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Abstract

We present a new approach to inferring a probabil-
ity distribution which is incompletely specified by
a number of linear constraints. We argue that the
currently most popular approach of entropy maxi-
mization depends on a “constraints as knowledge”
interpretation of the constraints, and that a different
“constraints as data” perspective leads to a com-
pletely different type of inference procedures by
statistical methods. With statistical methods some
of the counterintuitive results of entropy maximiza-
tion can be avoided, and inconsistent sets of con-
straints can be handled just like consistent ones. A
particular statistical inference method is developed
and shown to have a nice robustness property.

1 Introduction
Probabilistic representations of uncertainty usually consist of
a single probability distribution over a large (but finite) do-
main of possible statesD = {d1, . . . , dn}. It is thus required
to assign a probability valuepi to each statedi. Usually, a
direct, full assessment of all these values is very difficult or
impossible. All one usually is able to obtain are partial de-
scriptions ofp = (p1, . . . , pn) by constraints of e.g. the form
p(A | B) ≤ z, p(A) + p(B) ≤ p(C), or “A andB are inde-
pendent”, whereA,B,C are subsets ofD. Such constraints
can be derived by knowledge elicitation from an expert, by di-
rect observations of the domain, or by any other information
gathering process.

A set c1, . . . , cN of constraints defines the set
∆(c1, . . . , cN ) of probability measures onD that are con-
sistent with the constraints. Very rarely will∆(c1, . . . , cN )
consist of a single probability distribution. Instead, it will
either contain more than one element, or be empty (when
the constraints are inconsistent). A fundamental problem in
probabilistic reasoning then is to select from the admissible
set∆(c1, . . . , cN ) a single distributionp =: sel(c1, . . . , cN )
as the best guess for the true distribution the constraints
describe.

This problem is well studied in the literature, particu-
larly for the case where the constraints are linear and con-
sistent. It is almost unanimously suggested that in this case
one should select the distribution with maximal entropy from

∆(c1, . . . , cN ) [?; ?; ?; ?; ?; ?]. A more general class of con-
straints is considered by Drudzel and van der Gaag[?] who
then employ the center of mass selection rule (according to
this rule one selects the center of mass of the admissible re-
gion).

In this paper we propose a new selection rule which is
radically different from either maximum entropy or center
of mass. It is motivated by the observation that in spite of
the very compelling justifications it has been given[?; ?;
?], maximum entropy selection has some rather counterin-
tuitive properties. These are illustrated by the following ex-
amples.

Example 1.1 Overhearing two strangers talking at an airport,
we hear the first one saying “. . . Jones got at least 45% of
the votes. . . ”, and the second replying “. . . Smith didn’t
get any less than 5% either. . . ”. Before the two disappear
in the crowd, we also hear them both agreeing on the fact
that if anyone else had bothered to run for mayor, then nei-
ther Smith nor Jones would have had a chance of winning the
election. Suppose, now, that we need to assess the probabil-
ity P (Smith) of an arbitrary voter in the unnamed home town
of the two strangers having voted for Smith. The informa-
tion we have establishes a lower bound of 0.05 and an upper
bound of 0.55 onP (Smith). Moreover, we have learned that
the relevant underlying state space only consists ofSmithand
Jones. If we base our probability assessment on entropy max-
imization, then we will obtainP (Smith) = 0.5. Intuitively,
this assessment appears to be overly optimistic from Smith’s
point of view.

Example 1.2 For the construction of a medical diagnosis
system ten different experts are asked for bounds on the
two crucial conditional probabilitiesP1 = P (stylosis |
polycarpia), andP2 = P (xylopserosis| anameae). Assume
that 0.41 and 0.51 are the greatest lower bound and small-
est upper bound, respectively, mentioned by any expert for
P1. Having complete confidence in the experts, we will then
take it as given that the true value forP1 lies in the interval
[0.41,0.51]. Let [0.49,0.61] be the correspondingly defined
interval forP2. Applying maximum entropy to find the best
values forP1 andP2 for our expert system, we will determine
P1 = P2 = 0.5. This appears somewhat counterintuitive be-
cause we have chosen the same value for both probabilities,
even though the information provided would seem to indicate



a smaller value forP1 than forP2.

