [!x] ∨ ¬T̂ [!x] ∨ α̂[x]

2.5.1 ¬T̂ [!x] ∨ α̂[x] :U

2.5.2 ¬{!T̂}[!x, !y] ∨ α̂[x] ∨ α̂[y] :T

T. ¬{!T̂}[!x, !y]
♯
∨ α̂[x] ∨ α̂[y]

T.1 ¬(xTy) ∨ β̂[x, y] :OR.2

T.2 ¬(xTy)
♯∨ α̂[x] ∨ α̂[y] :TC

T.3 ¬(xTy) ∨ α̂[x] ∨ α̂[y] : [[ NC.l ]]: Lemma 5.2.7
T.4 ¬(xTy) ∨ α̂[x] ∨ α̂[y] : [[ NC.r ]]: Lemma 5.2.7

T.5 ¬(xT̃1y)
♯
∨···∨¬(xT̃ny)

♯
∨ α̂[x] ∨ α̂[y], n ≥ 2 :HC

T.6 ¬(xT̃1y)
♯
∨···∨¬(yT̃nx)

♯
∨ α̂[x] ∨ α̂[y], n ≥ 2 :HC

TC[T.2]: T.2.1 ¬(xTy)
♯∨ α̂[x] ∨ uT

α̂
(y)

T.2.1.1 ¬(xTy) ∨ α̂[x] ∨ uT

α̂
(y) :OR.2⇒ T.1

T.2.1.2 ¬(xTy) ∨ α̂[x] ∨ uT

α̂
(y) : [[ NC.l ]]: Lemma 5.2.7

T.2.1.3 ¬(xTy) ∨ α̂[x] ∨ uT

α̂
(y) : [[ NC.r ]]: Lemma 5.2.7

T.2.2 ¬(xTy)♯∨ ¬uT

α̂
(x) ∨ uT

α̂
(y)

T.2.2.1 ¬(xTy) ∨ ¬uT

α̂
(x) ∨ uT

α̂
(y) :OR.2⇒ T.1

T.2.2.2 ¬(xTy) ∨ ¬uT

α̂
(x) ∨ uT

α̂
(y) : [[ NC.l ]]: Lemma 5.2.7

T.2.2.3 ¬(xTy) ∨ ¬uT

α̂
(x) ∨ uT

α̂
(y) : [[ NC.r ]]: Lemma 5.2.7

T.2.3 ¬uT

α̂
(y) ∨ α̂[y] :U.4

U.1 ¬p(x) ∨ hT

l (x)Tx

U.1.1 ¬p(x) ∨ T [hT (x), x]
⋆

:OR.1

U.1.2 ¬p(x) ∨ hT

l (x)Tx
⋆

:C.l

OR[U.1.1; T.1]:¬p(x) ∨ β̂[hT (x), x]:U.4

U.2 ¬p(x) ∨ xThT

r (x)
U.2.1 ¬p(x) ∨ xThT

r (x)⋆ :OR.1⇒ U.1.1

U.2.2 ¬p(x) ∨ xThT

r (x)⋆ :C.r

HC[{U.2.2}; T.6]:¬{T̂}[h(x), x] ∨ α[h(x), x]:U.4

U.3 ¬p(x) ∨ xTx

U.3.1 ¬p(x) ∨ xTx⋆ :OR.1⇒ U.1.1

Continued on next page



252 GF with Compositional Guards

U.4 β[hT (x), x]
U.4.1 β[hT (x), x] ∨ q[!hT (x), x]⋆ :OR.1

U.4.2 β[hT (x), x] ∨¬q[!hT (x), x] :OR.2

U.4.3 β[hT (x), x] ∨¬T [!hT (x), x] :OR.2

U.4.4 β[x] ∨ q[!x]
⋆

:OR.1

U.4.5 β[x] ∨¬q[!x] :OR.2

U.4.6 β[x] ∨¬T [!x] :OR.2

U.4.7 β[] ⇒ :1
OR[U.4.1; 2.2.1]:β[hT (x), x] ∨ α̂[hT (x), x] :U.4

OR[2.3.1; U.4.2]:¬T̂ [!hT (x), x] ∨ α̂[hT (x), x] ∨ β[hT (x), x]:U.4
OR[U.4.1; U.4.2]:β[hT (x), x] :U.4
OR[U.1.1; U.4.3]:¬p(x) ∨ β[hT (x), x] :U.4

OR[U.4.4; 1.1.2]:β[c] ∨ β̂[ĉ] :1

OR[1.1.1; U.4.5]: β̂[ĉ] ∨ β[c] :1

OR[U.4.4; 2.1.2]:β[!f̂(x), x] ∨ ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] :2

OR[2.1.3; U.4.5]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ β[!f̂(x), x] :2
OR[U.4.4; 2.2.1]:β[x] ∨ α̂[x] :U.4

OR[2.3.1; U.4.5]:¬T̂ [!x] ∨ α̂[x] ∨ β[x] :U.4
OR[U.4.4; U.4.5]:β[x] :U.4
OR[U.1.1; U.4.6]:¬p(x) ∨ β[x] :U.4



D.3. Deciding GF [CG] 253

D.3 Deciding The Guarded Fragment With Com-

positional Guards

Table D.2: Possible inferences between clauses for the guarded fragment with com-
positional guards

a := p |S; l := p | ¬p | ¬S; α := ∨{l};
q := p |uS

α̂
; b := a |uS

α̂
; k := l |uS

α̂
| ¬uS

α̂
; β := ∨{k};

1 β̂[ĉ]

1.1 β̂[ĉ] ∨ k[ĉ]

1.1.1 β̂[ĉ] ∨ q[ĉ]
⋆

:OR.1

1.1.2 β̂[ĉ] ∨¬q[ĉ] :OR.2

1.1.3 β̂[ĉ] ∨¬S[ĉ] :OR.2

1.1.4 β̂[ĉ] ∨¬(c1S̃c2) :NC

OR[1.1.1; 1.1.2]: β̂[ĉ]:1

2 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]

2.1 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ k[!f̂(x), x]

2.1.1 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[!f̂(x), x]
⋆

:OR.1

2.1.2 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬q[!f̂(x), x] :OR.2

2.1.3 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[f̂(x), x] ∨ q[!f̂(x), x] :OF

2.1.4 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬S[!f̂(x), x] :OR.2

2.1.5 ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨¬(f(x)S̃(f̂(x)|x)) :NC

OR[2.1.1; 2.1.2]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] :2

OF[2.1.3] :¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ q[!f̂(x), x]:2

2.2 ¬q̂[!x]♯∨ α̂[x]
2.2.1 ¬p[!x] ∨ α̂[x] :OR.2

OR[1.1.1; 2.2.1]: β̂[ĉ] ∨ α̂[ĉ] :1

OR[2.1.1; 2.2.1]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]:2

2.3 ¬Ŝ[!x] ∨ α̂[x] ∨ p[!x]

2.3.1 ¬Ŝ[!x] ∨ α̂[x] ∨ p[!x]
⋆

:OR.1

2.3.2 ¬Ŝ[!x] ∨ α̂[x] ∨ p[x] ∨ p[!x] :OF

OR[2.3.1; 1.1.2]:¬Ŝ[ĉ] ∨ α̂[ĉ] ∨ β̂[ĉ] :1

OR[2.3.1; 2.1.2]:¬Ŝ[!x] ∨ α̂[x] ∨ ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]:2

OR[2.3.1; 2.2.1]:¬Ŝ[!x] ∨ α̂[x] ∨ α̂[x] :3

OF[2.3.2] :¬Ŝ[!x] ∨ α̂[x] ∨ p[!x] :3

2.4 [[¬Ŝ[!x, !y] ∨ α̂[x, y] ∨ l[!x]
♯
]] :LP

LP[2.4]:¬Ŝ[!x, !y] ∨ α̂[x, y] ∨ pl[·](x):2
:¬pl[·](x) ∨ l[!x] :2

Continued on next page



254 GF with Compositional Guards

2.5 ¬S[!x] ∨ ¬Ŝ[!x] ∨ α̂[x]

2.5.1 ¬Ŝ[!x] ∨ α̂[x] :U

2.5.2 ¬{!Ŝ}[!x, !y] ∨ α̂[x] ∨ α̂[y] :S

S. ¬{!Ŝ}[!x, !y]
♯
∨ α̂[x] ∨ α̂[y]

S.1 ¬(xSy) ∨ {¬Ŝ, k̂}[x, y] :OR.2

S.2 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ α̂[x] ∨ α̂[y] :MCC

S.3 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ α̂[x] ∨ α̂[y] : [[ HC ]]: Lemma 5.2.11

S.4 ¬(xS̃1y)
♯
∨···∨¬(yS̃nx)

♯
∨ β̂[x] ∨ β̂[y] :HC

MCC[S.2]: S.2.1 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ α̂[x] ∨ u

S̃1..S̃n
α̂ (y)

S.2.1.1 ¬(xS̃y) ∨ ¬Ŝ[x, y] ∨ α̂[x] ∨ u
S̃1..S̃n
α̂ (y) :OR.2⇒ S.1

S.2.1.2 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ α̂[x] ∨ uS̃1..S̃n

α̂ (y) : [[ HC ]]: L. 5.2.11

S.2.1.3 ¬(xS̃1y)
♯
∨···∨¬(yS̃nx)

♯
∨ α̂[x] ∨ uS̃1..S̃n

α̂ (y) :HC⇒ S.4

S.2.2 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨ ¬uS̃1..S̃n

α̂ (x) ∨ uS̃1..S̃n
α̂ (y)

S.2.2.1 ¬(xSy) ∨ ¬Ŝ[x, y] ∨¬uS̃1..S̃n
α̂ (x) ∨ uS̃1..S̃n

α̂ (y) :OR.2⇒ S.1

S.2.2.2 ¬(xS̃1y)
♯
∨···∨¬(xS̃ny)

♯
∨¬uS̃1..S̃n

α̂ (x) ∨ uS̃1..S̃n
α̂ (y) : [[ HC ]]: L. 5.2.11

S.2.2.3 ¬(xS̃1y)
♯
∨···∨¬(yS̃nx)

♯
∨¬uS̃1..S̃n

α̂ (x) ∨ uS̃1..S̃n
α̂ (y) :HC⇒ S.4

S.2.3 ¬uS̃1..S̃n
α̂ (y) ∨ α̂[y] :U

U {¬Ŝ, Ŝ, k̂}[h(x), x]

U.1.1 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ S[!h(x), x]
⋆

:OR.1

U.1.2 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ h(x)S̃(h(x)|x)
⋆

:C

U.1.3 [[ {¬Ŝ, Ŝ, k̂}[x] ∨ S[x]
♯
]] :LP

U.1.4 β̂[x] ∨ S[!x]
⋆

:OR.1

U.1.5 β̂[x] ∨ xS̃x
⋆

:C

OR[U.1.1; S.1] : {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ {¬Ŝ, k̂}[!h(x), x] :U

OC[U.1.2; U.1.2] : {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ (h(x)|x)S̃(h(x)|x):U

HC[{U.1.2}; S.4]:{¬Ŝ, Ŝ, k̂}[h(x), x] :U

LP[U.1.3] : {¬Ŝ, Ŝ, k̂}[x] ∨ pS[·](x) :U
:¬pS[·](x) ∨ S[x] :U

OR[U.1.4;1.1.3] : β̂[c] ∨ β̂[ĉ] :1

OR[U.1.4;2.1.4] : β̂[f̂(x), x] ∨ ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] :2

OC[U.1.2; U.1.5] : {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ xS̃(h(x)|x) :U

OC[U.1.5; U.1.5] : β̂[x] ∨ xS̃x :U

Continued on next page



D.3. Deciding GF [CG] 255

U.2.1 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨¬S[!h(x), x] :OR.2

U.2.2 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨¬(h(x)S̃(h(x)|x)) :NC

