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1
Introduction

1.1 Motivation

In this work, I will present an algorithm to check the satisfiability of RPO
constraints and describe the implementation of the introduced algorithm.
The recursive path ordering RPO generalizes both the lexicographic path
ordering (LPO) and the multiset path ordering by allowing each function
symbol to have a lexicographic or multiset status. The RPO is a total
reduction quasi–ordering on ground terms.

An important application of ordering constraints are ordered strategies
in automated deduction in first order logic, e.g. the superposition calcu-
lus of L. Bachmair and H. Ganzinger[BG94] which requires a reduction
ordering, total on ground terms. Other works on automated deduction
include [KKR90] and [NR92]. In [RN93] A. Rubio and R. Nieuwenhuis
introduce an AC–compatible ordering based on RPO.

H. Comon proved that the decidability of LPO constraints is satisfi-
able [Com90a], J.P. Jouannaud and M. Okada proved the same for RPO
constraints [JO91]. In both papers, a satisfiability check algorithm is con-
structed for proof purposes, but these algorithms are neither easy to im-
plement nor very efficient. A. Rubio and R. Nieuwenhuis introduced an
elegant and efficient algorithm for the LPO case with a restricted prece-
dence [RN91, Rub94a]. Unfortunately, no such algorithm was known for
RPO constraints. Also, the method of Rubio and Nieuwenhuis cannot be
simply adopted for RPO constraints, as the successor function on terms is
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not total for RPO (not even with the restrictions on the precedence intro-
duced in [RN91]).

Ch. Weidenbach managed to overcome the necessity of a total successor
function in his algorithm [Wei94] and, moreover, his algorithm works for
unrestricted preferences. In order to allow arbitrary–arity multiset–status
function symbols, I modified his algorithm; the result is presented in Chap-
ter 3 and also used in my implementation.

A short comparison of the different approaches in [Com90a] and [JO91]
on the one hand and [RN91], [Wei94] and this work on the other hand is
given in Chapter 3, Section 3.3.

1.2 First Example

Now we will look at a very small example to illustrate the problem.
Consider the constraint C = {f(x, y) � g(x)} with precedence g > f > 0
and Stat(f) = mul, Stat(g) = lex. Applying our rewrite system yields:

f(x, y) � g(x)→
x � g(x) ∨ y � g(x)

Next, the rewrite system reduces x � g(x) to ⊥. Hence, only the solved
problem y � g(x) is left. As

y � g(x) satisfiable ⇔ y ' succ(g(x)) = f(g(x), 0) satisfiable

the algorithm now checks if y ' f(g(x), 0) is satisfiable. y ' f(g(x), 0)
is solved and thus the constraint is satisfiable, for instance by the solution
{x = 0, y = f(g(0), 0)}.

1.3 The Implementation

The implementation of the constraint solver was done in about 6400 lines of
C++ code and uses the library EARL [WMCK95] with its data structures for
symbols, signatures, terms and formulas.

As a first exercise, I implemented the RPO for ground terms using the
bottom–up approach suggested by W. Snyder [Sny93]. This program is
similar to the simplifier described in Chapter 4, and turned out to be useful
to check the solutions computed by the constraint solver.

The proof of the satisfiability of RPO constraints by constructing an
efficient algorithm in theory still leaves various problems that have to be
solved for the actual implementation. Among these are

• incremental computation of solved problems

• choosing an efficient application order for the rewrite rules
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• cycle checks for some rewrite rules

• efficient computation of permutations

• a simplifier to reduce the problem

How these problems and considerations were handled in the implementation
is described in Chapter 4.

1.4 Conclusion

My thesis is based on the satisfiability check algorithm for RPO constraints
presented by Ch. Weidenbach in [Wei94]. However, contrary to his version,
mine allows arbitrary–arity multiset–status function symbols. I proved that
the presented rewrite system for RPO constraints is complete, correct and
terminating. Furthermore, I showed the correctness of the definition of the
successor function on terms wrt. �rpo.

I implemented the algorithm and developed a method to compute solved
problems incrementally. Finally, in order to improve the overall performance
of the program, I thought up and integrated a simplifier.
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2
Preliminaries

This thesis deals with RPO constraints, which are quantifier-free first-order
logic formulas over syntactic equations and inequations . Therefore, we will
first introduce the standard notations and definitions for first-order logic
as far as needed here. Readers familiar with this topic may skip the first
section. For a complete introduction see for instance [Fit90].

Since we introduce our algorithm as sets of don’t–care non–deterministic
rewrite rules, the second section introduces term rewriting (see [Der87] for
a detailed introduction).