The reasons why the maximum entropy solution appears
counterintuitive in the two examples are very similar. In the
first example an equal percentage of 50% of votes for both
Smith and Jones seems implausible, because the constraints
are highly unsymmetrical. Experience tells us that the dispar-
ity of the given lower bounds probably reflects a similar dis-
parity of the actual values, which will rather be assumed to
be approximately 90% for Jones and 10% for Smith. Such an
assessment could be based on a natural explanation for how
the constraints were generated in the first place: one might
suspect, for instance, that the constraints report the partial
count of 50% of the votes, among which 45% were found
to be for Jones, and 5% for Smith. In the second example it
appears unlikely that the experts would systematically state
larger upper and lower bounds forP2 than forP1 if these two
probabilities were really the same.

In both examples we have thus argued that the maximum
entropy distribution is a counterintuitive solution of the se-
lection problem, because the given constraints are unlikely
to be observed when this is the true distribution. Underlying
this argument is a view of constraints that is fundamentally
different from the view which (implicitly) underlies the use
of the maximum entropy principle: entropy maximization is
predicated on the view that the given constraints are just a
descriptionof a state of knowledge: the knowledge that the
true distribution is a member of the admissible region defined
by the constraints. We call this theconstraints as knowledge
perspective. In our examples – and, we would claim, in most
cases where we encounter the measure selection problem –
the given constraints are not only a description of our knowl-
edge, they also are thesourceof our knowledge. They thereby
carry not only the principal information consisting of a re-
striction of the admissible region; they also carry the meta
information consisting of the fact that we observed exactly
these constraints. This meta information is relevant for the
solution of the measure selection problem as it allows us to
reason about the likelihood of observing the given constraints
for different true distributions. We call the view of constraints
that tries to take into account this meta information thecon-
straints as dataperspective: constraints are thus seen as ran-
domly sampled pieces of information. The distribution of this
constraint data is (in part) determined by the true distribution
on the domain, which we want to determine (note that we are
here talking about two different probability distributions: one
on the domainD, and one on constraints. The latter depends
on the former). Our problem thus becomes a statistical one:
to infer a parameter of a distribution from random samples
drawn from that distribution.

All statistical methods rely in part on considerations of
likelihood. The most direct way to use likelihood is by max-
imum likelihood inference: select that parameter that gives
highest probability to the observed sample. The measure se-
lection rule we develop in this paper is likelihood maximiza-
tion for the observed constraints. The main problem we face
in a formal development of this intuitive principle is that sta-
tistical methods usually require a specific model on how the
distribution of observed data depends on the parameter of in-

terest, i.e. the stipulation of some underlying parametric fam-
ily. Our goal, however, is to define a general rule for measure
selection that does not require any knowledge about the ran-
dom mechanism that produces the constraints. Our approach
towards solving this dilemma is that of robust statistics: we
do postulate a specific model for the random generation of
constraints, but this model is chosen such that in the long run
it will lead to correct inferences even when it is the wrong
model.

The constraints as data perspective coupled with statistical
approaches to measure selection permits us to handle incon-
sistent sets of constraints just like consistent ones. Our sta-
tistical model for the constraint observation only must allow
for the observation of wrong constraints, i.e. constraints not
satisfied by the true distribution (as an erroneous assessment
given by an expert, the premature and incorrect report of an
election result, etc.). Such a model then assigns nonzero like-
lihoods to inconsistent sets of constraints, and a maximum
likelihood solution can be found just as for consistent con-
straint sets.