U.2.3 {¬Ŝ, k̂}[x] ∨¬S[!x] :OR.2

U.2.4 {¬Ŝ, k̂}[x] ∨¬(xSx) :NC.r

OR[U.1.1; U.2.1]: {¬Ŝ, Ŝ, k̂}[h(x), x] :U

OR[U.1.4; U.2.1]: β̂[x] :U

NC[U.1.2; U.2.2]: {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ ¬((h(x)|x)S̃(h(x)|x)):U

OR[U.1.1; U.2.3]: {¬Ŝ, k̂}[x] :U

OR[U.1.4; U.2.3]: β̂[x] :U

NC[U.1.2; U.2.4]: {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ ¬(h(x)S̃(h(x)|x)) :U

U.3.1 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ q[!h(x), x]⋆ :OR.1

U.3.2 {¬Ŝ, Ŝ, k̂}[h(x), x] ∨¬q[!h(x), x] :OR.2

U.3.3 {¬Ŝ, k̂}[x] ∨ q[!x]⋆ :OR.1

U.3.4 {¬Ŝ, k̂}[x] ∨¬q[!x] :OR.2

OR[U.3.1;2.2.1]: {¬Ŝ, Ŝ, k̂}[h(x), x] ∨ α̂[h(x)] :U

OR[2.3.1; U.3.2]:¬Ŝ[!h(x)] ∨ α̂[h(x)] ∨ {¬Ŝ, Ŝ, k̂}[h(x), x] :U

OR[U.3.1; U.3.2]: {¬Ŝ, Ŝ, k̂}[h(x), x] :U

OR[U.3.3;1.1.2]: {¬Ŝ, k̂}[ĉ] ∨ β̂[ĉ] :1

OR[1.1.1; U.3.4]: β̂[ĉ] ∨ {¬Ŝ, k̂}[ĉ] :1

OR[U.3.3;2.1.2]: {¬Ŝ, k̂}[f̂(x), x] ∨ ¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x]:2

OR[2.1.3; U.3.4]:¬â[!x] ∨ α̂[x] ∨ β̂[!f̂(x), x] ∨ {¬Ŝ, k̂}[f̂(x), x]:2

OR[U.3.3;2.2.1]: {¬Ŝ, k̂}[x] ∨ α̂[x] :U

OR[2.3.1; U.3.4]:¬Ŝ[!x] ∨ α̂[x] ∨ {¬Ŝ, k̂}[x] :U

OR[U.3.3; U.3.4]: {¬Ŝ, k̂}[x] :U



256 GF with Compositional Guards

D.4 A Sketch of a Decision Procedure for the Guar-

ded Fragment with Transitive Guards

In this section we sketch a procedure for the guarded fragment with transitive guards
and equality GF≃[TG], based on the technique we have developed in this thesis. For
deciding this fragment we will use the subterm chaining calculus, which is an exten-
sion of the ordered chaining calculus with special rules for equality (see System 7).

The decision procedure for GF≃[TG] that we sketch in this section is rather
involved and we don’t think it can be easily implemented. The main purpose of
this section is to demonstrate the reasons behind decidability of GF≃[TG] and show
how our techniques could be applied for designing a decision procedure for such a
non-trivial fragment.

Difficulties with equality

If we go through the saturation strategy for GF [TG] that we have proposed in
subsection 5.2.1, we will notice that there is a case which does not directly extend
to equality. A problem arises with clauses of form:

T≃ ¬{!T̂}[!x, !y] ∨ α̂[x] ∨ α̂[y] ∨ x ≃ y (D.1)

which are guarded by several transitive atoms and have no other atoms containing
both x and y except for equality x ≃ y. Note that formulas of a similar form were
essential in our undecidability proofs in the previous sections. For clauses of form
(D.1) we can nigther apply the Transitive Closure rule, nor can we resolve on an atom
containing both variables x and y, since the equality is the only such atom. In order
to deal with clauses of this form, we introduce an extension of the Transitive Closure
rule, but first we restrict such clauses using the following observation:

Proposition D.4.1. T is a transitive relation iff T is a union of two transitive
relations S and S such that (i) S is symmetric (that is a partial equivalence), (ii) S
is an antisymmetric, and (iii) S ◦ S ⊆ S, S ◦ S ⊆ S.

Proof. The “ if ” part follows from (S∪S)◦(S∪S) ⊆ S ◦ S∪S◦S∪S◦S∪S◦S ⊆ (S∪S).
To prove the “only if ” part, let S := T ∩ T` and S := T ∩ ¬(T`). Properties (i) –
(iii) are easy to verify. 22

This proposition allows us to consider only a restricted version of GF≃[TG],
where each transivie atom is either symmetric or antysymmettic. Indeed, we can
replace every subformula guarded with a transitive atom T in guards ∀xy.(xTy→
F [x, y]), ∃x.(xTy ∧F [x, y]), etc. respectively with ∀xy.(xSy→F [x, y])∧∀x.(xSy→



D.4. A Sketch of a Decision Procedure for GF≃[TG] 257

F [x, y]), ∃x.(xSy∧F [x, y])∨∃x.(xSy∧F [x, y]), etc.. This transformation preserves
satisfiability of formulas by Proposition D.4.1 and produces clauses containing tran-
sitive guards that are either symmetric or antysymmetric. Now we can concentrate
on clauses of form (D.1) where all guards are symmetric transitive relations, i.e.,
partial equivalences, since otherwise positive equation x ≃ y can be removed, since
¬xSx holds for every antysymmetric transitive relation S. The only price we need
to pay for this, is to consider additional compositional axioms: S ◦ S ⊆ S and
S ◦ S ⊆ S, and clauses:

¬xSy ∨ ySx (symmetry) and ¬xSy ∨ ¬ySx (antysymmetry)

(In particular, the symmetry clause which does not fit our clause calss since it
contains a transitive atom positively). It is easy to see that all compositional axioms
remain associative, so we can apply the usual chaining rules. Note also that S can
be obtained only from compositions with itself!

Symmetry can also be built into the chaining calculi by treating atoms xSy
symmetrically. Alternatively, on can show that the Negative Chaining inferences with
the symmetry clauses are redundant, which means that only Ordered Resolution can
be applied to such clauses, which has the same effect as swapping the arguments in
positive occurrences of symmetric atoms:

Lemma D.4.2. Let N be a clause set containing the clauses:

1. C ∨ sSt

2. ¬xSy♯∨ ySx (Symmetry)
OR[1; 2]: 3. C ∨ tSs

where S is a transitive predicate symbol. Then the following Negative Chaining in-
ferences are redundant w.r.t. N :

(a) NC[1; 2]: 4a. C ∨ ¬(tSy) ∨ ySs;
(b) NC[1; 2]: 4b. C ∨ ¬(xSs) ∨ tSx.

Proof. We prove the lemma for the case (a). The case (b) can be proved in the same
way by swapping the arguments of S. W.l.o.g., we may assume that the clause 1 is
ground.

The conclusion of every ground instance of inference (a):

1. C ∨ sSt;

2′. ¬sSh♯∨ sSh;
NC[1; 2′]: 4′a. C ∨ ¬(tSh) ∨ hSs;

follows logically from the clause 3 and an instance of the symmetry clause:

2′′. ¬(tSh) ∨ hSt; 3. C ∨ tSs;



258 GF with Compositional Guards

since S is a transitive relation. Each of the clauses 2′′ and 3 are smaller than the
clause 2′ which can be shown using conditions of the Negative Chaining rule and
conditions of admissible orderings. Therefore, the inference producing the clause 3a

is redundant. 22

Since there is no difference in dealing with symmetry for transitive relations, we
prefer to treat atoms xSy symmetrically in our clauses in order to avoid considering
additional cases.

Auxiliary inference rules and redundancy

Let us try to understand the semantical meaning for clauses of the form:

¬(xSy) ∨ ¬a(x) ∨ b(y) ∨ x ≃ y (D.2)

This clause says that for every element y that is S-reachable from some x with a(x),
we must have either b(y) or x ≃ y. There are two situations possible for such y:
(1) either x is the only element for y with these properties, or (2) there are at least
two such elements x1 6≃ x2.

a(x)

vE

a
(x)

oE

a
(x)

nE

a
(x)

b

b

b

b

b
E

b

b

b

b

In case (2), we must have b(y) always, since
otherwise we have y ≃ x1 and y ≃ x2 which is
not possible, with x1 6≃ x2. In case (1) a S-
equivalence class containing y must contain ex-
actly one element x with a(x).

Let us define a function nS

a
(y) producing a S-

normal element w.r.t. a such that (i) nS

a
(y) ≃ x if

S- equivalence class of y contains exactly one el-
ement x with a(x) and (ii) nS

a
(y) ≃ y otherwise.

Furthermore, let oS

a
(y) be an atom that holds on

all elements y such that their equivalence class contains exactly one element x with
a(x), and, otherwise, vS

a
(y) holds if there are more than one such elements. Then

the following properties hold:

¬a(x) ∨ oS

a
(x) ∨ vS

a
(x) - if a(x) holds then either vS

a
(x) or oS

a
(x) holds

¬(xSy) ∨ ¬vS

a
(x) ∨ vS

a
(y) - the set of x where vS

a
(x) holds and

¬(xSy) ∨ ¬oS

a
(x) ∨ oS

a
(y) - the set of x where oS

a
(x) holds are colsed under S

¬(xSy) ∨ nS

a
(x) ≃ nS

a
(y) - normal elements for equivalent elements are equal

¬vS

a
(y) ∨ b(y) - if vS

a
(y) holds then b(y) holds

¬oS

a
(x) ∨ ¬a(x) ∨ nS

a
(x) ≃ x - if a(x) and oS

a
(x) hold then x is the normal of x

¬oS

a
(y) ∨ b(y) ∨ nS

a
(y) ≃ y - if oS

a
(y) then either b(y) or y is the normal of y

xS nS

a
(x) ∨ nS

a
(x) ≃ x - nS

α
(x) is either S-reachable from x or is equal to x



D.4. A Sketch of a Decision Procedure for GF≃[TG] 259

This construction can be generalized to a simplification rule Equivalence Closure de-
fined in Figure D.1. It is possible to show that one can always define atoms vS

α
(x),

Figure D.1 The Equivalence Closure rule

Equivalence Closure

EC :
¬(xSy) ∨ α[x] ∨ β[y] ∨ x ≃ y

α[x] ∨ vS

α
(x) ∨ oS

α
(x) ¬vS

α
(y) ∨ β[y]

¬(xSy) ∨ ¬vS

α
(x) ∨ vS

α
(y) ¬oS

α
(x) ∨ α[x] ∨ nS

α
(x) ≃ x

¬(xSy) ∨ ¬oS

α
(x) ∨ oS

α
(y) ¬oS

α
(y) ∨ β[y] ∨ nS

α
(y) ≃ y

¬(xSy) ∨ nS

α
(x) ≃ nS

α
(y) xS nS

α
(x) ∨ nS

α
(x) ≃ x

where (i) S is a symmetric transitive relation; (ii) vS

α
and oS

α
are extended unary predicate

symbols and nS

α
is an extended unary functional symbol introduced for α and S .

oS

α
(x) and function nS

α
(x) similarly as it is done above, such that all conclusions of

this rules are true provided its premise is true. In other words:

Lemma D.4.3. Equivalence Closure is a sound inference rule.

We would not have introduced a new simplification rule (especially such com-
plicated one) if this did not give us some advantage in saturation procedures. And
indeed, Equivalence Closure helps avoiding Negative Chaining inferences in a similar
way as the Transitive Closure rule does.

For proving redundancy of the Negative Chaining inferences with the premise of
this rule (which will be essentially in the same way as for Transitive Closure), we
need nS

α
(x) to behave more like an atom, rather than a function. In particular, we

want that (xSy) ≻ nS

α
(x) ≃ nS

α
(y). So, we assume that the ordering on atoms and

non-equational terms respects the arity of symbols. Unfortunately, such ordering is
not admissible for the subterm chaining calculus, since it violates condition (C3)
from Definition 3.5.4, when the first literal is equational (recall that equality ≃
is a compositional relation): for example, we have nS

α
(x) ≃ nS

α
(y) 6≻ ¬(xSnS

α
(y)).

