
Subsumption of concepts in FL0 for (cyclic) terminologies

with respect to descriptive semantics is PSPACE-complete.

Yevgeny Kazakov and Hans de Nivelle

MPI für Informatik, Saarbrücken, Germany

E-mail: {ykazakov|nivelle}@mpi-sb.mpg.de

Abstract

We close the gap in the complexity classification of subsumption in the simple
description logic FL0, which allows for conjunctions and universal value restric-
tion only. We prove that the subsumption problem in FL0 is PSPACE-complete
for descriptive semantics when cyclic definitions are allowed. Our proof uses au-
tomata theory and as a by-product we establish the PSPACE-completeness of a
certain decision problem for regular languages.

1 Introduction

Cyclic terminologies in description logic (DL) appear in natural way when definitions
are seen as constraints between concepts rather than abbreviations for compound
concepts: Even

·
= ∀successor.Odd; Odd

·
=∀successor.Even. Nebel in [10] has argued

that reasoning in the presence of cyclic T-Boxes does not always agree with intuition
when all interpretations satisfying the definitions are allowed. In order to capture the
right meaning of cyclic definitions, he proposed three types of semantics: (1) the least
fixed-point semantics (lfp), where the concepts are interpreted in the smallest possible
way, (2) the greatest fixed-point semantics (gfp), where the concepts are interpreted
as large as possible, and (3) the descriptive semantics, in which all models are allowed.

The other issue of cyclic terminologies is the impact on the complexity of reasoning
tasks for DL: satisfiability of cyclic ALC T-Boxes is EXPTIME-complete, whereas it
is merely in PSPACE for acyclic terminologies. In order to identify the possible
sources of complexity, several sub-boolean (e.g. without full negation) description
logics have been studied with respect to all three kinds of semantics introduced by
Nebel [1, 2, 8, 3]. Baader in [1, 2] has considered a simple description logic FL0,
which only allows for conjunctions and universal value restrictions. Despite the severe
syntactical restrictions, FL0 is capable of expressing some nice definitions involving
recursion: for example, the definition of a finite acyclic graph can be expressed in FL0
by means of the cyclic definition Dag

·
=Node u ∀arc.Dag using the least fixed-point

semantics.
Baader has also observed that subsumption of concepts in FL0 can be character-

ized by automata theory. For the two types of fixed-point semantics, he showed that
subsumption is equivalent to inclusion of some regular languages associated with the
terminologies. Therefore, the PSPACE-completeness of concept subsumption was a

Subsumption in FL0 Cyclic T-Boxes Acyclic T-Boxes

descriptive semantics in PSPACE [1, 2], PSPACE-hard
lfp-semantics PSPACE-complete [1, 2] co-NP-complete
gfp-semantics PSPACE-complete [1, 2] [9]

Figure 1: Summary of known and new (in bold) results

consequence of the PSPACE-completeness of the inclusion problem for regular lan-
guages [4]. The subsumption problem with respect to descriptive semantics, however,
was not characterized by means of language inclusions, but only reduced to the in-
clusion problem of ω-languages accepted by Büchi automata, from which a PSPACE
upper bound for the problem has been obtained. Therefore, the question about the
exact complexity of subsumption with respect to descriptive semantics remained open
and the best known lower bound was co-NP, which is the complexity of subsumption
for acyclic terminologies [9].

In this paper, we close this remaining gap in the complexity classification of sub-
sumption in FL0 (Fig. 1). We introduce ω-automata with the prefix acceptance
condition and reduce the PSPACE-complete problem of checking whether such an
automaton accepts all words to the concept subsumption problem with respect to de-
scriptive semantics in FL0. An ω-automaton with prefix acceptance condition accepts
an infinite word iff somewhere in the run, it passes through an accepting state: what
happens after passing the accepting state is not important, the automaton may even
get stuck after it. The question whether such an automaton accepts all words can be

elegantly reformulated in terms of regular languages as follows1: L ·Σω ?
=Σω, in which