The idea of measure selection by likelihood maximiza-
tion for the observed constraints was already expressed by
Jaeger[?], but no concrete formalization of the idea was de-
veloped. The view of constraints as data has also been taken
in somewhat different form by Dickey[?], who proposed a
model in which partial specifications of a probability distri-
butionP were treated as random variables with a distribution
depending onP . A major difference between Dickey’s and
our work is that Dickey does not consider partial specifica-
tions by arbitrary linear constraints, but only by values for
a fixed set of “aspects” ofP . It is interesting to note that
Dickey takes it for granted that in most cases the specified
aspects will overdetermine the model, i.e. be inconsistent,
whereas authors in artificial intelligence assume underdeter-
mined models.

In this paper we can only give an overview of our maxi-
mum likelihood approach to measure selection. Goal of this
paper is to convey the main ideas, and to provide some in-
sight into the feasibility of their mathematical development.
More technical details, including proofs of the theorems here
stated, will be given in a full technical paper.

2 The Constraint Sample Space
To treat constraints as random samples we have to view them
as elements of some sample space on which probability dis-
tributions can be defined. Throughout we assume that the
constraints refer to a distribution on a domain ofn elements.
The set of all these distributions can be identified with

∆n := {(p1, . . . , pn) ∈ Rn | pi ≥ 0,
n∑
i=1

pi = 1}.

A linear constraint then has the general form

x1p1 + . . .+ xnpn ≤ z (x1, . . . , xn, z ∈ R). (1)

We could identify this constraint with its parameters
x1, . . . , xn, z, and thus takeRn+1 as our sample space. How-
ever, this would mean to view two equivalent constraints like
p1 − 2p2 ≤ 0.2 and2p1 − 4p2 ≤ 0.4 as different sample



points. As it does not seem sensible that our method should
depend on such representational variants of constraints, we
prefer to distinguish constraints only according to the subsets
of distributions they define. This can be done by writing con-
straints in a normal form

s1p1 + . . .+ snpn ≤ 0, (2)

where s := (s1, . . . , sn) is an element of then − 1-
dimensional unit sphere

Sn−1 = {(s1, . . . , sn) |
∑
i

s2
i = 1}.

As every linear constraint (??) can be transformed into a
unique normal form (??), we can also identify constraints
with pointss ∈ Sn−1. TakingSn−1 as our sample space,
we model randomly observed constraints by probability dis-
tributions onSn−1.

In the binomial case (n = 2), a constraint (??) is a (non-
trivial) lower bound onp1 iff s1 < 0 and s2 > 0; it is a
(nontrivial) upper bound iffs1 > 0 ands2 < 0. The follow-
ing definition generalizes this classification of constraints.

Definition 2.1 A sign vectoris any vector with components
in {−1, 0, 1}. For r ∈ R we definesign(r) as−1, 0 or 1,
depending on whetherr < 0, r = 0, or r > 0. The sign
vectorsign(s) for s ∈ Sn−1 is the vector(sign(si))i=1,... ,n.
Each sign-vectorζ of lengthn defines asectorSζ in Sn−1:

Sζ := {s ∈ Sn−1 | sign(s) = ζ}. (3)

The intuition behind this definition is that sectors contain
constraints of the same qualitative type. The classification
of constraints according to sectors gives rise to the following
coarser, four-way distinction: a constraints is vacuousiff
sign(si) 6= 1 for all i (a vacuous constraint is satisfied by all
p ∈ ∆n); s is unsatisfiableiff sign(si) = 1 for all i; s is
a support constraintiff sign(si) ∈ {0, 1} for all i (a support
constraint is satisfied by allp ∈ ∆n whose set of support is a
subset of{i | sign(si) = 0}); s is proper iff sign(si) = 1 and
sign(sj) = −1 for somei, j (a proper constraints divides the
interior of ∆n, i.e. there existp ∈ int ∆n that satisfys, and
p′ ∈ int ∆n that do not satisfys).

Figure ?? illustrates constraints from different sectors.
Shown in the figure is the polytope∆3 with its 3 vertices cor-
responding to probability distributions that assign unit mass
to one of the states inD. Six different constraints are repre-
sented by the halfplanes of points satisfying the constraint. In
the figure halfplanes are shown by their boundary line, and
a shading that indicates to which side of the boundary the
halfplane extends. The two constraints drawn with a solid
boundary line belong to the sectorS(−1,1,1), those with a
dashed boundary to the sectorS(1,−1,0), and those with a dot-
ted boundary to the (non-proper) sectorS(1,0,1).