However, condition (C3) is only needed for the Compositional Resolution rule [see
Kazakov, 2005]. Hence we can accept our assumption on ≻ provided that we do not
use this rule in our procedure.

Lemma D.4.4. Let N be a clause set containing the clauses:

1. C ∨ sSt;
R0. ¬(xSy) ∨ α[x] ∨ β[y] ∨ x ≃ y;

for some partial equivalence relation S, with the following conclusions of the Equiv-
alence Closure inference:



260 GF with Compositional Guards

EC[R0] : R1. α[x] ∨ vS

α
(x) ∨ oS

α
(x);

R2. ¬(xSy) ∨ ¬vS

α
(x) ∨ vS

α
(y);

R3. ¬(xSy) ∨ ¬oS

α
(x) ∨ oS

α
(y);

R4. ¬(xSy) ∨ nS

α
(x) ≃ nS

α
(y);

R5. ¬vS

α
(y) ∨ β[y];

R6. ¬o
S

α
(x) ∨ α[x] ∨ nS

α
(x) ≃ x;

R7. ¬oS

α
(y) ∨ β[y] ∨ nS

α
(y) ≃ y;

and the following ordered resolution inferences with them:

OR[1; R2]: 2. C ∨ ¬vS

α
(s) ∨ vS

α
(t);

OR[1; R3]: 3. C ∨ ¬oS

α
(s) ∨ oS

α
(t);

OR[1; R4]: 4. C ∨ nS

α
(s) ≃ nS

α
(t);

Then the following Negative Chaining inferences are redundant w.r.t. N :

(a) NC[1; R0]: 5a. C ∨ ¬(tSy) ∨ α[s] ∨ β[y] ∨ s ≃ y, when s ≻ nS

α
(t)

(b) NC[1; R0]: 5b. C ∨ ¬(xSs) ∨ α[x] ∨ β[t] ∨ x ≃ t, when t ≻ nS

α
(s)

Proof. Again, w.l.o.g. 1 is a ground clause.
(a) The conclusion of any ground instance of the first inference:

1. C ∨ sSt;
R′0. ¬(sSh) ∨ α[s] ∨ β[h] ∨ s ≃ h;
NC[1; R′0]: 5′a. C ∨ ¬(tSh) ∨ α[s] ∨ β[h] ∨ s ≃ h

can be obtained from clauses 2 – 4:

2. C ∨ ¬vS

α
(s) ∨ vS

α
(t);

3. C ∨ ¬oS

α
(s) ∨ oS

α
(t);

4. C ∨ nS

α
(s) ≃ nS

α
(t);

and the following instances of clauses R1 – R7:

R′1. α[s] ∨ vS

α
(s) ∨ oS

α
(s);

R′2. ¬(tSh) ∨ ¬vS

α
(t) ∨ vS

α
(h)........;

R′3. ¬(tSh) ∨ ¬oS

α
(t) ∨ oS

α
(h)........;

R′4. ¬(tSh) ∨ nS

α
(t) ≃ nS

α
(h);

R′5. ¬v
S

α
(h)........ ∨ β[h];

R′6. ¬o
S

α
(s) ∨ α[s] ∨ nS

α
(s) ≃ s;

R′7. ¬o
S

α
(h)........ ∨ β[h] ∨ nS

α
(h) ≃ h;

Indeed, by resolving on vS

α
clauses 2, R′1, R

′
2, R

′
5, we obtain the clause:

C′1. C ∨ ¬(tSh) ∨ α[s] ∨ β[h] ∨ oS

α
(s);

Resolving this clause on oS

α
with clauses 3, R′3 and R′7, we obtain the clause:

C′2. C ∨ ¬(tSh) ∨ α[s] ∨ β[h] ∨ nS

α
(h) ≃ h;

Alternatively, the clause C′1 can be resolved with clause R′6 yielding:

C′3. C ∨ ¬(tSh) ∨ α[s] ∨ β[h] ∨ nS

α
(s) ≃ s;

Now using equality axioms and the clauses 4, R′4, C
′
2 and C′3 we obtain:

C′4. C ∨ ¬(tSh) ∨ α[s] ∨ β[h] ∨ s ≃ h,

which is the same, as clause 5′a. It is easy to see that all clauses that have been used



D.4. A Sketch of a Decision Procedure for GF≃[TG] 261

in the above inferences are smaller than clause R′0. This is essentially because all
literals and terms resolved in the inferences are unary and contain no terms greater
than s. So the inference that has produced clause 5′a is redundant.
(b) The conclusion of any ground instance of the second inference:

1. C ∨ sSt;
R′′0. ¬(hSt) ∨ α[h] ∨ β[t] ∨ h ≃ t;
NC[1; R′′0]: 5′b. C ∨ ¬(hSs) ∨ α[h] ∨ β[t] ∨ h ≃ t

can be similarly obtained from clauses 2 – 4 and the following instances of the clauses
R1 – R7, all of them being smaller than clause R′′0:

R′′1. α[h] ∨ vS

α
(h)........ ∨ oS

α
(h);

R′′2. ¬(hSs) ∨ ¬vS

α
(h)........ ∨ vS

α
(s);

R′′3. ¬(hSs) ∨ ¬oS

α
(h)........ ∨ oS

α
(s);

R′′4. ¬(hSs) ∨ nS

α
(h) ≃ nS

α
(s);

R′′5. ¬v
S

α
(t) ∨ β[t];

R′′6. ¬o
S

α
(h) ∨ α[h] ∨ nS

α
(h) ≃ h;

R′′7. ¬o
S

α
(t) ∨ β[t] ∨ nS

α
(t) ≃ t;

R′′1, R
′′
2, 2, R

′′
5 ⊢ C′′1. C ∨ ¬(hSs) ∨ α[h] ∨ β[t] ∨ oS

α
(h)........;

C′′1, R
′′
3, 3, R

′′
7 ⊢ C′′2. C ∨ ¬(hSs) ∨ α[h] ∨ β[t] ∨ nS

α
(t) ≃ t;

C′′1, R
′′
6 ⊢ C′′3. C ∨ ¬(hSs) ∨ α[h] ∨ β[t] ∨ nS

α
(h) ≃ h;

C′′3, R
′′
4, 4, C

′′
2 ⊢ C′′4. C ∨ ¬(hSs) ∨ α[h] ∨ β[t] ∨ h ≃ t,

Therefore, the inference producing clause 5′b is redundant. 22

Redundancy of the Negative Chaining inferences with conclusions of the Equiva-
lence Closure rule can be proven in a similar (but much simpler) way.

A saturation strategy for GF≃[TG]

Note that the last conclusion of rule Equivalence Closure have not been used in
Lemma D.4.4. This conclusion has a very special rôle that helps us to avoid growth
of functional depth of clauses in inferences. The functional depth can grow, if we
resolve, say, a clause of form ¬p(x) ∨ h(x)Sx

⋆, that originates from positive occur-
rences of S, with the 4-th conclusion of this rule:

1 ¬p(x) ∨ h(x)Sx
⋆ 2 ¬xSy♯∨ nS

α
(x) ≃ nS

α
(y)

OR[1; 2]:¬p(x) ∨ nS

α
(h(x)) ≃ nS

α
(x)

This gives us a clause with nested functional terms similar to what we have seen in
subsection 4.3.3. However, this time, equational atoms with nested functional terms
have a different form which might give problems (and actually does, if applied, say,
to clauses for GF [∧TG]). This problem can be avoided using the last conclusion of
the Equivalence Closure rule as follows. If we resolve this conclusion, with the 4-th
conclusion of this rule but for a different premise we obtain:



262 GF with Compositional Guards

1 xSnS

α1

(x)⋆∨ nS

α1
(x) ≃ x 2 ¬xSy♯∨ nS

α
(x) ≃ nS

α
(y)

OR[1; 2]: nS

α1
(x) ≃ x ∨ nS

α
(nS

α1
(x)) ≃ nS

α
(x): which simplifies to:

⇒: nS

α
(nS

α1
(x)) ≃ nS

α
(x) : (projection clause)

The clauses of the last form can be used in simplification to effectively reduce
the depth of nested normality functions for the same relation E. Hence a special
care needs to be taken in order to avoid appearance of nested functional terms for
different E. To achieve this, we index every Skolem function h(x) introduced for a
symmetric transitive predicate symbol S with this symbol: hS(x). Skolem functions
introduced for other transitive atoms are indexed with any symmetric transitive
symbol S. It will be an invariant that whenever a partial equivalence S occurs
positively in a clause, then all functional symbols in this clause must be indexed
with S.

Taking this considerations into account, we define a clause class (GT
≃) for the

guarded fragment with transitive guards and equality in Table D.3. Note that ev-

Table D.3 A clause class for the guarded fragment with transitive guards and
equality

(GT
≃):

Clause scheme Description

1 β̂[ĉ] a ground clause containing compositional predi-
cate symbols only negatively;

2 ¬â[!x] ∨ α[x] ∨ β̂[!f̂(x), x] a guarded clause whose extended atoms contain
functional symbols;

S ¬{!Ŝ}[!x, !y] ∨ α[x] ∨ α[y] an instance of the previous scheme where all liter-
als containing different variables are compositional
and occur negatively

E ¬{!Ŝ}[!x, !y] ∨ α[x] ∨ α[y] ∨ x ≃ y an instance of the scheme 2 where all literals
containing different variables are either negative
equivalence atoms or a positive equality

U {¬Ŝ, Ŝ, P̂ , S,≃, k̂1}[nS

α̂
(hS(x)),

hS(x), nS

α̂
(x), x]

clauses with one variable that may contain a
Skolem function introduced for a compositional
guard

P nS

α̂
(nS

α̂1
(x)) ≃ nS

α̂
(x) projection clauses for extended functions

where a := p |S | ≃; l := p | ¬p | ¬S | ≃; α := ∨{l}
q := p |uS

α̂
; b := a |uS

α̂
; k := l |uS

α̂
| ¬uS

α̂
; β := ∨{k}; S := S |S |P | ≃

ery clause of form U contains at most one symmetric transitive symbol S positively
(possibly in several atoms) and all functional terms in such a clause must be in-
dexed with S. Note that we may have three types of special predicate symbols
S: symmetric transitive S, antisymmetric transitive S, equality ≃ and antysym-
metric P . The special symbols of the last type admit only compositional axioms



D.4. A Sketch of a Decision Procedure for GF≃[TG] 263

with equality: P ◦ ≃ ⊆ ≃ and ≃ ◦ P ⊆ ≃. We introduce these symbols dur-
ing translation of subformulas with positive occurrences of atoms S and S: for-
mula ∀x.[pF (x)→∃y.(xSy ∧ pF1

[x, y])] is first transformed to an equivalent formula
∀x.[pF (x)→∃y.(xSy ∧ pF1

[x, y] ∧ x 6≃ y) ∨ (xEx ∧ pF1
[x, x])] and then is translated

to clauses:

¬pF (x) ∨ xSh(x) ∨ a(x)
¬pF (x) ∨ xPh(x) ∨ a(x)

¬a(x) ∨ xSx
¬a(x) ∨ pF1

[x, x]
¬xPy ∨ pF1

[x, y]
¬xPy ∨ x 6≃ y

This trick is done to force superposition inferences into the maximal argument of
atoms, in order to avoid growth of term depth (recall that superposition inferences
into special atoms are done using the Ordered Subterm Chaining rule into their max-
imal argument). Note that non-special atoms in clauses of form U are unary which
we indicated by writing k1. The arguments of literals in a clause of form U could be
only terms of forms nS

α̂
(hS(x)), hS(x), nS

α̂
(x) or x, where all functional symbol must

be indexed with the same partial equivalence S, which is the only partial equiva-
lence which may occur in this clause. In order to prevent from deep occurrences
of functional symbols hS(x), we restrict an ordering ≻ further by requiring that
hS(x) ≻ nS

α
(x) for every projection function nS

α
(x).