Finally, orderings on terms and ordering constraints are introduced.
Many of the notations and definitions there are consistent with or taken
from [Rub94a] and [DJ90].

2.1 First-Order Logic

Definition 2.1.1 (Signature)
A signature Σ = (X ,F ,P) consists of the following disjoint sets:

• X is the countable infinite set of variable symbols.

• F is the countable infinite set of function symbols. It is the union of the
sets of n-place function symbols Fn (n ∈ N 0) and the set of function
symbols with arbitrary arity Fa (called variadic function symbols).
The 0-place function symbols in F0 are also called constants.
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• P is the finite set of predicate symbols divided into the sets of n-place
predicate symbols Pn.

We will denote variables by x, y, z (possibly with subscripts), f, g, h will
be used for function symbols and 0, a, b, c for constants.

Definition 2.1.2 (Special Symbols)
• The propositional constants > and ⊥ (”true” and ”false”)

• The logical connectives ¬,∧,∨,⇒,⇔

• The quantifiers ∀, ∃

• The punctuation symbols “(”, “)”, “, ”

Definition 2.1.3 (Terms)
The set of terms T (F ,X ) is the smallest set with X ⊆ T (F ,X ) and
f(t1, . . . , tn) ∈ T (F ,X ) for f ∈ Fn ∪ Fa and t1, . . . , tn ∈ T (F ,X ). The
set of variables Vars(t) occuring in term t is defined as

Vars(x) = {x}
Vars(a) = ∅

Vars(f(t1, . . . , tn)) =
n⋃

i=1

Vars(ti)

A term without variables is called ground , T (F) is the set of all ground
terms. The top symbol of a term is denoted by the function top:

top(x) = x

top(a) = a

top(f(t1, . . . , tn)) = f

The arity of a term is defined as

arity(x) = 0
arity(a) = 0

arity(f(t1, . . . , tn)) = n

The size of a term size(t) is defined as

size(x) = 1
size(a) = 1

size(f(t1, . . . , tn)) = 1 +
n∑

i=1

size(ti)
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Definition 2.1.4 (Position)
A position within a term is represented by a finite sequence of positive
integers. The subterm of a term t at position p, called occurrence, is denoted
t|p and defined as follows:

t|p = t for p = λ
f(t1, . . . , tn)|p = ti|q for p = i.q (1 ≤ i ≤ n),

q sequence of positive integers.

A term t ∈ T (F ,X ) can be viewed as a tree: the root is labeled with the
topsymbol of t, leaves are labeled with variables in X and 0-ary function
symbols in F (called constants), and internal nodes are labeled with the
topsymbols of subterms. The outdegree of a node is the arity of the subterm
rooted in this node. (See Figure 2.1 for an example). As we saw in Definition
2.1.4, a position within a term t ∈ T (F ,X ) is represented by a sequence of
positive integers: the path from the topsymbol (the root of the graph) to
the topsymbol of a subterm at that position.76540123f 1 //

2
2222222

��2222222

3
,,,,,,,,,,

��,,,,,,,,,,

/.-,()*+g 1 //
2

QQQ

((QQQ
3

DDDD

!!DDDD

'&%$ !"#a/.-,()*+0/.-,()*+h 1 //
2

RRR

((RRRR
'&%$ !"#a/.-,()*+b/.-,()*+h 1 //

2
SSS

))SSS
/.-,()*+0'&%$ !"#a/.-,()*+0

Figure 2.1: Tree representation of term t = f(g(a, 0, h(a, b)), h(0, a), 0)

Definition 2.1.5 (Context)
A context u[ ]p is a term with a ”hole” at position p. Given some term t
and some context u[ ]p the expression u[t]p is again a term. A term t with
its subterm t|p replaced by term s is denoted t[s]p.

Definition 2.1.6 (Substitution)
A substitution is a mapping σ : X → T (F ,X ) from the set of Variables X to
the set of terms T (F ,X ) such that the domain Dom(σ) = {x ∈ X | xσ 6= x}
is finite. The application of the substitution σ to a term t is denoted tσ. A
substitution is ground if its range is T (F).

Although substitutions are mappings on variables, they are easily ex-
tended to all terms.
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Definition 2.1.7
Let σ be a substitution. Then we set:

1. aσ = a for a constant a;

2. [f(t1, . . . , tn)]σ = f(t1σ, . . . , tnσ) for an n-place or arbitrary arity
function symbol f .