For the rest of the paper we make two simplifying assump-
tions. Assumption 1:All constraints in the observed sample
are proper.Assumption 2:The modelp ∈ ∆n we want to
determine lies in the interior of∆n. The two assumptions are
somewhat connected. Non-proper constraints are essentially
constraints on the set of support ofp. Thus, both assump-
tions will be satisfied if in an initial inference step we use all

Figure 1: Constraints from different sectors

observed non-proper constraints to determine a set of support
for our model, and then use the method we shall develop on
the remaining proper constraints to determinep with that set
of support.

Our inference problem now is the following: given a sam-
ples1, . . . , sN of proper constraints, determine

sel(s1, . . . , sN ) ⊆ int ∆n (4)

consisting of thosepmost likely to produce the sample. Note
that we do not necessarily require thatsel(s1, . . . , sN ) con-
sists of a single point. Of course, one principal objective
in the design of particular selection rulessel is to ensure
that sel(s1, . . . , sN ) is a unique point in as many cases as
possible. However, one needs to take the possibility into
account that no principled statistical method can guarantee
unique solutions in all cases. An even more unfamiliar as-
pect of (??) is that it is not demanded thatsel(s1, . . . , sN ) ⊆
∆(s1, . . . , sN ). Such a demand, which is natural from the
constraints as knowledge perspective, actually does not make
much sense from the constraints as data perspective. To see
why, recall that in order to deal with inconsistent constraint
sets (and also for greater realism) we should work with prob-
abilistic models according to which it is possible to observe
false constraints. This means that even for consistent con-
straint sets we must take the possibility into account that it
contains false constraints, and that therefore the true distribu-
tion does not actually belong to∆(s1, . . . , sN ).

3 Equivariance
To define concrete examples of maximum likelihood selec-
tion rules we have to assign to every parameterp ∈ int ∆n a
probability distributionFp onSn−1, so that the likelihood of
p given the sample is defined under the assumption that the
constraints are independent:

L(p | s1, . . . , sN ) :=
N∏
i=1

fp(si), (5)

wherefp is the density ofFp. As discussed in the introduc-
tion, we usually will not really know the underlying paramet-
ric family (Fp)p∈int ∆n responsible for the constraint genera-
tion. While yet avoiding to make any specific assumptions on
the form of an individualFp, we will show in this section that
we can make a very reasonable assumption on the structure



of the family(Fp)p, i.e. on how two distributionsFp andFp′
are related. This will be the assumption ofG-invariance.

The basic intuition underlying the concept ofG-invariance
is that the random mechanism that produces the constraints is
uniform for all p. In example?? for instance, there is some
random mechanism at work that presents us with constraints
on the outcome of a mayoral election. The constraints we
get to observe come as the result of a long chain of chance
events: we accidentally overhear the two strangers talking as
they happen to exchange the best lower bounds they happen
to know for the votes for Jones and Smith. There is no rea-
son to believe that the random events here involved depend
on the actual outcome of the election, i.e. the true values of
P (Jones) andP (Smith). Different outcomes will only lead
to different numerical values of the bounds observed through
the same sequence of chance events.

In example??the answers given by the various experts also
are in part the product of a number of random events that do
not depend on the true values ofP1 andP2: the event that a
particular expert really knows anything about polycarpia, and
therefore feels qualified to state any bounds, that he knows
about recent research on polycarpia, and therefore his bounds
are fairly accurate, etc.

The basic assumption on the family(Fp)p then is that the
basic underlying random constraint generating mechanism is
the same for allp. The same chance sequence of events, that
in the case that the true distribution isp̂ generates constraint
ŝ, will generate acorrespondingconstraints∗ when the true
distribution isp∗. In particular,fp̂(ŝ) = fp∗(s∗). But what
constraints∗ corresponds tôs when we move from̂p to p∗?
What we are looking for is a transformationg on constraints
that maps everys ∈ Sn−1 to a correspondingg(s) ∈ Sn−1,
such that an observation ofs under the true distribution̂p
corresponds to an observation ofg(s) underp∗. This trans-
formation should have the following two properties.