The saturation strategy for clause class (GT
≃) can be described as follows:

• For clauses of forms 1 and 2 we apply a similar strategy as for the guarded
fragment with equality: if a clause of form 2 contains a functional term, we
produce inferences on its maximal literal, otherwise if this clause has a non-
special guard, then we select one.

• If a clause of form 2 is non-functional and have only special guards, then we
apply inferences on its maximal non-special literal, if it contains both variables
x and y, or otherwise the maximal non-special literal can be simplified using the
Literal Projection rule. In the remaining situation we must have a clause such
that all of its non-special atoms are unary. If some of the guards in this clause
is antysymmetric, then the equality x ≃ y (if there is one) can be eliminated
from such clause, and we obtain a clause of form S. Otherwise the clause must
be of form E.

• For clauses of form S we apply a similar strategy as in the case with GF [CG]:
we select all negative guards of this clause for the Negative Hyper-Chaining rule
and make an application of such a rule redundant using Multi-Compositional
Closure.

• For clauses of form E, we also select all negative guards. Now our strategy
resembles the one for GF [TG] because every function in positive occurrence of
atom with E must be indexed with E: A Negative Hyper-Chaining inference
between clauses of form U and a clause of form E can be applied either (i) on



264 GF with Compositional Guards

both variables x and y of this clauses in which case they are unified, and the
inference produces a clause of form U, or (ii) on only one variable x or y, in
which case the inference is possible if there is at most one guard, because it is
not possible to apply inference on xS1h

S1(x) and xS2h
S2(x) with S1 6= S2 since

the functional terms must be unified. In case when there is only one guard in
a clause of form E, the dangerous Negative Chaining inference can be avoided
using the Equivalence Closure rule from Figure D.1.

• For clauses of form U, we apply the “divide and conquer” strategy similar to
the one demonstrated for the guarded fragment with functional guards GF [FG]
in subsection 4.3.3: we separate all special atoms to different clauses using the
Literal Projection rule. With this strategy we avoid Compositional Resolution
inferences, which was required to make our ordering ≻ admissible.

• Finally we need to demonstrate that inferences between clauses of form U

do not produce deeper clauses. Note that since all literals in such clauses are
either special or unary, we apply the chaining and superposition inferences
only on the maximal term of a clause. All such inferences will preserve the
forms of arguments in such clauses, except when we superpose from a literal
hS(x) ≃ nS

α1
(x) to term nS

α
(hS(x)) which produces term nS

α
(nS

α1
(x)). Although,

such terms are not allowed in clauses of form U, they can be immediately
simplified to nS

α
(x) using a projection clause P.

We see, that the resulted saturation decision procedure for GF≃[TG] is quite
involved and uses almost all range our techniques: projection of literals, separation
of binary literals, Multi-Compositional Closure and Equivalence Closure. The formal
case analysis of possible inferences between clauses from (GT

≃) is too large and we do
not provide it here. However we think that the above description of our procedure
is convincing enouph to imply the following result:

Theorem D.4.5. There is a saturation-based decision procedure for the guarded
fragment with transitive guards and equality GF≃[TG], which can be implemented in
2EXPTIME.



Bibliography

Allen, J. F. [1983], ‘Maintaining knowledge about temporal intervals.’, Commun.
ACM 26(11), 832–843. xxv, 158

Allen, J. F. [1991], ‘Temporal reasoning and planning’, pp. 1–67. 158

Andréka, H., van Benthem, J. & Németi, I. [1996], Modal languages and bounded
fragments of predicate logic, Technical Report ML-1996-03, ILLC. vii, xi, 5, 75,
108

Armando, A., Ranise, S. & Rusinowitch, M. [2001], ‘Uniform derivation of decision
procedures by superposition’, Lecture Notes in Computer Science 2142, 513+. 97

Artale, A. & Franconi, E. [2000], ‘A survey of temporal extensions of description
logics.’, Ann. Math. Artif. Intell. 30(1-4), 171–210. 159

Baader, F. [1996], ‘Using automata theory for characterizing the semantics of ter-
minological cycles.’, Ann. Math. Artif. Intell. 18(2-4), 175–219. 10

Baader, F. [2002], Terminological cycles in a description logic with existential re-
strictions, LTCS-Report LTCS-02-02, Chair for Automata Theory, Institute for
Theoretical Computer Science, Dresden University of Technology, Germany. See
http://lat.inf.tu-dresden.de/research/reports.html. vi, x, 10, 11, 14, 28, 29

Baader, F. [2003], Restricted role-value-maps in a description logic with existential
restrictions and terminological cycles, in ‘Proceedings of the 2003 International
Workshop on Description Logics (DL2003)’, CEUR-WS. 6, 9, 11, 35, 164

Baader, F. & Nipkow, T. [1998], Term Rewriting and All That, Cambridge Univer-
sity Press, United Kingdom. 53, 57, 58, 59

Baader, F. & Nutt, W. [2003], Basic description logics., in Baader, Calvanese,
McGuinness, Nardi & Patel-Schneider [2003], pp. 43–95. 14

265



266 BIBLIOGRAPHY

Baader, F., Brandt, S. & Lutz, C. [2005], Pushing the EL envelope, in ‘Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-
05’, Morgan-Kaufmann Publishers, Edinburgh, UK. vi, xi, 9, 11, 24, 30, 33, 34,
35, 43, 49, 192

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. & Patel-Schneider, P. F.,
eds [2003], The Description Logic Handbook: Theory, Implementation, and Ap-
plications, Cambridge University Press. 1, 64, 165, 265, 267, 269

Baader, F., Hladik, J., Lutz, C. & Wolter, F. [2003], From tableaux to automata
for description logics., in M. Y. Vardi & A. Voronkov, eds, ‘LPAR’, Vol. 2850 of
Lecture Notes in Computer Science, Springer, pp. 1–32. 3

Baaz, M., Egly, U. & Leitsch, A. [2001], Normal form transformations, in Robinson
& Voronkov [2001], chapter 5, pp. 273–333. 92

Bachmair, L. & Ganzinger, H. [1990], On restrictions of ordered paramodulation
with simplification, in ‘Proceedings of the tenth international conference on Au-
tomated deduction’, Springer-Verlag New York, Inc., pp. 427–441. v, vi, ix, x, 6,
10, 77, 80

Bachmair, L. & Ganzinger, H. [1994], ‘Rewrite-based equational theorem proving
with selection and simplification’, Journal of Logic and Computation 4(3), 217–
247. v, vi, ix, x, 6, 10, 77

Bachmair, L. & Ganzinger, H. [1995], Ordered chaining calculi for first-order theories
of binary relations, Technical Report MPI-I-95-2-009, Max-Planck-Institut für
Informatik, Saarbrücken, Germany. Revised version to appear in JACM. vii, xii,
83, 155

Bachmair, L. & Ganzinger, H. [1998a], Equational reasoning in saturation-based
theorem proving, in W. Bibel & P. Schmitt, eds, ‘Automated Deduction — A
Basis for Applications’, Vol. I, Kluwer, chapter 11, pp. 353–397. 77

Bachmair, L. & Ganzinger, H. [1998b], ‘Ordered chaining calculi for first-order the-
ories of transitive relations’, Journal of the ACM. Revised Version of MPI-I-95-
2-009. vii, xii, 83, 84, 85, 155, 156, 169, 190

Bachmair, L. & Ganzinger, H. [2001], Resolution theorem proving, in Robinson &
Voronkov [2001], chapter 2, pp. 19–99. 3, 40, 77, 90, 111

Bachmair, L., Ganzinger, H. & Waldmann, U. [1993a], Set constraints are the mo-
nadic class, in ‘Eighth Annual IEEE Symposium on Logic in Computer Science’,
IEEE, Montreal, Canada, pp. 75–83. 72



BIBLIOGRAPHY 267

Bachmair, L., Ganzinger, H. & Waldmann, U. [1993b], Superposition with simplifi-
cation as a decision procedure for the monadic class with equality, in G. Gottlob,
A. Leitsch & D. Mundici, eds, ‘Computational Logic and Proof Theory, Third
Kurt Gödel Colloquium, KGC’93’, Vol. 713 of Lecture Notes in Computer Sci-
ence, Springer, Brno, Czech Republic, pp. 83–96. 97, 114, 127, 226

Bachmair, L., Ganzinger, H., Lynch, C. & Snyder, W. [1995], ‘Basic paramodu-
lation’, Information and Computation 121(2), 172–192. Revised version of TR
MPI-I-93-236, 1993. 142

Baldoni, M., Giordano, L. & Martelli, A. [1998], A tableau for multimodal logics
and some (un)decidability results., in H. C. M. de Swart, ed., ‘TABLEAUX’, Vol.
1397 of Lecture Notes in Computer Science, Springer, pp. 44–59. 36, 64, 154

Baumgartner, P. & Tinelli, C. [2003], The model evolution calculus., in F. Baader,
ed., ‘CADE’, Vol. 2741 of Lecture Notes in Computer Science, Springer, pp. 350–
364. 195

Blackburn, P., de Rijke, M. & Venema, Y. [2001], Modal logic, Cambridge University
Press, New York, NY, USA. 61

Börger, E., Grädel, E. & Gurevich, Y. [1997], The Classical Decision Problem, Per-
spectives of Mathematical Logic, Springer-Verlag. Second printing (Universitext)
2001. 72, 73, 74, 76, 77, 114, 119, 160

Borgida, A. [1996], ‘On the relative expressiveness of description logics and predicate
logics’, Artif. Intell. 82(1-2), 353–367. 32

Borgida, A., Lenzerini, M. & Rosati, R. [2003], Description logics for databases., in
Baader, Calvanese, McGuinness, Nardi & Patel-Schneider [2003], pp. 462–484. 51

Boyer, R. S. [1971], Locking: A restriction of resolution, PhD thesis, University of
Texas at Austin, Austin, TX. 111

Brachman, R. J. [1979], On the epistemological status of semantic networks, in
N. V. Findler, ed., ‘Associative Networks: Representation and Use of Knowledge
by Computers’, Academic Press, New York, pp. 3–50. Republished in Brachmann
& Levesque [1985]. 64

Brachman, R. J. & Schmolze, J. G. [1985], ‘An overview of the KL-ONE knowledge
representation system.’, Cognitive Science 9(2), 171–216. 14, 35, 69, 70

Brachmann, R. J. & Levesque, H. J. [1985], Readings in Knowledge Representation,
Morgan Kaufmann, Palo Alto.