2.2 Term Rewriting

Definition 2.2.1 (Multisets)
A multiset over a set Y is a function M : Y → N :

1. M(y), y ∈ Y is the number of occurrences of the element y in M , also
called multiplicity . y ∈M if M(y) > 0.

2. (M1 ∪M2)(y) = M1(y) + M2(y)

3. (M1 ∩M2)(y) = min(M1(y), M2(y))

We use a set-like notation for multisets, i.e. {a, a, b} denotes the multiset
M with M(a) = 2, M(b) = 1 and M(y) = 0 for y /∈ {a, b}. If the elements
of a multiset are also multisets, then we speak of an n-fold multiset, where
n is the number of nested multisets. Example: {{a, a}, {a, b, b}, {a, b, b}} is
a 2-fold multiset.

Definition 2.2.2 (Equation, Rewrite Rule, Term Rewrite System)
An equation is a multiset of terms {s, t}, denoted s ' t. A rewrite rule is
an ordered pair of terms 〈s, t〉, written s→ t. A set of rewrite rules R over
T (F ,X ) is called a term rewrite system or simply rewrite system .

Let R be a rewrite system and s, t ∈ T (F ,X ) terms. Then s rewrites
into t, denoted s→R t, if s|p = lσ and t = s[rσ]p, for some rule l→ r in R,
position p in s and substitution σ.

If→ is a binary relation, then← is the inverse,↔ the symmetric closure,
+→ the transitive closure and ∗→ the reflexive-transitive closure.

Definition 2.2.3 (Properties of Rewrite Systems)
Termination: A rewrite system R is terminating if there is no infinite

sequence t1 →R t2 →R . . . of terms in T (F ,X ).

Normal Form A term s ∈ T (F ,X ) is in normal form or irreducible wrt. a
rewrite system R if there is no term t ∈ T (F ,X ) such that s→R t. A
term t is a normal form of term s wrt. R if s

∗→R t and t is irreducible.

Set of Normal Forms: If R is terminating then every term has at least
one normal form. Let R be a terminating rewrite system and t a term.
The set of normal forms of t wrt. R is denoted by snfR(t).
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Convergence: A rewrite system R is convergent if every (ground) term
s ∈ T (F ,X ) (s ∈ T (F)) has a unique normal form.

Church-Rosser: A rewrite system R is called Church-Rosser if the re-
flexive-transitive closure ∗↔ is contained in the joinability relation
∗→R ◦

∗←R. (See Fig. 2.2(a))

∗
R >>>>>>>>

��

∗
R��������

��

∗
R��������

��

∗
R >>>>>>>>

��

∗
R

%%

. . .

∗
R

yy

(a) Church-Rosser

∗
R��������

��

∗
R ????????

��
∗

R
��

∗
R

��

(b) confluent

R��������

��
R ????????

��
∗

R
��

∗
R

��

(c) locally
confluent

Figure 2.2: Joinability properties of rewrite systems

This is equivalent to the following property:

Confluence: A rewrite systemR is called confluent if the relation ∗←R ◦ ∗→R
is contained in the joinability relation ∗→R ◦ ∗←R. (See Fig. 2.2(b)).

Terminating confluent rewrite systems are convergent.

Local Confluence: A rewrite system R is called locally confluent if any
local divergence ←R ◦ →R is contained in the joinability relation
∗→R ◦ ∗←R. (See Fig. 2.2(c)).

A terminating rewrite system is confluent iff it is locally confluent
(Diamond Lemma)
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2.3 Orderings on Terms

Now we introduce some definitions and classifications for orderings on terms.

Definition 2.3.1 (Properties of Orderings)
• A (strict partial) ordering � is a transitive and irreflexive binary rela-

tion.

• An ordering � is called monotonic or closed under context application
if

s � t⇒ u[s]p � u[t]p ∀s, t ∈ T (F ,X )
and for all positions p and contexts u

• An ordering � is called stable under substitution if

s � t⇒ sσ � tσ ∀s, t ∈ T (F ,X ) and substitutions σ

• An ordering � is called well-founded if there is no infinite decreasing
sequence

t1 � t2 � t3 � . . .

• An ordering � possesses the subterm property if

t[s]p � s ∀s, t ∈ T (F ,X ) and p 6= λ

• An ordering � possesses the deletion property if

s = f(t1, . . . , tn) � f(t1, . . . ti−1, ti+1, . . . , tn) ∀s ∈ T (F ,X ),
f has arbitrary arity

Definition 2.3.2 (Rewrite Ordering)
An ordering on terms is called rewrite ordering, if it is monotonic and stable
under substitutions, i.e.:

s � t⇒ u[sσ]p � u[tσ]p ∀s, t ∈ T (F ,X ), positions p,
contexts u and substitutions σ

Definition 2.3.3 (Reduction Ordering)
A reduction ordering on a set of terms T (F ,X ) is any well-founded rewrite
ordering on T (F ,X ).
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Definition 2.3.4 (Simplification Ordering)
A rewrite ordering possessing the deletion property and the subterm prop-
erty is a simplification ordering .

