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Probabilistic representations of uncertainty usually consist o}
a single probability distribution over a large (but finite) do-
main of possible state® = {d;, ..
to assign a probability valug; to each statel;. Usually, a
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Abstract

We present a new approach to inferring a probabil-
ity distribution which is incompletely specified by
a number of linear constraints. We argue that the
currently most popular approach of entropy maxi-
mization depends on a “constraints as knowledge”
interpretation of the constraints, and that a different
“constraints as data” perspective leads to a com-
pletely different type of inference procedures by
statistical methods. With statistical methods some
of the counterintuitive results of entropy maximiza-
tion can be avoided, and inconsistent sets of con-
straints can be handled just like consistent ones. A
particular statistical inference method is developed
and shown to have a nice robustness property.

Introduction

.,dyn}. Itis thus required

A(ct, ... en) [?22, 2,2 2. A more general class of con-
straints is considered by Drudzel and van der G&gvho
then employ the center of mass selection rule (according to
this rule one selects the center of mass of the admissible re-
gion).

In this paper we propose a new selection rule which is
radically different from either maximum entropy or center
of mass. It is motivated by the observation that in spite of
the very compelling justifications it has been givEh ?;

?], maximum entropy selection has some rather counterin-
tuitive properties. These are illustrated by the following ex-
amples.

Example 1.1 Overhearing two strangers talking at an airport,
we hear the first one saying.”. Jones got at least 45% of
the votes... ”, and the second replying *.. Smith didn’t

get any less than 5% either. ”. Before the two disappear

in the crowd, we also hear them both agreeing on the fact
hat if anyone else had bothered to run for mayor, then nei-
her Smith nor Jones would have had a chance of winning the
election. Suppose, now, that we need to assess the probabil-
ity P(Smith of an arbitrary voter in the unnamed home town
of the two strangers having voted for Smith. The informa-

direct, full assessment of all these values is very difficult orjon we have establishes a lower bound of 0.05 and an upper

impossible. All one usually is able to obtain are partial de-p,und of 0.55 orP
,pn) by constraints of e.g. the form
p(A| B) < z,p(A) +p(B) < p(C), or“AandB are inde-
pendent”, whered, B, C are subsets ab. Such constraints
can be derived by knowledge elicitation from an expert, by di

scriptions ofp = (py, . ..

(Smith. Moreover, we have learned that
the relevant underlying state space only consis&mithand
Jones If we base our probability assessment on entropy max-
imization, then we will obtainP(Smith) = 0.5. Intuitively,

this assessment appears to be overly optimistic from Smith’s

rect observations of the domain, or by any other informatiorboim of view.
gathering process.

A set c,...
A(Ch...

7CN)

,cy Of constraints defines the set Example 1.2 For the construction of a medical diagnosis
,cn ) of probability measures o® that are con-
sistent with the constraints. Very rarely will(c4, . ..

system ten different experts are asked for bounds on the
two crucial conditional probabilites?, = P(stylosis |

consist of a single probability distribution. Instead, it will polycarpia), and P, = P(xylopserosi§ anameag Assume
either contain more than one element, or be empty (whethat 0.41 and 0.51 are the greatest lower bound and small-
the constraints are inconsistent). A fundamental problem irest upper bound, respectively, mentioned by any expert for
probabilistic reasoning then is to select from the admissibleP;. Having complete confidence in the experts, we will then

setA(cy, . ..

,cn) asingle distributiorp =: sel¢y, ... ,cn)

take it as given that the true value fBY lies in the interval

as the best guess for the true distribution the constraintf).41,0.51]. Let [0.49,0.61] be the correspondingly defined
describe.

interval for P,. Applying maximum entropy to find the best

This problem is well studied in the literature, particu- values forP; and P, for our expert system, we will determine

larly for the case where the constraints are linear and conP; = P, = 0.5. This appears somewhat counterintuitive be-
sistent. It is almost unanimously suggested that in this caseause we have chosen the same value for both probabilities,
one should select the distribution with maximal entropy fromeven though the information provided would seem to indicate