L is the regular language accepted by the automaton. To the best of our knowledge,
the complexity of this problem was not known. We prove PSPACE-completeness
of this problem. Interestingly, for the two types of fixed-point semantics, PSPACE-

hardness can be proven by the reduction from the problem L
?
=Σ∗ by using similar

techniques.
The paper is organized as follows. In Section 2, we give some formal definitions

and introduce notation. In Section 3, we characterize the subsumption in FL0 for
descriptive semantics and show that it is not easier than a certain automata-theoretic
problem. In Section 4, this problem is recognized as a form of the universality prob-
lem for ω-automata with prefix acceptance condition and the proof of its PSPACE-
completeness is presented. In Section 5, we draw some conclusions and point the
directions for future work.

2 Formal Preliminaries

FL0 is a simple description logic, which allows for conjunctions and universal value
restrictions only, therefore it is a sub-boolean logic. Formally, given a signature
Σ = (A,R) consisting of concept names A and role names R, the set of (general-
ized) concepts CΣ of the description logic FL0 is defined by the grammar:

CΣ ::= A | C1 u C2 | ∀R.C
where the A ∈ A are usually called atomic concepts; C1, C2, C are arbitrary general-
ized concepts of FL0, and R ∈ R.

1This formulation was suggested by Franz Baader (private communications)

A terminology (or TBox for short) is a finite set of concept definitions of the form

A
·
=C, where A is an atomic concept called defined concept and C is a generalized

concept. Every atomic concept can be defined no more than once in TBox.
Since we are interested in proving a hardness result for the concept subsumption

problem, it is possible to consider any restricted form of terminologies. In the rest of
the paper we will do this and assume that each TBox T contains only definitions of
the form: Ai

·
= ∀Ri,1.Bi,1 u · · · u ∀Ri,ki

.Bi,ki
, (1)

where the Ai, Bi,j are atomic concepts (1 ≤ i ≤ |T |), (1 ≤ j ≤ ki), and each ki ≥ 1.
We also assume that every atomic concept has a definition in TBox.

With every terminology T of the form (1), we associate a non-deterministic semi-
automaton AT = (Σ, Q, δ), called the description graph. Here Σ is a finite alphabet of
letters, Q is a finite set of states, and δ ⊆ Q × Σ × Q is the transition relation. We
proceed similarly as in [2, 10]:

? the alphabet Σ of AT is the set of role names of T ;

? the set of states Q is the set of concept names in T and

? the transition relation δ = {(A,R,B) | A
·
= · · · u ∀R.B u · · · ∈ T }.

Note that this construction gives a one-to-one correspondence between terminologies
of the form (1) and semi-automata without blocking states: for every state q ∈ Q there
exist some a ∈ Σ and q′ ∈ Q such that (q, a, q′) ∈ δ.

A run of a semi-automaton A = (Σ, Q, δ) over a finite (or infinite) word w =
a1 ·a2 · · · ai(· · ·)∈Σ

∗(Σω) is a sequence of states r : q0, q1, . . . , qi, (. . .)∈Q
∗(Qω) such

that (qi−1, ai, qi) ∈ δ for every i ≥ 1. With every pair of states q1, q2 ∈ Q of a semi-
automaton A = (Σ, Q, δ) one can associate the regular language LA(q1, q2) := {w ∈
Σ∗ | there exists a run q1, . . . , q2 over w}.

3 Subsumption for Descriptive Semantics

In this section we characterize the subsumption problem for descriptive semantics in
FL0 using automata theory. Such a characterization was already given in [2], however
it can be simplified for the restricted form of terminologies (1):

Theorem 1 (Characterization of concept subsumption) Let T be a terminol-
ogy of form (1) and AT = (Σ, Q, δ) be the corresponding description graph. Then
A0 vT B0 iff for every word w ∈ Σω and for every run
rB : B0, B1, . . . , Bi, . . . in AT over w, there exist a run
rA : A0, A1, . . . , Ai, . . . in AT over w and an integer k ≥ 0 such that Ak = Bk.