Theorem 2.3.5
For a finite set of function symbols F any simplification ordering on T (F ,X )
is well-founded and therefore also a reduction ordering.

For the construction of path orderings the following definitions about
lexicographic and multiset extensions of orderings and congruences are needed.

Definition 2.3.6 (Lexicographic Extension of �)
Let � be an ordering and ' a congruence relation. The lexicographic (left
to right) extension �lex of � wrt. ' for n-tuples is defined as:

〈s1, . . . , sn〉 �lex 〈t1, . . . , tn〉 iff
s1 ' t1, . . . , sk−1 ' tk−1 and sk � tk for some 1 ≤ k ≤ n

The ordering �lex is well-founded if � is well-founded.

Definition 2.3.7 (Multiset Extension of ')
Let ' be a congruence relation. Its multiset extension, denoted 'mul is
defined as:

{s1, . . . , sm} 'mul {t1, . . . , tn} iff
m = n and n > 0⇒ ∃ tj : s1 ' tj and

{s1, . . . , sm} \ {s1} 'mul {t1, . . . , tn} \ {tj}

Definition 2.3.8 (Multiset Extension of �)
Let � be an ordering and ' a congruence relation. Its extension wrt. ' to
finite multisets, denoted �mul, is defined as:

M = {s1, . . . , sm} �mul {t1, . . . , tn} = N if

• M 6= ? and N = ? or

• si ' tj and M \ {si} �mul N \ {tj}, for some 1 ≤ i ≤ m and 1 ≤ j ≤ n
or

• si � tj1 ∧ . . . ∧ si � tjk
and

M \ {si} �mul N \ {tj1 , . . . , tjk
} or M \ {si} 'mul N \ {tj1 , . . . , tjk

})
for some 1 ≤ i ≤ m and 1 ≤ j1 < . . . < jk ≤ n (1 ≤ k ≤ n).

The ordering �mul is well-founded if � is well-founded.
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Now we will introduce two examples of simplification orderings: the
lexicographic path ordering , short LPO , and the recursive path ordering with
status, short RPO.

Definition 2.3.9 (Precedence)
A well-founded, total ordering >F on the set of function symbols F is called
precedence (and often is just denoted >).

Definition 2.3.10 (LPO)
The lexicographic path ordering (LPO) generated by a precedence >F on
the set of function symbols F , denoted by �F

lpo (or simply �lpo), is defined
as:
s = f(s1, . . . , sn) �lpo g(t1, . . . , tn) = t if

1. f >F g and s �lpo tj, for all 1 ≤ j ≤ n or

2. si �lpo t, for some 1 ≤ i ≤ n or

3. f = g, 〈s1, . . . , sn〉 �lex
lpo 〈t1, . . . , tn〉 and s �lpo tj, for all 1 ≤ j ≤ n

Proposition 2.3.1
LPO is a rewrite ordering and a simplification ordering. Moreover, if F is
finite, LPO is a reduction ordering.

Definition 2.3.11 ('rpo)
For Definition 2.3.12 we first need to define 'rpo: Let >F be a precedence on
a set of function symbols F . We denote by Stat(f) the status of a function
symbol f which can be either lex (lexicographic status) or mul (multiset
status). Then
f(s1, . . . , sm) 'rpo g(t1, . . . , tn) if f = g, m = n and

1. Stat(f) = lex and si 'rpo ti, for all 1 ≤ i ≤ m or

2. Stat(f) = mul and {s1, . . . , sm} 'mul
rpo {t1, . . . , tn}

Definition 2.3.12 (RPO)
The recursive path ordering with status (RPO) generated by a precedence
>F on a set of function symbols F with status (where the function symbols
with lexicographic status must have fixed arity), denoted by �F

rpo (or simply
�rpo), is defined as:
s = f(s1, . . . , sm) �rpo g(t1, . . . , tn) = t if

1. f >F g and s �rpo tj , for all 1 ≤ j ≤ n or

2. g >F f and si �rpo t, for some 1 ≤ i ≤ m or
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3. f = g, Stat(f) = lex, m = n, and either one of the following properties
holds:

(a) si �rpo t or si 'rpo t, for some 1 ≤ i ≤ m

(b) 〈s1, . . . , sm〉 �lex
rpo 〈t1, . . . , tn〉 and s �rpo tj , for all 1 ≤ j ≤ n

or

4. f = g, Stat(f) = mul and {s1, . . . , sm} �mul
rpo {t1, . . . , tn}

Proposition 2.3.2
RPO is a quasi-ordering, because it is total only if' is interpreted as equality
up to permutations of arguments. RPO is a rewrite quasi-ordering and
a simplification quasi-ordering. RPO is a reduction quasi-ordering if F is
finite. For precedences without multiset function symbols RPO is equivalent
to LPO and hence Proposition 2.3.1 holds.