Sector preservation: g maps every sectorSζ bijectively
onto itself.

Implication preservation: For allk ∈ N, s1, . . . , sk:

k−1⋂
i=1

∆(si) ⊆ ∆(sk)⇔
k−1⋂
i=1

∆(g(si)) ⊆ ∆(g(sk))

(6)

Both properties express a preservation of elementary quali-
tative properties of constraints under the correspondence ex-
pressed byg. The intuition behind sector preservation is that
a given sequence of chance events will always lead to the
observation of constraints of the same qualitative type, irre-
spective of the true distribution. Thus, pairs of correspond-
ing constraints should belong to the same sector. Implica-
tion preservation says that logical relationships between con-
straints should be preserved . This means that it does not de-
pend on the true distribution whether the constraintsk gen-
erated by a certain sequence of chance events is redundant
given previous observationss1, . . . , sk−1.

The following definition introduces a class of transforma-
tions that satisfy both properties.

Definition 3.1 Let r = (r1, . . . , rn) ∈ (R+)n. The transfor-
mationgr : Sn−1 → Sn−1 is defined by

gr ((s1, . . . , sn)) :=
(r1s1, . . . , rnsn)
‖(r1s1, . . . , rnsn)‖

.

We writeGn for the set{gr | r ∈ (R+)n}.
It is obvious that transformationsgr satisfy sector preser-

vation. They also satisfy a slightly strengthened version of
implication preservation. For this denote byH(s) ⊆ Rn the
set of all real solutions of (??), without the restriction to so-
lutionsp ∈ ∆n. In analogy to (??) we can then defineglobal
implication preservationof g by the condition

k−1⋂
i=1

H(si) ⊆ H(sk)⇔
k−1⋂
i=1

H(g(si)) ⊆ H(g(sk)) (7)

With condition (??) we look at constraints as defining sets
of real numbers, not sets of probability distributions. In our
context condition (??) seems to be the more pertinent one. We
nevertheless here introduce the global version (??), because
with this version we can prove the following representation
theorem.

Theorem 3.2 Let n ≥ 3, g : Sn−1 → Sn−1. g preserves
sectors and is globally implication preserving iffg ∈ Gn.

The theorem does not hold forn = 2. The proof is by
reduction to a classical representation result in projective ge-
ometry which characterizes mappings that preserve collinear-
ity. We may conjecture that the theorem also holds when the
condition of global implication preservation is replaced by
implication preservation in our preferred sense (??). A proof
of this modified theorem appears to be considerably harder,
however.

In light of theorem??we see the transformationsgr ∈ Gn
as the adequate realizations of the concept of correspondence
of constraints. Dual toGn we define transformations on∆n.

Definition 3.3 Let r = (r1, . . . , rn) ∈ (R+)n. The transfor-
mationḡr : ∆n → ∆n is defined by

ḡr ((p1, . . . , pn)) :=
(p1/r1, . . . , pn/rn)∑n

i=1 pi/ri
.

We writeḠn for the set{ḡr | r ∈ (R+)n}.
The mappinḡgr is dual togr in that it is the only transforma-
tion of ∆n such that for allp,s

p ∈ ∆(s) ⇔ ḡr(p) ∈ ∆(gr(s)). (8)

Figure?? shows three different transformations of a set of
three constraints, and the dual transformations of one proba-
bility measure inside the admissible region of the constraints.
Each of the three sets of constraints can be transformed into
any of the other two sets by uniquegr ∈ Gn. The dual trans-
formationsḡr at the same time transform the indicated points
in ∆3 into each other.