Proof. The theorem follows from the more general characterization given in [2] (The-
orem 29). The proof of the theorem can be also found in our technical report [7],
where we present the extended version of the paper. ¤

Now we show how to translate a certain intermediate problem for semi-automata
into the concept subsumption problem with descriptive semantics for FL0. We give
an instance of the concept subsumption problem which suffices to prove PSPACE-
hardness. Take a semi-automaton A = (Σ, Q, δ) and two states q1, q2 ∈ Q. We
construct a new semi-automaton A′ from A by adding a new state q′ and making it

reachable from q2 and itself through every symbol of Σ : So we have A′ = (Σ, Q′, δ′),
where Q′ = Q ∪ q′ and δ′ = δ ∪ {(q2, a, q

′), (q′, a, q′) | a ∈ Σ}.

q1 q2 q′

∗

ω′

∗

A A′

ω

A B

Figure 2: The reduction

If A′ does not have blocking states then we can
consider the terminology T ′ corresponding to A′, so
q1 corresponds to some concept A of T ′ and q′ corre-
sponds to some concept B of T ′. By Theorem 1, B
subsumes A iff for every run from q′ over some word
w ∈ Σω there exists a run from q1 over w such that
both runs share at least one state. Since every run
from q′ can contain the state q′ only, and for every
w ∈ Σω such a run always exists, we obtain: B sub-
sumes A iff for every w ∈ Σω there exists a run over w from q1 containing q′. Note
that in the last sentence we can replace q′ by q2. Thus our construction proves the
following lemma:

Lemma 2 (The reduction lemma) The concept subsumption problem is not easier
than the problem: Given a semi-automaton A = (Σ, Q, δ) and two states q1, q2 ∈ Q
such that Q \ {q2} has no blocking states, check whether every word w ∈ Σω has a
finite prefix w′ ∈ LA(q1, q2).

In the next section we reformulate this problem in terms of automata on infinite
words as the universality problem and prove that it is PSPACE-complete.

4 Automata and the Universality Problem

The subsumption problem for FL0 using the two types of fixed-point semantics was
characterized in [1, 2] by the inclusion problem of some regular languages associated
with the description graph. It is well-known that this problem is PSPACE-complete
[4]. However, we have found no way of characterizing the descriptive semantics in a
similar way. Therefore, we study the problem formulated in Lemma 2 directly.

A non-deterministic finite automaton (NFA) is a tuple A = (Σ, Q, δ,Q0, F), which
is a semi-automaton (Σ, Q, δ) extended with a set of initial states Q0 ⊆ Q and a
set of accepting states F ⊆ Q. The size of the automaton A = (Σ, Q, δ,Q0, F) is
|A| = |Q| + |δ|. We distinguish several kinds of non-deterministic finite automata
according to acceptance conditions:

1. An automaton on finite words NFA∗ is an NFA (Σ, Q, δ,Q0, F) which accepts
a finite word w ∈ Σ∗ iff there exists a run r : q1, . . . , qn over w with q1 ∈ Q0, qn ∈ F .

2. A Büchi automaton NFAω
b is an NFA (Σ, Q, δ,Q0, F) on infinite words. It

accepts w ∈ Σω iff there exists a run r : q1, . . . , qi, . . . over w which repeats some
state from F infinitely often.