2.4 Ordering Constraints

Definition 2.4.1 (Ordering Constraint)
An ordering constraint is a quantifier-free first-order formula built over terms
in T (F ,X ) and the binary predicate symbols {�,'} (or {�,�,'}).

Definition 2.4.2 (Solution)
A solution of a constraint C is a substitution σ with range T (F) and the
domain the set of free variables of C such that Cσ evaluates to true when
interpreting ' as equality on terms (equivalence classes for RPO ordering
constraints) and � as ordering on terms. If there is a solution σ for a given
constraint C then C is said to be satisfiable.
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3
RPO Constraints

3.1 The Problem

The goal of this thesis is to develop and implement an algorithm to check
the satisfiability of RPO constraints and find one solution if the constraint
is satisfiable. Extending known algorithms, we allow arbitrary precedences
and signatures. Moreover, arbitrary–arity multiset–status function symbols
are handled.

For LPO constraints, H. Comon proved in [Com90b] that satisfiability is
decidable, but his algorithm was designed to fit a nice decidability and is not
very practicable or efficient. For this reason A. Rubio and R. Nieuwenhuis
introduced a simpler and more efficient algorithm in [RN91]. This algorithm
relies on a restriction on precedences: only precedences with 0 < f < . . . are
allowed, where 0 is the smallest constant and f the smallest non-constant
function symbol. This ensures that the successor function (see Def. 3.2.4) is
total on terms in T (F ,X ). We will see later how this affects our algorithm
and how this restriction can be dropped.

J.P. Jouannaud and M. Okada showed in [JO91] that the satisfiabil-
ity of RPO constraints is decidable. Again, the algorithm given there to
construct the proof is neither practicable nor efficient. In [Wei94] Ch. Wei-
denbach introduced an algorithm that applies the methods of [RN91] to
RPO constraints and drops the restrictions on the precedence at the same
time. Furthermore, this algorithm considers RPO constraints as formulas
over the predicate symbols ',� and also �. This approach (also discussed
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in [Rub94a] for LPO) is more efficient, as it reduces the number of gen-
erated solved problems for a given constraint, and it makes the algorithm
more usable for practical purposes. The algorithm presented here is a mod-
ified version of [Wei94], where I adopted the rewrite rules and the definition
of the successor function to handle arbitrary–arity multiset–status function
symbols.

3.2 The Algorithm

The algorithm works in two steps. The first step uses a set of rewrite rules
to compute the disjunctive normal form (DNF) of the input constraint and
to then rewrite the DNF into a disjunction of solved problems. In the second
step, the solved problems are tested for satisfiability — one after another,
until one is found satisfiable or all of them have been tested without success.

Let Σ = (X ,F ,P) be a signature withX a set of variables, P = {�,�,'}
and F the set of function symbols. Every function symbol in F has a status,
which can be mul or lex, denoted by Stat(f) = mul or Stat(f) = lex (see
Def. 2.3.12). The total precedence on F is denoted by ’>’. The smallest
constant with respect to ’>’ is denoted by 0 ∈ F , the smallest non–constant
function symbol by f ∈ F . C = {ci ∈ F0|ci < f, ci 6= 0} is the set of all
constants smaller than f , without 0. If 0 < f and C = ? the precedence
is called simple. The input for the algorithm is an RPO constraint, defined
below.

Definition 3.2.1 (RPO Constraint)
An RPO constraint is a quantifier–free first–order formula built over the
binary predicate symbols ’�’, ’�’ and ’'’ relating terms in T (F ,X ). The
RPO constraint is interpreted over the initial ground term algebra T (F).
To decide the satisfiability, ’�’ is interpreted as the recursive path ordering
’�rpo’ and ’'’ as its associated congruence ’'rpo’. (’�’ is interpreted as
’�rpo’, which is defined in the usual way: s �rpo t⇔ s �rpo t ∨ s 'rpo t)

We will use ’�’, ’�’ and ’'’ when dealing with syntax and ’�rpo’, ’�rpo’
and ’'rpo’ when dealing with semantics.
Note:
From now on, we use # as an abbreviation for ’� or �’, i.e. # ∈ {�,�}.