The intuition that the transformationsgr, ḡr formalize a
canonical concept of correspondence of constraints relative to
different probability distributions in∆n now leads to the re-
quirement for a selection rule to be G-equivariant in the sense
of the following definition.
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Figure 2: Transformed constraints

Definition 3.4 A selection ruleselis calledG-equivariantiff
for samples(s1, . . . , sN ) of constraints, and everygr ∈ Gn

sel(gr(s1), . . . , gr(sN )) = ḡr(sel(s1, . . . , sN )). (9)

The condition ofG-equivariance formalizes the intuition that
a “monotone shift” of the constraints should lead to a similar
shift of the selected measure (cf. example??). In figure?? a
G-equivariant rule would have to select the distribution indi-
cated by a cross given the solid constraints iff it selects the
distribution indicated by a diamond given the dashed con-
straints iff it selects the distribution indicated by a box given
the dotted constraints. The condition ofG-equivariance is not
directly tied to the constraints as data perspective; it makes
equally sense under the constraints as knowledge perspec-
tive. The constraints as data perspective, however, leads very
easily to concreteG-equivariant selection rules in the form
of maximum likelihood selection forG-invariant families of
probability distributions. In the following definition we write
gr(Fp) for the transformation of the distributionFp induced
by gr.

Definition 3.5 Let (Fp)p∈int ∆n be a family of distributions
onSn−1. The family is calledG-invariant if for all gr ∈ G

gr(Fp) = Fḡr(p). (10)

G-invariance of the family(Fp)p finally captures our intu-
ition that the random process that generates the constraints is
uniform for allp, and that when a certain random sequence of
events leads to the observation of constraints when the true
distribution isp, then the same sequence of events will lead to
observation ofgr(s) when the true distribution is̄gr(p). By
representing the measuresFp via densitiesfp with respect to
a suitable underlying measure onSn−1, condition (??) be-
comes equivalent to

fp(s) = fḡr(p)(gr(s)) (11)

for all r,p, s. When (??) holds, then

sel(s1, . . . , sN ) :=
{p̂ | L(p̂ | s1, . . . , sN ) =p L(p | s1, . . . , sN )}. (12)

is aG-equivariant selection rule.

4 Robust Estimation
In the previous section we have seen that our conceptual
model of constraints being generated by a random mechanism
that works uniformly for allp leads to the structural assump-
tion ofG-invariance for the family(Fp)p. This is not enough
to derive a concrete selection rule, as for (??) we still need to
fix particular densitiesfp. Because of condition (??) this is
equivalent to fixing the densityfp for a single distributionp,
e.g. for the uniform distributionp = u := (1/n, . . . , 1/n).

Unfortunately, there do not seem to be many reasonable
assumptions that one could make aboutFu in the absence
of any specific information about the constraint generating
mechanism. One assumption one would actually be com-
pelled to make because of the absence of specific information,
however, is thatFu is permutation invariant, i.e. symmetric
with regard to all states of the domain.

We shall now introduce a particular distributionLu, and
propose to conduct measure selection by maximum likeli-
hood inference for theG-invariant family(Lp)p defined by
Lu. The motivation for using this particular family is not de-
rived from a particularly strong conviction that theseLp cap-
ture very accurately the actual constraint generating mecha-
nism. The reason for using this family lies in the robustness
property of the ensuing selection rule, which is formulated in
theorem?? below. This robustness property says that even
when the family(Fp)p according to which constraints are
generated is different from(Lp)p, inferences based on(Lp)p
will still be correct in the long run.

To defineLu, we begin with the introduction of a metric
on sectors.

Definition 4.1 Let ζ ∈ {−1, 0, 1}n, s, s′ ∈ Sζ . Define

dζ(s, s′) :=

 ∑
i,j: ζi 6=0,ζj 6=0

Log2(
s′isj
s′jsi

)

1/2

(13)

The densitylu(s) now is defined fors ∈ Sζ as a func-
tion of the distance betweens and a reference constraints
m(ζ) ∈ Sζ . The constraintm(ζ) then is going to be the
constraint with maximal likelihood in sectorSζ , and can be
thought of as the expected constraint in sectorSζ . To make
the resulting distributionLu permutation invariant, the con-
straintm(ζ) must be defined by two constantsm+ > 0 and
m− < 0, so thatm(ζ)i = m+ if ζi = 1, m(ζ)i = m− if
ζi = −1, andm(ζ)i = 0 if ζi = 0.