3. We introduce the ω-automaton with the prefix acceptance condition NFAω
p as

an NFA (Σ, Q, δ,Q0, F), which accepts w ∈ Σω iff there exist a finite prefix w′ of w
and a run r : q1, . . . , qn over w′ with q1 ∈ Q0 and qn ∈ F . In other words, NFAω

p

accepts an infinite word if it accepts a finite prefix of this word as NFA∗.
According to Lemma 2 the concept subsumption problem is not easier than a

certain problem for semi-automata A = (Σ, Q, δ). Observe that this problem can be
formulated in terms of automata with prefix acceptance condition as: given NFAω

p =

(Σ, Q, δ, {q1}, {q2}) without blocking states in Q\{q2}, check whether all words w ∈ Σω

are accepted. This problem appears in the literature as the (non)universality problem
for finite automata [12]. The NFA∗ (NFAω

b , NFAω
p) is universal iff it accepts every

word w ∈ Σ∗ (w ∈ Σω). The associated decision problem is called the universality
problem. This problem is known to be PSPACE-complete for NFA∗ and NFAω

b (cf.
[12]). It is not surprising that we can obtain a similar result for the NFAω

p .

Theorem 3 The universality problem for NFAω
p is in PSPACE.

Proof. The proof is by a reduction to the universality problem for Büchi automata.
Given NFAω

p A = (Σ, Q, δ,Q0, F) we proceed similarly as in Section 3: Consider the
Büchi automaton A′ = (Σ, Q′, δ′, Q0, {q

′}), where q′ is a new state, Q′ = Q∪ {q′} and
δ′ = δ ∪ {(q, a, q′) , (q′, a, q′) | q ∈ F, a ∈ Σ}. A accepts w ∈ Σω iff A′ does, so A is
universal iff A′ is universal. ¤

Theorem 4 The universality problem for NFAω
p is PSPACE-hard.

Proof. The proof is given by a reduction from polynomial-space Turing machines. The
idea is quite standard for proving such results [6]. For every Turing machine and input
we construct an automaton which accepts every word except the legal computation
of the Turing machine: given some candidate word it “guesses” the position of the
possible error and accepts the word if there is indeed an error. So the constructed
automaton is universal iff the Turing machine does not accept the input. The details
of the proof can be found in Appendix A. ¤

Corollary 5 The universality problem for NFAω
p is PSPACE-complete.

As a consequence, we have now shown the complexity of the problem for regular
languages that is mentioned in the introduction:

Corollary 6 The following problem is PSPACE-complete: Given an NFA∗ A =
(Σ, Q, δ,Q0, F) check whether for the set L ⊆ Σ∗ of words accepted by the automaton,
the property L · Σω = Σω holds.

We have proven the PSPACE-hardness of the universality problem for NFAω
p

A = (Σ, Q, δ,Q0, F); however, according to the reduction Lemma 2 we need to prove
the hardness for the more restricted case where we have only one initial state, one
accepting state and do not have blocking states among the non-accepting states. The
next proposition shows that we can assume these restrictions without loss of generality.

Proposition 7 For any NFAω
p A = (Σ, Q, δ,Q0, F) one can construct an NFAω

p

A′ = (Σ, Q′, δ′, {q′0}, {f
′}) without blocking states in Q′ \ {f ′} in linear size of |A|

which accepts exactly the same words as A.

Proof. We consider two cases:
1. Q0 ∩ F 6= ∅. Then A trivially accepts all words and we can take for example

A′ := {Σ, {q}, ∅, {q}, {q}} for some state q.
2. Q0 ∩ F = ∅. We simply take A′ = (Σ, Q′, δ′, {q′0}, {f

′}) for two new states q′0
and f ′ with Q′ = Q ∪ {q′0, f

′}, and define

δ′ = δ ∪ {(q′0, a, q) | ∃q0 ∈ Q0 : (q0, a, q) ∈ δ} ∪ {(q, a, f ′) | ∃f ∈ F : (q, a, f) ∈ δ}

∪ {(q′0, a, f
′) | ∃q0 ∈ Q0, ∃f ∈ F : (q, a, f) ∈ δ}.

If some state q′ ∈ Q′ \ {f ′} is blocking then we can remove it together with the
transitions involved since no run from q′0 to f ′ can contain q′. ¤

Corollary 8 The concept subsumption problem is not easier than the universality
problem for NFAω

p .