Given some constraint, we can now compute its disjunctive normal form
by exhaustive application of the rules in Table 3.1.

The resulting constraint has the form P1∨· · ·∨Pn where each Pi in turn
has the form L1 ∧ · · ·∧Lk. Each literal Lj is either some t ' s or some t#s.
The Pi’s are called problems. P' denotes the restriction of a problem P to
atoms s ' t.
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1. ¬> → ⊥

2. ¬⊥ → >

3. a ∧ a → a

4. a ∨ a → a

5. a ∧ > → a

6. a ∨ > → >

7. a ∧ ⊥ → ⊥

8. a ∨ ⊥ → a

9. s ' s → >

10. s � s → ⊥

11. ¬(s � t) → t � s

12. ¬(s � t) → t � s

13. ¬(s ' t) → s � t ∨ t � s

14. ¬(a1 ∨ a2) → ¬a1 ∧ ¬a2

15. ¬(a1 ∧ a2) → ¬a1 ∨ ¬a2

16. (a1 ∨ a2) ∧ a3 → (a1 ∧ a3) ∨ (a2 ∧ a3)

Table 3.1: Normalization of Literals and Propositional Normalization

Definition 3.2.2
A formula t1 ' s1 ∧ · · · ∧ tk ' sk is called solved if

∀i : ti variable, ∀i, j, i 6= j : ti 6= tj and ∀i, j ≥ i : ti /∈ Vars(sj)

We will next give a set of rules R for the transformation of inequational
formulas. The corresponding reduction relation is denoted →R. R is called
correct if φ→R φ′ implies that φ and φ′ have the same solution. It is called
complete (wrt. a given set of solved problems) if any normal form for →∗

R
is a solved problem. And finally, R is said to be terminating if there is no
infinite sequence F1 →R F2 →R . . . of inequational formulas.

The set of rules R is shown in Tables 3.2, 3.3 and 3.4. As the rules
apply to disjunctive normal forms of problems, we assume that the rules in
Table 3.1 have been applied exhaustively before each application of a rule
in R.

The rule set R consists of two parts: Table 3.2 shows the rules for
syntactic unification to handle the equational part of a problem (for an
overview over syntactic unification and its extensions to equational theory
see [Sie89]). The second part consists of the RPO substitution rules in
Table 3.3 and the RPO decomposition rules in Table 3.4 to handle the
inequational part of a problem.

The exhaustive application of the rules in R transforms the constraint
into a disjunction of solved problems.
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Tautology
t ' t ∧ P → P

Decomposition-lex
f(t1, . . . , tn) ' f(s1, . . . , sn) ∧ P → t1 ' s1 ∧ . . . ∧ tn ' sn ∧ P

if Stat(f) = lex
Decomposition-mul

f(t1, . . . , tn) ' f(s1, . . . , sn)∧P →
∨

π∈Sn

[( ∧
1≤j≤n

tj ' sπ(j)

)
∧ P

]

if Stat(f) = mul
f(t1, . . . , tm) ' f(s1, . . . , sn) ∧ P → ⊥
if Stat(f) = mul, m 6= n

Substitution
x ' y ∧ P → x ' y ∧ P{x/y}
if x ∈ Vars(P ) and y ∈ Vars(P )

Clash
f(t1, . . . , tm) ' g(s1, . . . , sm) ∧ P → ⊥
if f 6= g

Cycle
x1 ' t1[x2]p1 ∧ . . . ∧ xn ' tn[x1]pn ∧ P → ⊥
if there exists some n and i, 1 ≤ i ≤ n, with pi 6= λ

Merge
x ' t ∧ x ' s ∧ P → x ' t ∧ t ' s ∧ P

if size(t) ≤ size(s)

Table 3.2: The Rules of Standard Unification

Definition 3.2.3 (Solved Problem)
A solved problem P is either >, ⊥ or a formula

x1#t1 ∧ · · · ∧ xn#tn ∧ t′1#x′
1 ∧ · · · ∧ t′m#x′

m ∧ y1 ' s1 ∧ · · · ∧ yk ' sk

with P' solved, no t′j is a variable, t′j 6= 0, xi /∈ Vars(ti) , x′
j /∈ Vars(t′j),

yl 6= xi, yl 6= ti, yl 6= x′
j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ k.

The terms ti are called right terms in P , the atoms xi#ti are called right
atoms. Terms t′j and atoms t′j#x′

j are correspondingly called left terms and
left atoms in P .