a smaller value foP; than for P. terest, i.e. the stipulation of some underlying parametric fam-
ily. Our goal, however, is to define a general rule for measure
The reasons why the maximum entropy solution appearselection that does not require any knowledge about the ran-
counterintuitive in the two examples are very similar. In thedom mechanism that produces the constraints. Our approach
first example an equal percentage of 50% of votes for bothiowards solving this dilemma is that of robust statistics: we
Smith and Jones seems implausible, because the constraigls postulate a specific model for the random generation of
are highly unsymmetrical. Experience tells us that the dispareonstraints, but this model is chosen such that in the long run
ity of the given lower bounds probably reflects a similar dis-jt will lead to correct inferences even when it is the wrong
parity of the actual values, which will rather be assumed tomodel.
be approximately 90% for Jones and 10% for Smith. Such an The constraints as data perspective coupled with statistical
assessment could be based on a natural explanation for haypproaches to measure selection permits us to handle incon-
the constraints were generated in the first place: one mighdistent sets of constraints just like consistent ones. Our sta-
suspect, for instance, that the constraints report the partiaistical model for the constraint observation only must allow
count of 50% of the votes, among which 45% were foundfor the observation of wrong constraints, i.e. constraints not
to be for Jones, and 5% for Smith. In the second example iatisfied by the true distribution (as an erroneous assessment
appears unlikely that the experts would systematically statgiven by an expert, the premature and incorrect report of an
larger upper and lower bounds B than for P, if these two  election result, etc.). Such a model then assigns nonzero like-
probabilities were really the same. lihoods to inconsistent sets of constraints, and a maximum
In both examples we have thus argued that the maximurfikelihood solution can be found just as for consistent con-
entropy distribution is a counterintuitive solution of the se-straint sets.
lection problem, because the given constraints are unlikely The idea of measure selection by likelihood maximiza-
to be observed when this is the true distribution. Underlyingtion for the observed constraints was already expressed by
this argument is a view of constraints that is fundamentallyJaegef?], but no concrete formalization of the idea was de-
different from the view which (implicitly) underlies the use veloped. The view of constraints as data has also been taken
of the maximum entropy principle: entropy maximization is in somewhat different form by Dicke}?], who proposed a
predicated on the view that the given constraints are just anodel in which partial specifications of a probability distri-
descriptionof a state of knowledge: the knowledge that thebution P were treated as random variables with a distribution
true distribution is a member of the admissible region definedlepending orP. A major difference between Dickey’s and
by the constraints. We call this tlenstraints as knowledge our work is that Dickey does not consider partial specifica-
perspective. In our examples — and, we would claim, in mostions by arbitrary linear constraints, but only by values for
cases where we encounter the measure selection probleme-fixed set of “aspects” oP. It is interesting to note that
the given constraints are not only a description of our knowl-Dickey takes it for granted that in most cases the specified
edge, they also are tlseurceof our knowledge. They thereby aspects will overdetermine the model, i.e. be inconsistent,
carry not only the principal information consisting of a re- whereas authors in artificial intelligence assume underdeter-
striction of the admissible region; they also carry the metamined models.
information consisting of the fact that we observed exactly In this paper we can only give an overview of our maxi-
these constraints. This meta information is relevant for thenum likelihood approach to measure selection. Goal of this
solution of the measure selection problem as it allows us tgaper is to convey the main ideas, and to provide some in-
reason about the likelihood of observing the given constraintsight into the feasibility of their mathematical development.
for different true distributions. We call the view of constraints More technical details, including proofs of the theorems here
that tries to take into account this meta information¢be-  stated, will be given in a full technical paper.
straints as datgerspective: constraints are thus seen as ran-
domly sampled pieces of information. The distribution of this2 The Constraint Sample Space

constraint data is (in part) determined by the true distribution]-o treat constraints as random samples we have to view them

o s St e o o e element of som sampl space on wich probablly -
: tributions can be defined. Throughout we assume that the

on the domainD, and one on constraints. The latter depends. . aints refer to a distribution on a domainoglements.
on the former). Our problem thus becomes a statistical on

to infer a parameter of a distribution from random sample(:rhe set of all these distributions can be identified with

drawn from that distribution.