Corollary 9 The concept subsumption problem for DL FL0 with cyclic terminologies
w.r.t. descriptive semantics is PSPACE-complete.

5 Conclusions and Related Work

The results obtained in this paper confirm the relationship between description logics
and automata theory. Certainly there is a correspondence between semantics for
terminological cycles and acceptance conditions for automata which requires further
investigation. We hope that automata theory can provide a useful tool for complexity
analysis in description logics and for the development of practical algorithms.

In last years sub-boolean description logics and modal formalisms have drawn
more attention. Recently Baader in [3] has shown that concept subsumption in the
description logic EL allowing for only conjunctions and existential value restriction
is polynomial for fixed-point and descriptive semantics. He gave a classification of
subsumption in EL for all three kinds of semantics in terms of graph simulations,
similar as has been given for FL0. Understanding the sources of complexity in DL-
fragments for particular reasoning tasks would be of great value for the DL community.

It would be particularly interesting to study cyclic terminologies with mixed (fixed-
point and descriptive) semantics considering the syntactical variants of modal mu-
calculus. In the recent paper [5] Henzinger et. al. have studied the fragments of mu-
calculus allowing only one type of quantifiers: so-called universal ∀MC and existential
fragments ∃MC. Among other results, they proved that the satisfiability problems of
these fragments are easier than for the full mu-calculus: ∀MC is PSPACE-complete
and ∃MC is NP-complete. However, the complexity of the implication problem (which
is related to the subsumption problem in DL) is still EXPTIME, as for the full mu-
calculus. To obtain fragments with an easy implication problem, one probably needs
to restrict the use of boolean connectives in similar ways as in FL0 and EL.

Acknowledgements

The authors would like to thank Franz Baader, Viorica Sofronie-Stokkermans and
anonymous referees for reading the draft of the paper and giving valuable suggestions
and remarks.

References

[1] F. Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. In Proc. of AAAI-90, pages 621–626, Boston, MA, 1990.

[2] F. Baader. Using automata theory for characterizing the semantics of terminolog-
ical cycles. Annals of Mathematics and Artificial Intelligence, 18(2–4):175–219,
1996.

[3] F. Baader. Terminological cycles in a description logic with existential restric-
tions. LTCS-Report LTCS-02-02, Germany, 2002.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, 1979.

[5] T. A. Henzinger, O. Kupferman, and R. Majumdar. On the universal and exis-
tential fragments of the mu-calculus. In Proceedings of the Ninth International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), Lecture Notes in Computer Science. Springer-Verlag, 2003.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, Mass., 1979.

[7] Y. Kazakov and H. Nivelle. Subsumption of concepts in DL FL0 for (cyclic) ter-
minologies with respect to descriptive semantics is PSPACE-complete. Research
Report MPI-I-2003-2-003, Max-Planck-Institut für Informatik, April 2003. See
http://domino.mpi-sb.mpg.de/internet/reports.nsf.

[8] R. Küsters. Characterizing the Semantics of Terminological Cycles in ALN us-
ing Finite Automata. In Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR’98), pages 499–510.
Morgan Kaufmann, 1998.

[9] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-
gence, 43:235–249, 1990.

[10] B. Nebel. Terminological cycles: Semantics and computational properties. In
J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the Rep-
resentation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo (CA), USA, 1991.

[11] M. Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[12] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, pages 238–266, 1995.

Appendix A.

In this appendix we give a proof of Theorem 4.

Theorem 4 The universality problem for NFAω
p is PSPACE-hard.

Proof. We prove the theorem by a reduction from polynomial-space Turing machines.
The details of definitions involved can be found, for instance, in [11], however in order
to be self-contained, we give the ones that are needed.