Example
To get a feeling for the complexity of the problem, we will examine a small
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example. Given the function symbols f , g and h with arities 3, 2 and 1
respectively, Stat(f) = mul, Stat(g) = Stat(h) = lex and the constants 0, a,
b and c, a precedence h > g > f > c > b > a > 0 and an input constraint

f(g(a, x), b, y) � f(h(x), a, 0) ∧ g(0, x) � g(a, y)

the rule Decomposition-mul-left can be applied on the first inequation:

f(g(a, x), b, y) � f(h(x), a, 0) ∧ g(0, x) � g(a, x)→
[g(a, x) � b ∧ b � y ∧ h(x) � a ∧ a � 0 ∧
( (g(a, x) � h(x) ∧ g(0, x) � g(a, x))
∨ (g(a, x) ' h(x) ∧ b � a ∧ g(0, x) � g(a, x))
∨ (g(a, x) ' h(x) ∧ b ' a ∧ y � 0 ∧ g(0, x) � g(a, x)))] ∨

[g(a, x) � b ∧ b � y ∧ h(x) � 0 ∧ 0 � a ∧
( (g(a, x) � h(x) ∧ g(0, x) � g(a, x))
∨ (g(a, x) ' h(x) ∧ b � 0 ∧ g(0, x) � g(a, x))
∨ (g(a, x) ' h(x) ∧ b ' 0 ∧ y � a ∧ g(0, x) � g(a, x)))] ∨

. . . 32 more conjunctions . . .

[y � b ∧ b � g(a, x) ∧ 0 � h(x) ∧ h(x) � a ∧
( (y � 0 ∧ g(0, x) � g(a, x))
∨ (y ' 0 ∧ b � h(x) ∧ g(0, x) � g(a, x))
∨ (y ' 0 ∧ b ' h(x) ∧ g(a, x) � a ∧ g(0, x) � g(a, x)))] ∨

[y � b ∧ b � g(a, x) ∧ 0 � a ∧ a � h(x) ∧
( (y � 0 ∧ g(0, x) � g(a, x))
∨ (y ' 0 ∧ b � a ∧ g(0, x) � g(a, x))
∨ (y ' 0 ∧ b ' a ∧ g(a, x) � h(x) ∧ g(0, x) � g(a, x)))]

Another choice is to apply the rule Decomposition-lex to the second
inequation of the input constraint:

f(g(a, x), b, y) � f(h(x), a, 0) ∧ g(0, x) � g(a, x)→
(0 � a ∧ g(0, x) � a ∧ g(0, x) � x ∧ f(g(a, x), b, y) � f(h(x), a, 0))
∨ (0 ' a ∧ x � x ∧ g(0, x) � a ∧ g(0, x) � x

∧ f(g(a, x), b, y) � f(h(x), a, 0))
∨ (0 � g(a, x) ∧ f(g(a, x), b, y) � f(h(x), a, 0))
∨ (x � g(a, x) ∧ f(g(a, x), b, y) � f(h(x), a, 0))

Here, the first conjunction reduces to ⊥ by application of Decomposition-
left on 0 � a, the second conjunction reduces to ⊥ by application of Clash
on 0 ' a, the third one reduces to ⊥ by application of Decomposition-left
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Substitution
x#s ∧ x ' t ∧ P → t#s ∧ x ' t ∧ P

s#x ∧ x ' t ∧ P → s#t ∧ x ' t ∧ P

if (x ' t ∧ P') is solved
Tautology

t[s]p#s ∧ P → P

if p 6= λ or # =�
Cycle

t1#s1[t2]p1 ∧ . . . ∧ tn#sn[t1]pn ∧ P → ⊥
if some # =� or some pi 6= λ

Simplification
0 � x ∧ P → ⊥
0 � x ∧ P → P{x/0}
s � t ∧ s � t ∧ P → s � t ∧ P

s ' t ∧ s � t ∧ P → s ' t ∧ P

Table 3.3: The Rules of RPO Substitution and Simplification

on 0 � g(a, x) and the last one reduces to ⊥ by application of Cycle on
x � g(a, x). Hence the constraint is unsatisfiable.

This small example illustrates two aspects of the rewrite system: some
of the rewrite rules produce huge amounts of new equations and inequa-
tions, and the order in which the rules are applied is very important for the
efficiency of the constraint solver.