268 BIBLIOGRAPHY

Brandt, S. [2004a], Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else?, in R. L. de Mantáras & L. Saitta, eds,
‘Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-
2004)’, IOS Press, pp. 298–302. 9, 11, 24, 29, 30, 35, 43, 49

Brandt, S. [2004b], Reasoning in ELH w.r.t. general concept inclusion axioms,
LTCS-Report LTCS-04-03, Chair for Automata Theory, Institute for Theo-
retical Computer Science, Dresden University of Technology, Germany. See
http://lat.inf.tu-dresden.de/research/reports.html. 41

Calvanese, D., Giacomo, G. D. & Franconi, E., eds [2003], Proceedings of the 2003
International Workshop on Description Logics (DL2003), Rome, Italy September
5-7, 2003, Vol. 81 of CEUR Workshop Proceedings. 273, 274

Chagrov, A. & Zakharyaschev, M. [1997], Modal Logic, Oxford University Press,
Oxford. 61

Cohn, A. G., Bennett, B., Gooday, J. & Gotts, N. M. [1997], ‘Qualitative spatial rep-
resentation and reasoning with the region connection calculus.’, GeoInformatica
1(3), 275–316. 157

Dantsin, E., Eiter, T., Gottlob, G. & Voronkov, A. [2001], ‘Complexity and expres-
sive power of logic programming’, ACM Comput. Surv. 33(3), 374–425. 26, 32,
51

de Nivelle, H. [1995], Ordering Refinements of Resolution, PhD thesis, Technische
Universiteit Delft. 40, 97, 99, 108, 111

de Nivelle, H. [1998], A resolution decision procedure for the guarded fragment, in
C. Kirchner & H. Kirchner, eds, ‘Proceedings of the 15th International Conference
on Automated Deduction (CADE-14)’, Vol. 1421 of Lecture Notes in Artificial
Intelligence, Springer Verlag, Lindau, Germany, pp. 191–204. 60, 99, 100, 101,
108, 127

de Nivelle, H. [1999], Translation of S4 and K4 into GF and 2VAR, Unpublished:
can be found on http://www.mpi-sb.mpg.de/~nivelle. 8, 153, 166, 167, 195

de Nivelle, H. [2000a], ‘Deciding the E-plus class by an a posteriori, liftable order’,
Annals of Pure and Applied Logic 88(1), 219–232. 97, 99, 101, 111

de Nivelle, H. [2000b], An overview of resolution decision procedures, in M. Faller,
S. Kaufmann & M. Pauly, eds, ‘Formalizing the Dynamics of Information’, Vol. 91
of CSLI Publications, Center for the Study of Language and Information, Stanford
University, Palo Alto, USA, pp. 115–130. 108, 111

http://www.mpi-sb.mpg.de/~nivelle


BIBLIOGRAPHY 269

de Nivelle, H. [2001], Splitting through new proposition symbols., in Nieuwenhuis
& Voronkov [2001], pp. 172–185. 40

de Nivelle, H. & de Rijke, M. [2003], ‘Deciding the guarded fragments by resolution’,
Journal of Symbolic Computation 35, 21–58. 60, 97, 99, 100, 107, 108, 226, 236

de Nivelle, H. & Pratt-Hartmann, I. [2001], A resolution-based decision procedure
for the two-variable fragment with equality., in T. N. R. Goré, A. Leitsch, ed., ‘In:
Proc. 1st Int. Joint Conf. on Automated Reasoning (IJCAR-2001)’, Vol. 2083 of
Lect. Notes Artif. Intell., Springer, Berlin, pp. 211–225. 97, 111, 226

del Cerro, L. F. & Panttonen, M. [1988], ‘Grammar logics’, Logique et Analyse
121-122, 123–134. 64, 154

Demri, S. [2001], ‘The complexity of regularity in grammar logics and related modal
logics.’, J. Log. Comput. 11(6), 933–960. vii, xii, 64, 154

Demri, S. & de Nivelle, H. [2005], ‘Deciding regular grammar logics with converse
through first-order logic’, Journal of Logic, Language and Information. To appear
in a special issue dedicated to guarded logics. 154, 155

Donini, F. M. [2003], Complexity of reasoning., in Baader, Calvanese, McGuinness,
Nardi & Patel-Schneider [2003], pp. 96–136. v, ix, 3, 6, 35, 69, 164

Fermüller, C. G. & Salzer, G. [1993], Ordered paramodulation and resolution as
decision procedure., in A. Voronkov, ed., ‘LPAR’, Vol. 698 of Lecture Notes in
Computer Science, Springer, pp. 122–133. 97

Fermüller, C. G., Leitsch, A., Hustadt, U. & Tammet, T. [2001], Resolution decision
procedures, in Robinson & Voronkov [2001], chapter 25, pp. 1791–1849. v, x

Fermüller, C., Leitsch, A., Tammet, T. & Zamov, N. [1993], Resolution Methods for
the Decision Problem, Vol. 679 of LNAI, Springer, Berlin, Heidelberg. 11, 49, 59,
60, 97, 99, 108, 111, 226

Fitting, M. [1996], First-Order Logic and Automated Theorem Proving. Second Edi-
tion, Springer. 53

Gabbay, D. M. [1981], Expressive functional completeness in tense logic (preliminary
report), in U. Mönnich, ed., ‘Aspects of Philosophical Logic: Some Logical Forays
into Central Notions of Linguistics and Philosophy’, Reidel, Dordrecht, pp. 91–
117. 74



270 BIBLIOGRAPHY

Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F. & Zakharyaschev, M. [2003],
On the computational complexity of spatio-temporal logics., in I. Russell & S. M.
Haller, eds, ‘FLAIRS Conference’, AAAI Press, pp. 460–464. 159

Ganzinger, H. & de Nivelle, H. [1999], A superposition decision procedure for the
guarded fragment with equality, in ‘Proc. 14th IEEE Symposium on Logic in
Computer Science’, IEEE Computer Society Press, pp. 295–305. vii, xi, 5, 7, 97,
99, 104, 108, 127, 128, 130, 150, 226, 236

Ganzinger, H. & Korovin, K. [2003], New directions in instantiation-based theorem
proving, in ‘Proc. 18th IEEE Symposium on Logic in Computer Science’, IEEE
Computer Society Press, pp. 55–64. 195

Ganzinger, H. & McAllester, D. A. [2001], A new meta-complexity theorem for
bottom-up logic programs, in ‘IJCAR ’01: Proceedings of the First International
Joint Conference on Automated Reasoning’, Springer-Verlag, pp. 514–528. 52

Ganzinger, H. & McAllester, D. A. [2002], Logical algorithms., in P. J. Stuckey, ed.,
‘ICLP’, Vol. 2401 of Lecture Notes in Computer Science, Springer, pp. 209–223.
52

Ganzinger, H., Hustadt, U., Meyer, C. & Schmidt, R. A. [2001], A resolution-
based decision procedure for extensions of K4, in M. Zakharyaschev, K. Segerberg,
M. de Rijke & H. Wansing, eds, ‘Advances in Modal Logic, Volume 2’, Vol. 119 of
CSLI Lecture Notes, CSLI, Stanford, USA, chapter 9, pp. 225–246. 97, 169, 170,
171, 226

Ganzinger, H., Meyer, C. & Veanes, M. [1999], The two-variable guarded fragment
with transitive relations, in ‘Proc. 14th IEEE Symposium on Logic in Computer
Science’, IEEE Computer Society Press, pp. 24–34. 8, 36, 75, 152, 160, 161, 187,
189, 194

Gödel, K. [1933a], ‘Eine interpretation des intuitionistischen aussagenkalküls’,
Ergebnisse eines mathematisches Kolloquiums 4, 34–40. 61

Gödel, K. [1933b], ‘Zum entscheidungsproblem des logischen funktionenkalküls’,
Monatshefte Math. Phys. 40, 433–443. 73

Goldblatt, R. [1987], Logics of time and computation, Center for the Study of Lan-
guage and Information. 61

Goldfarb, W. [1984], ‘The unsolvability of the gödel class with identity’, Journal of
Symbolic Logic 49, 1237–1252. 73



BIBLIOGRAPHY 271

Goncalves, M.-E. & Grädel, E. [2000], Decidability issues for action guarded logics.,
in F. Baader & U. Sattler, eds, ‘Description Logics’, Vol. 33 of CEUR Workshop
Proceedings, pp. 123–132. 144

Grädel, E. [1999], ‘On the restraining power of guards’, Journal of Symbolic Logic
64(4), 1719–1742. vii, xi, xii, 5, 6, 8, 75, 107, 108, 127, 130, 131, 132, 134, 137,
138, 160, 161, 162, 189, 193, 194, 236

Grädel, E. & Otto, M. [1999], ‘On logics with two variables’, Theor. Comput. Sci.
224(1-2), 73–113. 74

Grädel, E. & Walukiewicz, I. [1999], Guarded fixed point logic, in ‘Proceedings of
14th IEEE Symposium on Logic in Computer Science LICS ‘99, Trento’, pp. 45–
54. 75

Grädel, E., Kolaitis, P. & Vardi, M. [1997], ‘On the Decision Problem for Two-
Variable First-Order Logic’, Bulletin of Symbolic Logic 3, 53–69. 74, 114, 119,
238

Grädel, E., Otto, M. & Rosen, E. [1997], Two-Variable Logic with Counting is De-
cidable, in ‘Proceedings of 12th IEEE Symposium on Logic in Computer Science
LICS ‘97, Warschau’. 74, 138

Grosof, B. N., Horrocks, I., Volz, R. & Decker, S. [2003], Description logic programs:
combining logic programs with description logic, in ‘WWW ’03: Proceedings of
the twelfth international conference on World Wide Web’, ACM Press, pp. 48–57.
51

Haarslev, V. & Möller, R. [2001], RACER system description, in ‘IJCAR ’01: Pro-
ceedings of the First International Joint Conference on Automated Reasoning’,
Springer-Verlag, pp. 701–706. 14, 44, 71

Haarslev, V., Lutz, C. & Möller, R. [1998], Foundations of spatioterminological
reasoning with description logics., in ‘KR’, pp. 112–123. 159

Halpern, J. Y. & Shoham, Y. [1991], ‘A propositional modal logic of time intervals.’,
J. ACM 38(4), 935–962. 159

Hirsch, R. [1997], ‘Expressive power and complexity in algebraic logic.’, J. Log.
Comput. 7(3), 309–351. 159

Hladik, J. [2002], Implementation and optimisation of a tableau algorithm for the
guarded fragment., in U. Egly & C. G. Fermüller, eds, ‘TABLEAUX’, Vol. 2381
of Lecture Notes in Computer Science, Springer, pp. 145–159. 148



272 BIBLIOGRAPHY

Hopcroft, J. E. & Ullman, J. D. [1979], Introduction to Automata Theory, Languages
and Computation., Addison-Wesley. 36, 155

Horrocks, I. [1998], Using an expressive description logic: FaCT or fiction?, in ‘Prin-
ciples of Knowledge Representation and Reasoning:Proceedings 6th International
Conference (KR’98)’, Morgan Kauffman, pp. 636–647. ISBN 1558605541. 14, 71

Horrocks, I. & Patel-Schneider, P. F. [2004], ‘Reducing OWL entailment to descrip-
tion logic satisfiability.’, J. Web Sem. 1(4), 345–357. 69, 71, 194

Horrocks, I. & Sattler, U. [2001], Ontology reasoning in the shoq(d) description
logic., in B. Nebel, ed., ‘IJCAI’, Morgan Kaufmann, pp. 199–204. 131

Horrocks, I. & Sattler, U. [2004], ‘Decidability of SHIQ with complex role inclusion
axioms.’, Artif. Intell. 160(1-2), 79–104. 69, 154, 155

Horrocks, I. & Sattler, U. [2005], A tableaux decision procedure for SHOIQ, in ‘Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005)’. To appear.
v, ix, 149

Horrocks, I., Sattler, U. & Tobies, S. [2000], ‘Practical reasoning for very expressive
description logics’, Logic Journal of the IGPL 8(3), 239–263. v, ix, 3, 14, 15, 41,
50, 69, 71, 151, 164

Hughes, G. & Cresswell, M. [1996], A New Introduction to Modal Logic, Routledge,
London. 61

Hustadt, U. [1999], Resolution-Based Decision Procedures for Subclasses of First-
Order Logic, PhD thesis, Universität des Saarlandes, Saarbrücken, Germany. 11,
97, 109, 111, 112

Hustadt, U. & Schmidt, R. A. [1999], Maslov’s class K revisited, in H. Ganzinger,
ed., ‘Automated Deduction—CADE-16’, Vol. 1632 of Lecture Notes in Artificial
Intelligence, Springer, pp. 172–186. 97, 108, 111, 112, 226

Hustadt, U., Motik, B. & Sattler, U. [2004], A decomposition rule for decision
procedures by resolution-based calculi., in F. Baader & A. Voronkov, eds, ‘LPAR’,
Vol. 3452 of Lecture Notes in Computer Science, Springer, pp. 21–35. 50, 97, 142