A Turing machine is a tupleM = (Q,Σ,Γ, δ, q0, qaccept, qreject), whereQ is the finite
set of states, Σ is the finite input alphabet, Γ is the finite tape alphabet containing the
special blank symbol xy (it must be that Σ ⊆ Γ \ {xy}), δ : Q× Γ→ Q× Γ× {−1,+1}
is the transition function, q0 ∈ Q is the initial state, qaccept ∈ Q is the accepting state
and qreject ∈ Q (qreject 6= qaccept) is the rejecting state.

A configuration of the Turing machineM = (Q,Σ,Γ, δ, q0, qaccept, qreject) is a string
of the form: c = a1 a2 . . . ai−1 q ai . . . ak, where each aj ∈ Γ, q ∈ Q, k ≥ i ≥ 1.
One could think of the configuration c as the description of the Turing machine in the
state q with the head at the i-th cell of the tape, and the tape having content a1 · · · ak.

The transition function δ can be extended to configurations in the following way:
Let a, b ∈ Γ, u, v ∈ Γ∗. Let [c] be obtained from the configuration c by removing the
rightmost blank symbols xy from c. Then define
δ̂(uaqibv) := uqjacv, δ̂(qibv) := qjcv if δ(qi, b) = (qj , c,−1);

δ̂(uaqibv) := uacqjv, δ̂(qibv) := cqjv if δ(qi, b) = (qj , c,+1); δ̂(uqi) := [δ̂(uqixy)].
A computation of the Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) from x ∈

Σ∗ is a sequence of configurations c0, c1, . . . , ci, . . . such that c0 = q0x and ci+1 = δ̂(ci).
If the computation ends with a configuration cn then if qaccept ∈ cn, we say that M
accepts x; if qreject ∈ cn, we say that M rejects x.

The Turing machine M decides the language L ⊆ Σ∗ if for every x ∈ Σ∗, x ∈ L
implies M accepts x, and x /∈ L implies M rejects x. We say that M is a polynomial-
space Turing machine if there exists a polynomial p(n) such that for every input x ∈ Σ∗

with computation q0x = c0, c1, . . . , ci, . . . , for each ci we have |ci| ≤ p(|x|). PSPACE
is defined as a class of all languages decided by polynomial-space Turing machines.

Now we give a polynomial-time reduction from the decision problem for an ar-
bitrary language L ∈ PSPACE to the universality problem for some set of NFAω

p .
Assume M = (Q,Σ,Γ, q0, qaccept, qreject) is a polynomial-space Turing machine that
decides L. We give an algorithm which for every x ∈ Σ∗ constructs an NFAω

p Ax in
polynomial size of |x| such that Ax accepts all words, except the word:

wrej = #· #·c0 ·(xy)l0 · #·c1 ·(xy)l1 · . . . #·ck−1 ·(xy)
lk−1 · (#·ck ·(xy)

lk)ω

where c0, c1, . . . , ck is the accepting computation for x (if it exists); li = p(|x|) − |ci|.
All configurations of M are padded with xy’s so that the resulting strings have equal
length P = p(|x|). This simplifies the upcoming construction. Symbol # is a new
symbol (# /∈ Γ). Thus, x ∈ L iff M rejects x iff M does not accept x iff
Ax is universal, and we can obtain the reduction since PSPACE = co-PSPACE.

Consider the word wrej . Every three subsequent symbols σi−1, σi, σi+1 at positions
i − 1, i, i + 1 of wrej uniquely determine the symbol σi+P+1 at position i + P + 1 of
wrej . To be precise, σi+P+1 = N(σi−1, σi, σi+1), where:

N(qi, a, σ) = c, N(b, qi, a) = b, N(#, qi, a) = N(σ, b, qi) = qj if δ(qi, a) = (qj , c,−1);

A1
x

q10 q11 . . . q1P q1P+1

f1

∗ ∗ ∗ ∗

6=σP+1
6=σP+2

6=σ2
6=σ1

A2
x

q20

q2σ1

q2σ1σ2

q2σ1σ2σ31

σ1 σ2 σ3
q2σ1σ2σ32

∗

q2σ1σ2σ3P

.∗ ∗
f2

6=N(σ1,σ2,σ3)∗

A3
x

q30 f3

∗ qreject

Figure 3: The automata, whose union accepts all non-computations.