All statistical methods rely in part on considerations of
likelihood. The most direct way to use likelihood is by max-
imum likelihood inference: select that parameter that givedA linear constraint then has the general form
highest probability to the observed sample. The measure se-
lection rule we develop in this paper is likelihood maximiza- Tprtt Tape 2 (21,22 €R). (1)
tion for the observed constraints. The main problem we fac&Ve could identify this constraint with its parameters
in a formal development of this intuitive principle is that sta- z1, ... , z,, z, and thus tak®&"*! as our sample space. How-
tistical methods usually require a specific model on how theever, this would mean to view two equivalent constraints like
distribution of observed data depends on the parameter of irp; — 2p, < 0.2 and2p; — 4p, < 0.4 as different sample

A" = {(p1,. opa) €RT | p; 20,3 pr =1},

i=1



points. As it does not seem sensible that our method should
depend on such representational variants of constraints, we
prefer to distinguish constraints only according to the subsets
of distributions they define. This can be done by writing con-
straints in a normal form

S$1P1 +...+ SnPn S 07 (2)

where s := (s1,...,s,) is an element of thes — 1-
dimensional unit sphere

Snil :{(81,... ,Sn)|23$:1}

As every linear constraint?) can be transformed into a Figure 1: Constraints from different sectors
unique normal form ¥?), we can also identify constraints

1 i n—1 i n—1
with pointss € 5"~ Taking S as our sample Space, pceqeq non-proper constraints to determine a set of support
we model randomly observed constraints by probability d|s—for our model, and then use the method we shall develop on

tributions onS™ 1. o ; = >
In the binomial caser{ = 2), a constraint??) is a (non- the remaining proper constraints to determjineith that set

trivial) lower bound onp; iff s; < 0 andsy, > 0; itis a of support. _ _ .
nontrivial rb nﬁlif% 10 nd % Th ’f llow Our inference problem now is the following: given a sam-
ing o teneral L ple sy, ..., sy of proper constraints, determine

ing definition generalizes this classification of constraints.

Definition 2.1 A sign vectoris any vector with components selsi,... sy) CintA” (4)
in {—1,0,1}. Forr € R we definesignr) as—1,0 or 1,  consisting of thos@ most likely to produce the sample. Note

depending on whether < 0, » = 0, orr > 0. The sign  that we do not necessarily require tisaf(s;,... ,sx) con-
vectorsign(s) for s € S"~1 is the vector(sign(s;))i=1.... .n- sists of a single point. Of course, one principal objective
Each sign-vecto¢ of lengthn defines asectorS¢ in S™~1: in the design of particular selection ruleel is to ensure
. h i ni int in man
¢ = {s € "1 | sign(s) = C}. 3) thatsel(sy, ..., sy) is a unigque point in as many cases as

possible. However, one needs to take the possibility into
The intuition behind this definition is that sectors containaccount that no principled statistical method can guarantee
constraints of the same qualitative type. The classificationinique solutions in all cases. An even more unfamiliar as-
of constraints according to sectors gives rise to the followingoect of (??) is that it is not demanded thsel(s, ... ,sy) C
coarser, four-way distinction: a constraistis vacuousiff ~ A(s1,...,sy). Such a demand, which is natural from the
sign(s;) # 1 for all 7 (a vacuous constraint is satisfied by all constraints as knowledge perspective, actually does not make
p € A™); s is unsatisfiableff sign(s;) = 1 for all i, sis  much sense from the constraints as data perspective. To see
asupport constraintff sign(s;) € {0, 1} for all i (a support Why, recall that in order to deal with inconsistent constraint
constraint is satisfied by gil € A™ whose set of supportis a Sets (and also for greater realism) we should work with prob-
subset offi | sign(s;) = 0}); s is properiff sign(s;) = 1and  abilistic models according to which it is possible to observe
sign(s;) = —1 for somei, j (a proper constraint divides the ~ false constraints. This means that even for consistent con-
interior of A™, i.e. there exisp € int A" that satisfys, and  straint sets we must take the possibility into account that it
p’ € int A™ that do not satisfys). contains false constraints, and that therefore the true distribu-
Figure ?7? illustrates constraints from different sectors. tion does not actually belong #3(sy, ... , sx).
Shown in the figure is the polytop®® with its 3 vertices cor-
responding to probability distributions that assign unit mass3 Equivariance
to one of the states if). Six different constraints are repre- 14 gefine concrete examples of maximum likelihood selec-
sented by the halfplanes of points satlsfylng the consjtramt. IBon rules we have to assign to every parameter int A™ a
the figure halfplanes are shown by their boundary line, an robability distributionz, on S, so that the likelihood of

ﬁ ?fh?ding that :jndicathes to which side OL the bOL.‘rr‘]dary tlh given the sample is defined under the assumption that the
alfplane extends. The two constraints drawn with a solid.ystraints are independent:

boundary line belong to the sectsf—11:1) those with a
dashed boundary to the secft-—-9), and those with a dot- N
ted boundary to the (non-proper) secfdt-%:1). Lip|si,... sn) = pr(si)7 ®)