For the purpose of the present paper no additional restric-
tions on them(ζ) are necessary. Particular choices for the
m(ζ) will affect the behavior of the resulting selection rule
on small samples, but do not affect the asymptotic robustness
result.

Thus, letm(ζ) be given for every sign vectorζ, and define

lu(s) := exp(−dζ(s,m(ζ))) (s ∈ Sζ) (14)

One can show that the functions (??) define a probability
density onSn−1 with regard to the same reference measure
that was already needed for condition (??). We shall not go
into the details here, but only mention that what we have de-
fined here are essentially Laplace distributions on every sec-
tor, which are combined into a distribution on the sphere.



DefiningLu via (??) provides us with aG-invariant fam-
ily (Lp)p∈int ∆n with densitieslp. With these densities we
can finally define by (??) and (??) a concrete selection rule
realizing the maximum likelihood approach. We denote it by
selml.

The first question aboutselml we have to address, is un-
der what conditionsselml(s1, . . . , sN ) will be a unique point.
The answer to this question is a little bit involved, and we
will here only give a rough sketch of what it looks like.
By a suitable parameterization, constraintss ∈ Sn−1 and
distributionsp ∈ ∆n can both be identified with points in
n − 1-dimensional space. The distributionsp that maximize
L(p | s1, . . . , sN ) then correspond to the points that mini-
mize the sum of the Euclidean distances to the points corre-
sponding to thesi. This sum is minimized by a unique point
in n−1-space provided thatn ≥ 3 and that the points defined
by the constraints are not all collinear. A sufficient condition
for selml(s1, . . . , sN ) to be uniquely defined therefore is that
n ≥ 3, and thats1, . . . , sN satisfy a certain “richness” condi-
tion which precludes collinearity in the new parameterization.

The main benefit of working with the family(Lp)p lies in
the robustness of the resulting selection rule.

Theorem 4.2 Let n ≥ 3. Let (Fp)p be aG-invariant fam-
ily of probability distributions on proper constraints such that
Fu is permutation invariant andFu(Sζ) > 0 for all proper
sectorsSζ . Let F∞p denote the distribution of an infinite se-
quences1, s2, . . . of independent constraints drawn accord-
ing toFp. Then

F∞p (limN→∞selml(s1, . . . , sN ) = p) = 1. (15)

The conditionsn ≥ 3 andFu(Sζ) > 0 make sure that with
probability 1selml(s1, . . . , sN ) will be a unique point for all
sufficiently largeN . A result similar to theorem?? can also
be obtained forn = 2, but this requires an additional condi-
tion on (Fp)p. In statistical terminology, (??) says that the
estimatorselml is consistentfor the family (Fp)p. Consis-
tency properties typically hold for maximum likelihood esti-
mators. The remarkable point of (??) is thatselml is defined
by maximizing a likelihood function derived from the family
(Lp)p, whereas the samples are generated by a member from
the family(Fp)p. The proof of theorem?? follows the proof
of a general robustness result given as theorem 1 in[?].

5 Conclusion
We have seen that an interpretation of constraints as data, not
as knowledge, leads to a completely new perspective on the
measure selection problem. This perspective calls for statis-
tical methods of parameter estimation as the tool for measure
selection. We proposed maximum likelihood inference for
the family (Lp)p as one particular such method. While the
robustness property of this method is a very attractive feature,
there is no reason to believe that it is the only selection rule
that has such a property. Moreover, asymptotic robustness
provides no guarantee that the selection rule shows a sensible
behavior on small samples. The question of what ultimately
will prove to be the best selection rule under the constraints
as data perspective therefore is still wide open at this point.
To answer this question (possibly in the negative by realizing

that no best rule exists), we first need to find additional useful
criteria by which to judge the performance of a selection rule.