Hustadt, U., Schmidt, R. A. & Weidenbach, C. [1999], MSPASS: Subsumption test-
ing with SPASS, in P. Lambrix, A. Borgida, M. Lenzerini, R. Möller & P. Patel-
Schneider, eds, ‘Proc. of Intern. Workshop on Description Logics’99’, Linköping
University, pp. 136–137. 15, 50



BIBLIOGRAPHY 273

Joyner Jr., W. H. [1976], ‘Resolution strategies as decision procedures’, Journal of
the ACM 23(3), 398–417. v, x, 11, 49, 97, 98, 114, 226

Kamin, S. & Lévy, J.-J. [1980], Two generalizations of the recursive path ordering,
University of Illinois at Urbana-Chapaign. Unpublished manuscript. 57

Kazakov, Y. [2004], A polynomial translation from the two-variable guarded frag-
ment with number restrictions to the guarded fragment., in J. J. Alferes & J. A.
Leite, eds, ‘JELIA’, Vol. 3229 of Lecture Notes in Computer Science, Springer,
pp. 372–384. 8, 9, 147, 148, 149, 193

Kazakov, Y. [2005], A framework of refutational theorem proving for saturation-
based decision procedures, Research Report MPI-I-2005-2-004, Max-Planck-
Institut für Informatik, Saarbrücken, Germany. 53, 58, 59, 60, 77, 78, 80, 83,
85, 86, 92, 171, 259

Kazakov, Y. & de Nivelle, H. [2003], Subsumption of concepts in FL0 for (cyclic)
terminologies with respect to descriptive semantics is PSPACE-complete., in Cal-
vanese, Giacomo & Franconi [2003]. 8, 10

Kazakov, Y. & de Nivelle, H. [2004], A resolution decision procedure for the guarded
fragment with transitive guards., in D. A. Basin & M. Rusinowitch, eds, ‘IJCAR’,
Vol. 3097 of Lecture Notes in Computer Science, Springer, pp. 122–136. 8, 9, 169

Kieronski, E. [2003], The two-variable guarded fragment with transitive guards is
2EXPTIME-hard, in A. D. Gordon, ed., ‘FoSSaCS’, Vol. 2620 of Lecture Notes
in Computer Science, Springer, pp. 299–312. 75, 152, 161, 177

Kieronski, E. & Otto, M. [2005], Small substructures and decidability issues for
two-variable first-order logic, in ‘Proceedings of 20th IEEE Symposium on Logic
in Computer Science LICS ‘05, Chicago, USA’. To appear. 163, 187, 195

Knuth, D. E. & Bendix, P. B. [1970], Simple word problems in universal algebras.,
in J. Leech, ed., ‘Computational Problems in Abstract Algebra’, Pergamon Press,
Oxford, U. K., pp. 263–297. 57

Kripke, S. A. [1959], ‘A completeness theorem in modal logic’, J. of Symbolic Logic
24, 1–14. 62

Kutz, O., Wolter, F., Sturm, H., Suzuki, N.-Y. & Zakharyaschev, M. [2003], ‘Logics
of metric spaces’, ACM Trans. Comput. Logic 4(2), 260–294. 156, 183

Letz, R. & Stenz, G. [2001], Automated theorem proving proof and model generation
with disconnection tableaux., in Nieuwenhuis & Voronkov [2001], pp. 142–156. 195



274 BIBLIOGRAPHY

Levesque, H. J. & Brachman, R. J. [1987], ‘Expressiveness and tractability in knowl-
edge representation and reasoning.’, Computational Intelligence 3, 78–93. 4, 65

Löwenheim, L. [1915], ‘Über möglichkeiten im relativkalkül’, Math. Annalen
76, 447–470. 72

Lutz, C. [2004], ‘Combining interval-based temporal reasoning with general tboxes.’,
Artif. Intell. 152(2), 235–274. 159

Lutz, C. & Wolter, F. [2004], Modal logics of topological relations, LTCS-Report
LTCS-04-05, Chair for Automata Theory, Institute for Theoretical Computer
Science, Dresden University of Technology, Germany. See http://lat.inf.tu-
dresden.de/research/reports.html. 159

Lutz, C., Wolter, F. & Zakharyaschev, M. [2003], Resasoning about concepts and
similarity., in Calvanese et al. [2003]. 157

Massacci, F. [2000], ‘Single step tableaux for modal logics.’, J. Autom. Reasoning
24(3), 319–364. 70

McAllester, D. [2002], ‘On the complexity analysis of static analyses’, J. ACM
49(4), 512–537. 11, 26, 28, 52

Minksy, M. L. [1961], ‘Recursive unsolvability of post’s problem of "tag" and other
topics in theory of turing machines’, The Annals of Mathematics 74(3), 437–455.
76

Mortimer, M. [1975], ‘On language with two variables’, Zeitschr. f. math. Logic u.
Gundlagen d. Math. 21, 135–140. 74

Nieuwenhuis, R. & Rubio, A. [2001], Paramodulation-based theorem proving, in
Robinson & Voronkov [2001], chapter 7, pp. 371–443. 77, 83

Nieuwenhuis, R. & Voronkov, A., eds [2001], Logic for Programming, Artificial In-
telligence, and Reasoning, 8th International Conference, LPAR 2001, Havana,
Cuba, December 3-7, 2001, Proceedings, Vol. 2250 of Lecture Notes in Computer
Science, Springer. 269, 273

Nonnengart, A. & Weidenbach, C. [2001], Computing small clause normal forms, in
Robinson & Voronkov [2001], chapter 6, pp. 335–367. 92

Ohlbach, H. J. [1991], ‘Semantics-based translation methods for modal logics.’, J.
Log. Comput. 1(5), 691–746. 49



BIBLIOGRAPHY 275

Ohlbach, H. J. [1996], Scan - elimination of predicate quantifiers., in M. A. McRobbie
& J. K. Slaney, eds, ‘CADE’, Vol. 1104 of Lecture Notes in Computer Science,
Springer, pp. 161–165. 63

Ohlbach, H. J. & Schmidt, R. A. [1997], ‘Functional translation and second-order
frame properties of modal logics.’, J. Log. Comput. 7(5), 581–603. 63

Ohlbach, H. J., Nonnengart, A., de Rijke, M. & Gabbay, D. M. [2001], Encoding
two-valued nonclassical logics in classical logic., in Robinson & Voronkov [2001],
pp. 1403–1486. 63, 74

Pacholski, L., Szwast, W. & Tendera, L. [2000], ‘Complexity results for first-order
two-variable logic with counting’, SIAM J. Comput. 29(4), 1083–1117. 74, 138

Pan, G., Sattler, U. & Vardi, M. Y. [2002], BDD-based decision procedures for K,
in A. Voronkov, ed., ‘CADE’, Vol. 2392 of Lecture Notes in Computer Science,
Springer, pp. 16–30. 195

Paramasivam, M. & Plaisted, D. A. [1998], ‘Automated deduction techniques for
classification in description logic systems’, J. Autom. Reason. 20(3), 337–364. 50

Rector, A. L. [2002], Analysis of propagation along transitive roles: Formalisation
of the GALEN experience with medical ontologies, in I. Horrocks & S. Tessaris,
eds, ‘Description Logics’, Vol. 53 of CEUR Workshop Proceedings. 6, 42, 69, 153

Riazanov, A. & Voronkov, A. [2001], Splitting without backtracking., in B. Nebel,
ed., ‘IJCAI’, Morgan Kaufmann, pp. 611–617. 40

Riazanov, A. & Voronkov, A. [2002], ‘The design and implementation of vampire’,
AI Commun. 15(2), 91–110. 3, 50

Robinson, G. A. & Wos, L. [1969], Paramodulation and theorem proving in first
order theories with equality, in Meltzer & Mitchie, eds, ‘Machine Intelligence 4’,
Edinburg University Press. 80

Robinson, J. A. [1965], ‘A machine-oriented logic based on the resolution principle’,
Journal of the ACM 12(1), 23–41. 10, 78

Robinson, J. A. & Voronkov, A., eds [2001], Handbook of Automated Reasoning (in
2 volumes), Elsevier and MIT Press. 266, 269, 274, 277

Sagonas, K. F., Swift, T. & Warren, D. S. [1994], XSB as an efficient deductive
database engine, in R. T. Snodgrass & M. Winslett, eds, ‘Proceedings of the 1994
ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, May 24-27, 1994’, ACM Press, pp. 442–453. 11, 43



276 BIBLIOGRAPHY

Sattler, U. & Vardi, M. Y. [2001], The hybrid mu-calculus, in R. Goré, A. Leitsch &
T. Nipkow, eds, ‘Proceedings of the International Joint Conference on Automated
Reasoning’, Vol. 2083 of LNAI, Springer Verlag, pp. 76–91. 131

Schild, K. [1991], A correspondence theory for terminological logics: Preliminary
report., in ‘IJCAI’, pp. 466–471. 49, 66, 70

Schmidt, R. A. [1997], Optimised Modal Translation and Resolution, PhD thesis,
Universität des Saarlandes, Saarbrücken, Germany. 63, 97

Schmidt, R. A. & Hustadt, U. [2003], Mechanised reasoning and model generation
for extended modal logics, in H. C. M. de Swart, E. Orlowska, G. Schmidt &
M. Roubens, eds, ‘Theory and Applications of Relational Structures as Knowledge
Instruments’, Vol. 2929 of Lecture Notes in Computer Science, Springer, pp. 38–
67. Survey paper commissioned for the Kickoff Volume of COST Action 274. 11,
15, 109

Schmidt-Schauß, M. [1989], Subsumption in KL-ONE is undecidable., in ‘KR’,
pp. 421–431. vii, xii, 6, 35, 69, 70, 164

Schmidt-Schauß, M. & Smolka, G. [1991], ‘Attributive concept descriptions with
complements.’, Artif. Intell. 48(1), 1–26. 14, 65, 66, 70

Schulz, S. & Hahn, U. [2001], Parts, locations, and holes - formal reasoning about
anatomical structures., in S. Quaglini, P. Barahona & S. Andreassen, eds, ‘AIME’,
Vol. 2101 of Lecture Notes in Computer Science, Springer, pp. 293–303. 6, 154

Scott, D. [1962], ‘A decision method for validity of sentences in two variables’,
Journal of Symbolic Logic 27, 377. 74

Spackman, K. A. [2000], ‘Managing clinical terminology hierarchies using algorith-
mic calculation of subsumption: Experience with SNOMED-RT’, J. of the Amer-
ican Medical Informatics Association. Fall Symposium Special Issue. 69

Spackman, K. A. [2001], ‘Normal forms for description logic expressions of clinical
concepts in SNOMED RT’, J. of the American Medical Informatics Association
pp. 627–631. Symposium Supplement. 29

Spackman, K. A., Campbell, K. E. & Cote, R. A. [1997], ‘SNOMED RT: A reference
terminology for health care’, J. of the American Medical Informatics Association
pp. 640–644. Fall Symposium Supplement. 10, 42

Szwast, W. & Tendera, L. [2001], On the decision problem for the guarded fragment
with transitivity., in ‘LICS’, pp. 147–156. 8, 75, 152, 153, 161, 163, 185, 188, 194



BIBLIOGRAPHY 277

Tammet, T. [1990], The resolution program, able to decide some solvable classes, in
P. Martin-Löf & G. Mints, eds, ‘Proceedings of the International Conference on
Computer Logic (COLOG-88)’, Vol. 417 of LNCS, Springer, pp. 300–312. 97, 99,
108, 111

Tobies, S. [2000], ‘The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics.’, J. Artif. Intell. Res. (JAIR) 12, 199–
217. 149

Tobies, S. [2001], Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation, PhD thesis, RWTH Aachen, Germany. v, ix, 3, 15, 147, 148

Tsarkov, D., Riazanov, A., Bechhofer, S. & Horrocks, I. [2004], Using vampire to
reason with OWL., in S. A. McIlraith, D. Plexousakis & F. van Harmelen, eds,
‘International Semantic Web Conference’, Vol. 3298 of Lecture Notes in Computer
Science, Springer, pp. 471–485. 50, 52