For the rest of the paper we make two simplifying assump- =1
tions. Assumption 1All constraints in the observed sample where f, is the density off},. As discussed in the introduc-
are proper.Assumption 2:The modelp € A™ we want to  tion, we usually will not really know the underlying paramet-
determine lies in the interior ak™. The two assumptions are ric family (Fp)peint a» responsible for the constraint genera-
somewhat connected. Non-proper constraints are essentiallipn. While yet avoiding to make any specific assumptions on
constraints on the set of supportpf Thus, both assump- the form of an individuaF},, we will show in this section that
tions will be satisfied if in an initial inference step we use allwe can make a very reasonable assumption on the structure



of the family (¥} ), i.e. on how two distribution$}, and £}, Definition 3.1 Letr = (r1,... ,r,) € (RT)". The transfor-

are related. This will be the assumption@finvariance. mationg, : S"~! — S$"~!is defined by

The basic intuition underlying the concept@finvariance (1151 Frsn)
is that the random mechanism that produces the constraints is gr ((51,-.. ,80)) := P R
uniform for all p. In example?? for instance, there is some [(r1815 - Tnsn) |

random mechanism at work that presents us with constraintg/e write G, for the set{g, | 7 € (R*)"}.
on the outcome of a mayoral election. The constraints we It is obvious that transformationg. satisfy sector preser-
get to observe come as the result of a long chain of chance_.. : AHONE. pres

) . . ation. They also satisfy a slightly strengthened version of
events: we accidentally overhear the two strangers talking a lication preservation. For this denote B(s) C R" the
they happen to exchange the best lower bounds they happéé\ef of all regl solutions 6f70) without the restriction to so-
to know for the votes for Jones and Smith. There is no reay AR loay 16 972 hen definalobal
son to believe that the random events here involved depeniftio"SP € A”. In analogy to ??) we can then defingloba

plication preservatiomnf g by the condition

on the actual outcome of the election, i.e. the true values o

P(Joneg and P(Smith. Different outcomes will only lead k—1 k-1
to different numerical values of the bounds observed through ﬂ H(s;) C H(sx) & ﬂ H(g(s;)) C H(g(sk)) (7)
the same sequence of chance events. i=1 i=1

In example??the answers given by the various experts alsowjith condition (?) we look at constraints as defining sets
are in part the product of a number of random events that dgf real numbers, not sets of probability distributions. In our
not depend on the true values Bf and P,: the event thata context condition??) seems to be the more pertinent one. We
particular expert really knows anything about polycarpia, antheyertheless here introduce the global verse®),(because

therefore feels qualified to state any bounds, that he knowgith this version we can prove the following representation
about recent research on polycarpia, and therefore his bounggegrem.

are fairly accurate, etc.

The basic assumption on the fam{l§,), then is that the
basic underlying random constraint generating mechanism
the same for alp. The same chance sequence of events, that The theorem does not hold fer = 2. The proof is by
in the case that the true distributionpsgenerates constraint reduction to a classical representation result in projective ge-
$, will generate acorrespondingconstraints™ when the true  ometry which characterizes mappings that preserve collinear-
distribution isp*. In particular,f;(8) = fp«(s*). Butwhat ity. We may conjecture that the theorem also holds when the
constraints* corresponds té when we move fronp to p*?  condition of global implication preservation is replaced by
What we are looking for is a transformatigron constraints  implication preservation in our preferred sen3@)( A proof
that maps everg € S"~! to a corresponding(s) € S"~ 1, of this modified theorem appears to be considerably harder,
such that an observation gfunder the true distributiopp  however.
corresponds to an observationgifs) underp*. This trans- In light of theorem??we see the transformatiops € G,,
formation should have the following two properties. as the adequate realizations of the concept of correspondence
of constraints. Dual t@+,, we define transformations ah™.

Definition 3.3 Letr = (r1,...,r,) € (RT)". The transfor-

Theorem3.2Letn > 3,9 : S" ! — S"~1. g preserves
igectors and is globally implication preservinggfe G,,.