N(qi, a, σ) = qj , N(σ, qi, a) = c, N(σ, b, qi) = b if δ(qi, a) = (qj , c,+1);
N(σ1, σ2, σ3) = σ2 in all other cases; (a, b, c ∈ Γ, σ, σi ∈ Γ ∪ {#}).

The informal description ofAx is as follows: given an infinite string w ∈ (Γ∪{#})ω,
Ax accepts w if it can find that w 6= wrej , which can be done by detecting one of the
following:
1. The first P +2 symbols of w differ from those of # ·# · x · (xy)l0 , (l0 = P − |x|);
2. For some i ≥ 2 the symbol σi+P+1 6= N(σi−1, σi, σi+1);
3. The string w contains the symbol qreject.

Note that since the Turing machine M decides the language L ⊆ Σ∗, every computa-
tion c0, c1, . . . , ci, . . . from x ∈ Σ∗ should end either with the accepting state qaccept or
with the rejecting state qreject. So, w 6= wrej iff w satisfies one of the 1-3 above.

Formally, Ax = A1x ∪ A
2
x ∪ A

3
x where: Ai

x is the NFAω
p over (Γ ∪ {#})w which

accepts a word w iff the corresponding condition i above is fulfilled (i = 1, 2, 3). The
union of two automata A1 = (Σ, Q1, δ1, Q10, F

1) and A2 = (Σ, Q2, δ2, Q20, F
2) is the

automaton A = (Σ, Q1 ∪ Q2, δ1 ∪ δ2, Q10 ∪ Q20, F
1 ∪ F 2). A accepts a word iff it is

accepted by A1 or A2. The automata A1x, A
2
x and A3x are constructed as follows (see

Fig. 3):

1. A1x = (Γ ∪ {#}, Q1, δ1, {q10}, {f
1}), where Q1 = {q10, q

1
1, . . . , q

1
P+1, f

1};
δ1 = {(q1i , σ, q

1
i+1) | σ ∈ Γ, 0 ≤ i ≤ P} ∪

{(q1i , σ, f
1) | 0 ≤ i ≤ P+1, σ 6= σi+1 := (i+1)-th element of #·#·x·(xy)l0}

2. A2x = (Γ ∪ {#}, Q2, δ2, {q20}, {f
2}), where

Q2 = {q20, q
2
σ1
, q2σ1σ2

, q2σ1σ2σ3i
, f2 | σ1, σ2, σ3 ∈ Γ ∪ {#}; 1 ≤ i ≤ P};

δ2 = {(q20, σ1, q
2
0), (q20, σ1, q

2
σ1
), (q2σ1

, σ2, q
2
σ1σ2

), (q2σ1σ2
, σ3, q

2
σ1σ2σ31

),
(q2σ1σ2σ3i

, σ, q2
σ1σ2σ3(i+1)

) | σ, σ1, σ2, σ3 ∈ Γ ∪ {#}; 1 ≤ i < P} ∪

{(σ2σ1σ2σ3P
, σ, f2) | σ, σ1, σ2, σ3 ∈ Γ ∪ {#}; σ 6= N(σ1, σ2, σ3)}

3. A3x = (Γ ∪ {#}, Q3, δ3, {q30}, {f
3}), where Q3 = {q30, f

3};
δ3 = {(q30, σ, q

3
0), (q30, qreject, f

3) | σ ∈ Γ ∪ {#}}

The sizes of automata A1x, A
2
x and A3x are linear in P = p(|x|) (Γ is fixed). Therefore,

the construction of Ax can be performed in polynomial time relative to |x|.
To summarize, we have constructed a polynomial time reduction from any lan-

guage L ∈ PSPACE to the universality problem for NFAω
p and thus, have proven its

PSPACE-hardness. ¤