Vardi, M. [1996], Why is modal logic so robustly decidable?, in N. Immerman &
P. G. Kolaitis, eds, ‘Descriptive Complexity and Finite Models’, Vol. 31 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Amer-
ican Mathematical Society, Princeton University, pp. 149–184. 75

Waldmann, U. [1997], Cancellative Abelian Monoids in Refutational Theorem Prov-
ing, PhD thesis, Universität des Saarlandes. 97

Wang, H. [1961], ‘Proving theorems by pattern recognition II’, Bell System Technical
Journal 40, 1–41. 76

Weidenbach, C. [2001], Combining superposition, sorts and splitting, in Robinson
& Voronkov [2001], chapter 27, pp. 1965–2013. 90

Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C. & Topić, D.
[2002], SPASS version 2.0, in A. Voronkov, ed., ‘Automated deduction, CADE-18
: 18th International Conference on Automated Deduction’, Vol. 2392 of Lecture
Notes in Artificial Intelligence, Springer, Kopenhagen, Denmark, pp. 275–279. 3

Wessel, M. [2001], Obstacles on the way to qualitative spatial reasoning with de-
scription logics: Some undecidability results., in C. A. Goble, D. L. McGuinness,
R. Möller & P. F. Patel-Schneider, eds, ‘Description Logics’, Vol. 49 of CEUR
Workshop Proceedings. 159

Wolter, F. & Zakharyaschev, M. [2003], Reasoning about distances, in G. Gottlob &
T. Walsh, eds, ‘Proceedings of the Eighteenth International Joint Conference on



278 BIBLIOGRAPHY

Artificial Intelligence (IJCAI-03)’, Morgan Kaufmann, pp. 1275–1282. 156, 157,
195



Index

Symbols
ABox assertion box, 13

ALC(◦,⊆) , 69

ALC , 49, 65, 137
ALCI , 69, 137
ALCIOH , 137
ALCQIO , 148

ALCQIO , 149

ALCQIb , 148
At0

Σ
atoms, ground, 56

C2 two-variable fragment, with
counting, 74

CAP compatible with arities of predi-
cate symbols, 111, 123, 174, 178

CASP compatible with arities of special
predicate symbols, 173, 178

ClΣ clauses, 55
CNF clause normal form, 16, 97
CN concept names, 11, 28, 42, 65,

164
theory, of compositional axioms,
83, 178

D distance relations, 155, 157, 179,
183, 185

∆I interpretation, domain of, 65
D interpretation, domain of, 54

D domino system, 76

EL , 10, 11–14, 69, 97
FO2

≃ two-variable fragment, with
equality, 126

FO2 two-variable fragment, 73, 75, 97,
108–114, 119, 121–126, 238

FO(MF) modal fragment, 63, 75, 169
FOk bounded-variable fragment, 73,

133
F functional roles, 68, 127, 130, 137,

145
FmΣ formulas, 54

Fun functional symbols, 53

GCI general concept inclusion axiom,
16, 17, 29, 66, 137

GF [∧CG] guarded fragment, with
conjunction of compositional
guards, 182

GF [CG] guarded fragment, with compo-
sitional guards, 178

GF [FG] guarded fragment, with func-
tional guards, 139, 175

GF [F] guarded fragment, with function-
ality, 137

GFN guarded fragment, with number
restrictions, 146, 147–149

GF [TG] guarded fragment, with transi-
tive guards, 160–161, 163, 169

GF [T] guarded fragment, with transitiv-
ity, 160–161

GF≃[CG] guarded fragment, with com-
positional guards, and equality,
185

GF≃[TG] guarded fragment, with tran-

279



280 Index

sitive guards, and equality, 185
GF≃ guarded fragment, with equality,

127, 128
GF guarded fragment, 75, 97–108,

119–127, 165
GFk guarded fragment, bounded vari-

able, 75, 133
GFm guarded fragment, monadic, 160
HR≻

Sel
calculus, Ordered Hyper-

Resolution, 88
H role hierarchies, 30, 66, 68, 137,

148, 163, 164
·I interpretation, function, 54, 65
I interpretation, 54, 65
[·]Iη interpretation, value under, 54
K basic modal logic, 61
LGF guarded fragment, loosely, 108
Lt0

Σ
literals, ground, 56

LtΣ literals, 55
M≃ monadic class, with equality, 72,

126
Mf monadic class, full, 72, 115, 120
MF modal formulas, 61
M monadic class, 72, 97, 114–119,

124–126
NNF negation normal form, 92–93,

124, 146, 166
N number restrictions, 68, 127, 130,

137, 145
OC≻Sel calculus, Ordered Chaining, 155,

156, 161, 169, 174, 256
OP≻

Sel calculus, Ordered Paramodula-
tion, 34, 80, 97, 127, 128

OR≻
Sel calculus, Ordered Resolution,

with Selection, 10, 15, 18, 19,
34, 78, 97, 123, 127

O nominals, 33–34, 68, 127, 130,
137

P path relations, 157, 179, 185
P unification problem, 59

Q qualified number restrictions, 68,
127, 130, 137, 145, 148

Q universal or existential quantifier,
54

RCC region connection calculus, 157–
158

∃R.C existential restriction, 10, 65
∀R.C value restriction, 10, 65
RIA role inclusion axiom, 30, 66, 68
RN role names, 11, 42, 65, 164
RVM role-value maps, 35–41, 68, 164
SC≻Sel calculus, Subterm Chaining, 85,

256, 259
SHI , 164
SHI , 69
SHIQ , 69, 163
SHOIN , 69
SI(⊆) , 164
SP≻

Sel
calculus, Superposition, 81

Sel(·) selection function, 18, 79, 105
Σ signature, 53
TBox terminology, 12, 66, 148
TILING tiling encoding, 76
Tm0

Σ
terms, ground, 56

TmΣ terms, 54
Var variables, 53
ar(·) arity, 111
⊥ bottom concept, 29, 65
� empty clause, 17, 78
2 modality, box, 61
(◦) composition of roles, 68, 164
⊓ conjunction (DL), 10, 30, 33, 65
(⊓) conjunction of roles, 68
∧∨ conjunction or disjunction, 54
F � G consequence, 55
depth(·) depth, 56
♦ modality, diamond, 61
⊔ disjunction (DL), 10, 65
(⊔) disjunction of roles, 68
s ≃ t equational atom, 54



281

≡ equivalent, 55
false truth value, false, 55, 62
free[F ] variables of a formula, free, 54
S` inverse of a relation, 180
F [s] occurrence, indicated, 54
− inverse roles (DL), 68, 137, 163
mgu most general unifier, 59
(¬) negation of roles, 68
s 6≃ t equational atom, negation of, 54
!· non-emptiness operator, 228
∝ covers, 60
≻kbo ordering, Knuth-Bendix KBO ,

57
≻ ordering, 18, 56
≻

lex
ordering, lexicographic extension
of, 57

≻lpo ordering, lexicographic path LPO
, 58

≻
mul

ordering, multiset extension of,
57

≫ precedence, 57
% quasi-ordering, 56, 155
pol(F [H ]) occurrence, polarity, 173
τ(·, ·) relational translation, 63, 165
| · | size, 54, 56
{· · · }

m
multiset, 56

⊳ subterm, strict, 54
⊲ superterm, strict, 54
[·]str structural transformation, 93–

95, 115, 122, 124, 166
G E F subformula, 54
σ substitution, 59
C1 ⊑ C2 subsumption of concepts, 10,

13, 14, 24, 65, 97
s E t subterm, 54
s D t superterm, 54
T theory, 55
⊤ top concept, 12, 65
true truth value, true, 55, 62
� F valid (formula), 55

I � F valid in an interpretation, 55, 62
η valuation of variables, 54
vardepth(·) variable depth, 108
vars[F ] variables of a formula, 54
weight(·) weight function, 57
width(·) width of a formula, 54, 73, 133
× cross-product of concepts, 32–33,

203

A
admissible ordering

for chaining, 84, 85, 174
for paramodulation, 81, 128
for resolution, 79, 84
for subterm chaining, 85
for superposition, 82

Allen’s interval algebra, 157, 158–159
arity ar(·), 111
assertion box ABox, 13
associative compositional axioms, 178
associativity of composition, 83, 155,

183, 249
atomic substitution, 60
atomic term, 60

B
basic modal logic K, 61
basic strategies, 142
Bernays-Schönfinkel class, 160
binary coding of numbers, 145, 147,

147–149
boolean algebra, 159
bottom concept ⊥, 29, 65
bounded-variable fragment FOk, 73,

133
bounding operator, 227

C
calculus, 17

Ordered Chaining OC≻
Sel

, 155, 156,
161, 169, 174, 256



282 Index

Ordered Hyper-Resolution HR≻
Sel

,
88

Ordered ParamodulationOP≻
Sel

, 34,
80, 97, 127, 128

Ordered Resolution OR≻

with Selection OR≻
Sel, 10, 15, 18,

19, 34, 78, 97, 123, 127
Subterm Chaining SC≻Sel, 85, 256,

259
Superposition SP≻

Sel, 81
classification of concepts, 13
clause class, 97
clause normal form CNF, 16, 97
clausification, 95–96
compatible with arities of predicate

symbols CAP, 111, 123, 174,
178

compatible with arities of special predi-
cate symbols CASP, 173, 178

completeness, 25
completion rules, 23
composition of roles (◦), 68, 164
compositional axioms, 35, 69, 83, 154,

158
acyclic, 69

compositional table, 158
concept, 11
concept assertion, 13
concept constructors, 67
concept names CN, 11, 28, 42, 65, 164
confluence property, 77
conjunction (DL) ⊓, 10, 30, 33, 65
conjunction of roles (⊓), 68
conservative over, 55
conservative reduction class, 127
counting, 68, 74, 127
counting quantifiers, 145
covering, 60, 103, 170
covers ∝, 60

weakly, 60

cross-product of concepts×, 32–33, 203

D

datalog, 11, 43, 201
datalog rule, 22

range-restricted, 26

declarations (TBox), 67

deductive closure of a database, 23
default negation, 52
definitional predicate, 94, 103, 109
deleted clauses, 90

depth depth(·), 56

description logics, 10, 64–69, 119
disjointness of concepts, 14
disjunction (DL) ⊔, 10
disjunction of roles (⊔), 68

distance relations D, 155, 157, 179, 183,
185

domino problem, see tiling problem
domino system D, 76

E

eager simplification, 90, 105, 107
eligible literal, 19

eligible w.r.t., 79

for hyper-resolution, 88

empty clause �, 17, 78
equational atom s ≃ t, 54

negation of s 6≃ t, 54

equisatisfiable, 55, 74
equivalence of concepts, 14

existential restriction ∃R.C, 10, 65

expansion of a model, 55, 132
expansion rule, 69

expansion rules, 166
expression, 56

expression symbol, 56

extended symbol, 173, 175
extension of a signature, 55



283

F

Fact, 14, 71
finite model property, 73

first-order logic with equality, 54

flat clause, 114

frame correspondence properties, 63,
165

functional clause, 56

functional roles F , 68, 127, 130, 137,
145

functionality, 127
functionality axiom, 137

G

Galen, 42, 52
general concept inclusion axiom GCI,

16, 17, 29, 66, 137
Goldfarb class, 73, 126
grammar, 154

context-free, 36
language generated by, 36
left-linear, 155
regular, 154

grammar logics, 154
regular, 154

ground term/atom/literal, 55

guard, 75, 100, 102

guarded clause, 100

guarded fragment GF , 75, 97–108, 119–
127, 165

bounded variable GFk, 75, 133
loosely LGF , 108
monadic GFm, 160
with compositional guards GF [CG],