Sector preservation: ¢ maps every sectoS¢ bijectively

onto itself. ; . ;
o ) mationg, : A™ — A" is defined by
Implication preservation: Forallk € N, sq,... ,sg:
Gr (. p)) 1= ALl Tn)
k—1 (s b b 22 21;1 pl/rl

k—1
A(s;) C A(s A(g(si)) € Ag(s _
Ql (i) (o) & Dl (9(52)) (g(s)) We write G,, for the se{g,. | » € (R*)"}.
(6)  The mappingj, is dual tog,. in that it is the only transforma-
tion of A™ such that for allp,s
Both properties express a preservation of elementary quali-
tative%ro%erties ofrz:onstraiﬁts under the correspondeynge ex- PEA(S) & gr(p) € Algr(s))- ®)
pressed by. The intuition behind sector preservation is that  Figure?? shows three different transformations of a set of
a given sequence of chance events will always lead to théhree constraints, and the dual transformations of one proba-
observation of constraints of the same qualitative type, irrebility measure inside the admissible region of the constraints.
spective of the true distribution. Thus, pairs of correspondEach of the three sets of constraints can be transformed into
ing constraints should belong to the same sector. Implicaany of the other two sets by uniqye € G,,. The dual trans-
tion preservation says that logical relationships between corformationsg, at the same time transform the indicated points
straints should be preserved . This means that it does not dax A? into each other.

pend on the true distribution whether the constraingen- The intuition that the transformations., g, formalize a
erated by a certain sequence of chance events is redundasénonical concept of correspondence of constraints relative to
given previous observations, ... , sx_1. different probability distributions if\™ now leads to the re-

The following definition introduces a class of transforma- quirement for a selection rule to be G-equivariant in the sense
tions that satisfy both properties. of the following definition.



4 Robust Estimation

In the previous section we have seen that our conceptual
model of constraints being generated by a random mechanism
that works uniformly for allp leads to the structural assump-
tion of G-invariance for the family F3,),,. This is not enough
to derive a concrete selection rule, as f@?)(we still need to
fix particular densitiesf,,. Because of conditior?@) this is
equivalent to fixing the density, for a single distributiorp,
e.g. for the uniform distributiop = v := (1/n,... ,1/n).
Unfortunately, there do not seem to be many reasonable
assumptions that one could make abdit in themakses
of any specific information about the constraint gene
mechanism. One assumption one would actually be com-
pelled to make because of the absence of specific information,
however, is that’, is permutation invariant, i.e. symmetric

Definition 3.4 A selection ruleselis calledG-equivariantff ~ With regard to all states of the domain.

for samplegs1, .. . , sy) of constraints, and every. € G,, We shall now introduce a particular distributidn,, and
propose to conduct measure selection by maximum likeli-

selgr(s1),-..,9r(sn)) = gr(sels1,... ,sn)). (9)  hood inference for th&-invariant family (L), defined by
L,,. The motivation for using this particular family is not de-

The condition ofG-equivariance formalizes the intuition that rived from a particularly strong conviction that thelsg cap-
a “monotone shift” of the constraints should lead to a similarture very accurately the actual constraint generating mecha-
shift of the selected measure (cf. examp®. In figure??a  nism. The reason for using this family lies in the robustness
G-equivariant rule would have to select the distribution indi- property of the ensuing selection rule, which is formulated in
cated by a cross given the solid constraints iff it selects theheorem?? below. This robustness property says that even
distribution indicated by a diamond given the dashed conwhen the family(Fp)p according to which constraints are
straints iff it selects the distribution indicated by a box givengenerated is different froffl.,,),, inferences based dii.,,),
the dotted constraints. The condition@fequivariance is not  will still be correct in the long run.
directly tied to the constraints as data perspective; it makes To defineL,,, we begin with the introduction of a metric
equally sense under the constraints as knowledge perspegn sectors.
tive. The constraints as data perspective, however, leads Vel finition 4.1 Let¢ € {~1,0,1}", s, € S¢. Define
easily to concreté&-equivariant selection rules in the form ' LR '
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Figure 2: Transformed constraints

of maximum likelihood selection fofz-invariant families of , 1/2
probability distributions. In the following definition we write (s, s') = Z Log2(si‘9j ) (13)
gr(Fp) for the transformation of the distributiafi, induced ’ A Sr 8

by gr. 3 G0,

. . o The densityl,,(s) now is defined fors € S¢ as a func-
Deﬂr:ﬁl?n 3.5 Let (Fp)pemtar be afamily of distributions 0y o theydis(tazme betwees and a reference constraints

on.S™~*. The family is called=-invariantif for all g, € G m(C) € S¢. The constraintn(¢) then is going to be the

9e(Fp) = Fy_ . (10) constraint with maximal likelihood in sectat, and can be

TP 9+(P) thought of as the expected constraint in se&or To make

G-invariance of the family(F,,),, finally captures our intu- the yesultmg dlstrlbuuorj;u permutation invariant, the con-
ition that the random process that generates the constraints3&@intm(¢) must be def|ned+by two constants” > 0 and
uniform for all p, and that when a certain random sequence of? < 0: 80 thatm((); = m™ if ¢; = 1, m(¢); = m™ if
events leads to the observation of constraimhen the true ¢ = — L andm((); = 0if ¢; = 0. . .
distribution isp, then the same sequence of events will lead to. FOr the purpose of the present paper no additional restric-
observation of.(s) when the true distribution ig.(p). By tions on them(() are necessary. Particular choices for the

representing the measurgs via densitiesf,, with respect to m(¢) will affect the behavior of the resulting selection rule
a suitable underlying measure &1, condition (%) be- on small samples, but do not affect the asymptotic robustness

: result.
comes equivalent to Thus, letm(() be given for every sign vectay, and define
Tp(8) = fo.p) (9(5) (11) lu(s) == exg(—d*(s,m(())) (s€S)  (14)
for all 7, p, s. When (?) holds, then One can show that the function8? define a probability
density onS™~! with regard to the same reference measure
selsy,...,sn) = that was already needed for conditi®??). We shall not go

DILPD|s1,...,8n8) =p L] 51,...,8x5)}. (12) into the details here, but only mention that what we have de-
fined here are essentially Laplace distributions on every sec-
is aG-equivariant selection rule. tor, which are combined into a distribution on the sphere.



Defining L,, via (??) provides us with &-invariant fam-  that no best rule exists), we first need to find additional useful
ily (Lp)peinta» With densitiesl,. With these densities we criteria by which to judge the performance of a selection rule.
can finally define by ¥?) and (??) a concrete selection rule
realizing the maximum likelihood approach. We denote it by

sely.
The first question abowtel, we have to address, is un-
der what conditionsely (s, . .. , sy) will be a unique point.

The answer to this question is a little bit involved, and we
will here only give a rough sketch of what it looks like.
By a suitable parameterization, constraiatss S"~! and
distributionsp € A™ can both be identified with points in
n — 1-dimensional space. The distributiopghat maximize
L(p | s1,...,sn) then correspond to the points that mini-
mize the sum of the Euclidean distances to the points corre-
sponding to thes;. This sum is minimized by a unique point
in n— 1-space provided that > 3 and that the points defined
by the constraints are not all collinear. A sufficient condition
for sely(s1, ..., sn) to be uniquely defined therefore is that
n > 3,andthatsy, ... , sy satisfy a certain “richness” condi-
tion which precludes collinearity in the new parameterization.
The main benefit of working with the famil¢Z,,),, lies in
the robustness of the resulting selection rule.

Theorem 4.2 Letn > 3. Let (F}), be aG-invariant fam-

ily of probability distributions on proper constraints such that
F, is permutation invariant and, (S¢) > 0 for all proper
sectorsS¢. Let F° denote the distribution of an infinite se-
guencesy, ss, ... of independent constraints drawn accord-
ing to . Then

F;O(IimNﬁocseLm(sl, ...,8Ny)=p)=1. (15)

The conditions: > 3 and F,(S%) > 0 make sure that with
probability 1sely(s1, ... ,sx) will be a unique point for all
sufficiently largeN. A result similar to theorem?? can also
be obtained fon = 2, but this requires an additional condi-
tion on (Fp)p. In statistical terminology,q?) says that the
estimatorsely is consistentfor the family (F3),. Consis-
tency properties typically hold for maximum likelihood esti-
mators. The remarkable point d7%) is thatsel,, is defined
by maximizing a likelihood function derived from the family
(Lp)p, Whereas the samples are generated by a member from
the family (F},),. The proof of theoren?? follows the proof
of a general robustness result given as theorem 2]in

5 Conclusion

We have seen that an interpretation of constraints as data, not
as knowledge, leads to a completely new perspective on the
measure selection problem. This perspective calls for statis-
tical methods of parameter estimation as the tool for measure
selection. We proposed maximum likelihood inference for
the family (L), as one particular such method. While the
robustness property of this method is a very attractive feature,
there is no reason to believe that it is the only selection rule
that has such a property. Moreover, asymptotic robustness
provides no guarantee that the selection rule shows a sensible
behavior on small samples. The question of what ultimately
will prove to be the best selection rule under the constraints
as data perspective therefore is still wide open at this point.
To answer this question (possibly in the negative by realizing