178

and equality GF≃[CG], 185
with conjunction of compositional

guards GF [∧CG], 182

with equality GF≃, 127, 128

with functional guards GF [FG],
139, 175

with functionality GF [F], 137
with number restrictions GFN ,

146, 147–149
with transitive guards GF [TG], 160–

161, 163, 169
and equality GF≃[TG], 185

with transitivity GF [T], 160–161
Gödel class, 73

H
Horn clauses, 22, 32
Horn logic, 32
hyper-resolution, 87–88

I
implication sets, 23
inclusion multi-modal logics, 64
individual, 12, 13, 28, 68
inference rules, 17
infix notation, 54
instance problem, 14, 25
interaction axioms, 64
internalisation of TBox-es, 165
interpretation I, 54, 65

domain of ∆I , 65
domain of D, 54
function ·I , 54, 65
value under [·]Iη , 54

inverse of a relation S`, 180
inverse roles (DL) −, 68, 137, 163

K
Kl-One, 14, 35, 50, 69, 70
Kripke interpretation, 62
Kripke semantics, 62

L
literal parameter, 234
literal symbol, 56



284 Index

lock resolution, 111
looping tree automaton, 148
Löb-Gurevich class, see monadic class

M
maximal w.r.t.

literal, 79
Minsky machines, 161
modal formulas MF, 61
modal fragment FO(MF), 63, 75, 169
modal logics, 61–64, 119
model (DL), 66
model (first-order), 55
monadic classM, 72, 97, 114–119, 124–

126
fullMf , 72, 115, 120
with equality M≃, 72, 126

monadic fragment, see monadic class
most general unifier mgu, 59
MSpass, 15, 49, 50
multiset {· · · }

m
, 56

N
negation normal form NNF, 92–93,

124, 146, 166
negation of roles (¬), 68
Noetherian ordering, 56
nominals O, 33–34, 68, 127, 130, 137
non-emptiness operator !·, 228
non-terminals, 36, 155
normal modal logics, 62
normality axiom, 62
number restrictions N , 68, 127, 130,

137, 145

O
occurrence

polarity pol(F [H ]), 173
order, see ordering
ordering ≻, 18, 56

Knuth-Bendix KBO ≻kbo, 57

lexicographic extension of ≻
lex

, 57
lexicographic path LPO ≻lpo, 58
liftable, 79
multiset extension of ≻

mul
, 57

non-liftable, 79, 100, 111
simple, 105, 111, 112, 117, 123, 128,

173, 174, 178
simplification, 57
total, 56
well-founded, 56

OWL, v, ix, 1, 50, 71, 194
OWL DL, 15, 69

P
partial equivalence, 256, 257
path relations, 186
path relations P, 157, 179, 185
precedence ≫, 57
prefix firing, 26
prefix-vocabulary classes, 71–73, 119
prenex normal form, 115
production rules, 36, 154

Q
qualified number restrictions Q, 68,

127, 130, 137, 145, 148
qualitative spatial reasoning, 157
quantifier prefix, 73
quasi-ordering %, 56, 155

theory of, 83
query, 13

R
Racer, 14, 44, 45, 47–49, 71
reasoning problem, 66
recursive inseparability, 77
reduction ordering, 57–59
redundancy ordering, 86, 178
redundant inference, 171, 174, 179, 181
refutation, 17
refutationally complete, 19



285

region connection calculus RCC, 157–
158

relational algebra, 159, 169, 183
relational translation τ(·, ·), 63, 165
renaming, 40, 59
resolution games, 99
retrieval problem, 14, 25
rewrite ordering, 57
role assertion, 13
role constructors, 67
role hierarchies H, 30, 66, 68, 137, 148,

163, 164
role inclusion axiom RIA, 30, 66, 68

acyclic, 154
complex, 154

role names RN, 11, 42, 65, 164
role-value maps RVM, 35–41, 68, 164

restricted, 35
rules

Compositional Closure CC, 178
Compositional Resolution CR, 84

Conditional Compositional Closure
CCC, 180

Elimination of Duplicate Literals ED,
18, 89

Equality Factoring EF, 82
Equivalence Closure EC, 259
Literal Projection LP, 112
Merging Paramodulation MP, 81

Multi-Compositional Closure MCC,
180

Negative Chaining NC, 84
Negative Hyper-Chaining HC, 88

Negative Subterm Chaining NSC, 86
Negative Superposition NS, 82

Simulteneous, 87
Ordered Chaining OC, 84
Ordered Factoring OF, 18, 79

Ordered Hyper-resolution HR, 88

Ordered Paramodulation OP, 34, 80,
82, 86

Simulteneous, 87, 129, 209
Ordered Resolution OR, 18, 79
Ordered Subterm Chaining OSC, 86
Positive Superposition PS, 82

Simulteneous, 87
Reflexivity Resolution RR, 34, 80, 82,

86
Resolution R, 3
Splitting through New Predicate Sym-

bol SPP, 40, 90
Splitting SP, 89
Subsumption Deletion SD, 89
Tautology Deletion TD, 89
Transitive Closure TC, 167, 173

S
satisfiable (concept), 14, 65
satisfiable (formula), 55
satisfiable in an interpretation, 55, 62
saturated up to redundancy, 80
saturation, 17, 19, 23
scheme definition, 230
scheme parameter, 175, 230

bounded, 227
free, 227
indexed, 234

schemes of clauses, 98, 104, 226–235
Scott class, 119
Scott normal form, 74
selected literal, 79
selection function Sel(·), 18, 79, 105
semantic networks, 64
semi-decision procedure, 19
shallow expression, 56, 104, 118
signature parameters, 227
simple clause, 104
simple literal, 56
simplification rule, 89



286 Index

simplification rules, 18, 51, 172
extending a signature, 112

size | · |, 56
Skolem function, 17, 95
Skolemisation, 17
Skolemization, 95, 115

outermost, 95
Snomed, 10, 29, 42, 195
sound, 19, 78
soundness, 25, 25
Spass, 3, 50
spatial relations, 157, 185
special symbols, 83, 173
state of a prover, 90
strictly maximal w.r.t., 79
structural combination of fragments,

120
structural subsumption algorithms, 14
structural transformation [·]str, 93–95,

115, 122, 124, 166
substitution σ, 59

ground, 59
subsumption of concepts C1 ⊑ C2, 10,

13, 14, 24, 65, 97
subterm property (for an ordering), 57

T
T -interpretation, 55
T -satisfiable, 55
T -valid, 55
tableau procedures, 62, 69–71
tableau-based procedures, 14
tabling, 43
Tambis, 49, 52
taxonomy, 13
terminals, 36, 155
termination, 25
terminology TBox, 12, 66, 148

cyclic, 10
in normal form, 28

simple, 16

theory T , 55

of compositional axioms , 83, 178
induced by ≫, 84

tiling encoding TILING, 76

tiling problem, 76–77

periodic, 77

time intervals, 158, 185
top concept ⊤, 12, 65

totality axiom, 156

transitive roles, 68, 163
transitivity axiom, 38, 75, 83, 160, 166
tree-model property, 51, 75, 148, 149
triangle axiom, 159, 183
two-variable fragment FO2, 73, 75, 97,

108–114, 119, 121–126, 238
with counting C2, 74

with equality FO2
≃, 126

types of clauses, 20, 98

U

UML, 64
unary coding of numbers, 145, 147,

147–149
unification problem P, 59
unifier, 59

unique name assumption, 33

universal role, 165

usable clauses, 90

V

valid (formula) � F , 55

valid in an interpretation I � F , 55, 62

valuation of variables η, 54

value restriction ∀R.C, 10, 65

Vampire, 3, 50
variable depth vardepth(·), 108
variable uniform clause, 99

variable-vector, 229



287

W

weakly covering, 61, 99, 103

weight function weight(·), 57

well-order, 56

width of a formula width(·), 54, 73, 133
worked-out clauses, 90

X
XSB, xiii, 11, 43–47, 49, 221, 222, 224


	Contents
	List of Tables
	List of Figures
	List of Systems

	Introduction
	Description Logics
	Saturation-Based Decision Procedures
	The Guarded Fragment and Its Extensions
	Theories of Compositional Binary Relations
	Outline and Structure of this Thesis
	Contributions

	Engineering Logical Algorithms using S.B.T.P.
	Description Logic EL
	Resolution-Based Decision Procedures
	The Ordered Resolution Calculus

	A Resolution Decision Procedure for EL
	Enforcing Termination
	Making It Simple
	Complexity Analysis

	Extensions of DL EL
	GCIs, Bottom Concept and Extended Role Hierarchies
	Cross-Products of Concepts
	Nominals

	DL EL and Restricted Role-Value Maps
	Undecidability for Some Extensions of EL with Role-Value Maps
	A Resolution Strategy for EL with Restricted Role-Value Maps

	First Results
	Conclusions
	Related Works

	Preliminaries
	Logical Preliminaries
	First-Order Logic
	First-Order Clause Logic
	Orderings
	Substitutions And Unification

	Modal and Description Logics
	Propositional Modal Logics
	Description Logics
	Reasoning in Modal and Description Logics

	Decidable Fragments of First-Order Logic
	Prefix-vocabulary Classes
	Two-Variable Fragments
	Guarded Fragments

	Domino Problems and Undecidability
	A Framework of Saturation-Based Theorem Proving
	Saturation-Based Theorem Proving
	The Ordered Resolution Calculus
	Equational Reasoning
	Chaining Calculi
	Variations of Inference Systems
	The Theorem Proving Process
	Clause Normal Form Transformation


	Saturation-Based Decision Procedures
	Decision Procedures Based on Ordered Resolution
	Deciding the Guarded Fragment without Equality
	Deciding the Two-Variable Fragment without Equality
	Deciding the Monadic Fragments without Equality

	Combinations of Decidable Fragments
	Deciding the Combination of Guarded and Two-Variable Fragments
	Deciding Combinations with the Monadic Fragment
	Undecidability Results

	Paramodulation-based Decision Procedures
	Guarded Fragment with Equality
	Guarded Fragment with Constants
	Guarded Fragment and Functionality
	Guarded Fragment with Counting

	Conclusions

	Guarded Fragment over Compositional Theories
	Background
	Examples and Applications of Compositional Theories
	A Short History of the Guarded Fragment with Transitivity
	Undecidability of the Guarded Fragment with Transitivity
	On the Modal Fragment with Transitivity

	Extensions without Equality
	Deciding the Guarded Fragment with Transitive Guards
	Deciding the Guarded Fragment with Compositional Guards
	Undecidability of the Guarded Fragment over Relational Algebras

	Extensions with Equality
	Undecidability for Associative Compositional Axioms
	Undecidability for Conjunctions of Transitive Guards
	A Decision Procedure for the Guarded Fragment with Transitive Guards and Equality

	Conclusions and Future Works

	Summary
	 DL EL and Its Extensions
	Evaluation of Queries in DL EL Using Ordered Resolution
	An Example for Query Evaluation in DL EL Using Datalog
	Additional Rules for Querying Subsumption in DL EL
	Extensions of DL EL with Cross-Products of Concepts
	Extensions of DL EL with Nominals
	Extensions of DL EL with Restricted Role-Value Maps
	Prolog Programs for Reasoning in DL EL

	Schemes of Expressions and Clauses
	Signature Parameters and the Choice Operator
	Sets of Terms and Literals
	Variable-Vectors and Scheme definitions
	The Formal Semantics for Clause Schemes
	Scheme Contexts and Defined Parameters
	Indexing of Signature Elements and Parameters
	Conclusions

	 Complexity of Saturation-Based Decision Procedures
	Resolution-Based Decision Procedures
	Complexity of the Procedure for 
	Complexity of the Procedure for FO2
	Complexity of the Procedure for Metafontf

	Paramodulation-Based Decision Procedures
	Complexity of the Procedure for 
	Complexity of the Procedure for  with Constants


	GF with Compositional Guards
	Redundancy Lemmas
	Deciding GF[TG]
	Deciding GF[CG]
	A Sketch of a Decision Procedure for GF[TG]

	Bibliography
	Index