Lemma 3.2.1
The rules in Tables 3.2, 3.3 and 3.4 together are correct, complete and
terminating.
Proof:
(For the proof technique see [Com90a]) Correctness is a direct consequence
of the definition of �rpo: Decomposition-mul in Table 3.2 corresponds to the
definition of equivalence on multisets (see Def. 2.3.7), Decomposition-right in
Table 3.4 corresponds to Def. 2.3.12(1), Decomposition-left in Table 3.4 cor-
responds to Def. 2.3.12(2), Decomposition-lex in Table 3.4 to Def. 2.3.12(3)
and Decomposition-mul(-left,-right) in Table 3.4 to Def. 2.3.12(4). The cor-
rectness of the other rules is obvious.

Completeness is easy to check, if the rewrite system terminates. So let
us prove termination now — we use the following interpretation functions:

• Φ1(s1 ' t1 ∧ . . . ∧ sn ' tn ∧ u1#v1 ∧ . . . ∧ um#vm) is the multiset of



3.2 The Algorithm 21

Decomposition-right

f(t1, . . . , tm)#g(s1, . . . , tn) ∧ P →
( ∧

1≤j≤n
f(t1, . . . , tm) � sj

)
∧ P

if f > g

Decomposition-left

f(t1, . . . , tm)#g(s1, . . . , sn) ∧ P →
( ∨

1≤i≤m
ti � g(s1, . . . , sn) ∧ P

)

if f < g

Decomposition-lex
f(t1, . . . , tn)#f(s1, . . . , sn) ∧ P →∨
1≤i<n

[( ∧
1≤j<i

tj ' sj

)
∧ ti � si ∧

( ∧
i<k≤n

f(t1, . . . , tn) � sk

)
∧ P

]
∨[( ∧

1≤j<n
tj ' sj

)
∧ tn#sn ∧ P

]
∨
( ∨

1≤i≤n
ti � f(s1, . . . , sn) ∧ P

)

if Stat(f) = lex
Decomposition-mul-left

f(t1, . . . , tm)#f(s1, . . . , sn) ∧ P →∨
π∈Sm

∨
κ∈Sn

[
tπ(1) � . . . � tπ(m) ∧ sκ(1) � . . . � sκ(n) ∧

∨
1≤i<n

[( ∧
1≤j<i

tπ(j) ' sκ(j)

)
∧ tπ(i) � sκ(i) ∧ P

]
∨[( ∧

1≤j<n
tπ(j) ' sκ(j)

)
∧ tπ(n)#sκ(n) ∧ P

]]

if Stat(f) = mul, m ≥ n

Decomposition-mul-right
f(t1, . . . , tm)#f(s1, . . . , sn) ∧ P →∨

π∈Sm

∨
κ∈Sn

[
tπ(1) � . . . � tπ(m) ∧ sκ(1) � . . . � sκ(n) ∧

∨
1≤i<m

[( ∧
1≤j<i

tπ(j) ' sκ(j)

)
∧ tπ(i) � sκ(i) ∧ P

]
∨[( ∧

1≤j<m
tπ(j) ' sκ(j)

)
∧ tπ(m) � sκ(m) ∧ P

]]

if Stat(f) = mul, m < n

Table 3.4: The Rules of RPO
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multisets of natural numbers:

{{|s1|, |t1|}, . . . , {|sn|, |tn|}, {|u1|, |v1|}, . . . , {|um|, |vm|}}

where |s| is the number of function symbols and variables occurring in
s (size of s). Such multisets are ordered by the usual multiset extension
of > on N (See Def. 2.3.8).

• Φ2(s1 ' t1 ∧ . . . ∧ sn ' tn ∧ u1#v1 ∧ . . . ∧ um#vm) is the number
of unsolved variables in the system. A variable x is solved in such a
system if x is a member of an equation x = t and x occurs only once
in the system. (Note: For proof purposes this definition of solved is
different from the Definitions 3.2.3 and 3.2.2.)

• Φ(
∨

1≤j≤n Pj), where Pj is a conjunction of equations and inequations,
is the multiset of pairs 〈Φ2(Pj), Φ1(Pj)〉. Such interpretations are or-
dered using the multiset extension of the lexicographic extension of >
to pairs.

We will prove that Φ is strictly decreasing by application of any rule to
an RPO constraint (in DNF) or (in some exceptions described below) by
application of a rule and any possible sequence of following applications of
rules to the constraint.

Assume that the constraint has the form P ∨
∨

1≤j≤n Pj and P →∨
1≤i≤m P ′

i . Now we have to prove that, for every 1 ≤ i ≤ m, either
Φ2(P ′

i ) < Φ2(P ) or Φ2(P ′
i ) = Φ2(P ) and Φ1(P ′

i ) < Φ1(P ). Note that
Φ2(P ′

i ) ≤ Φ2(P ) for every rule, because there’s no rule which turns a solved
variable into an unsolved variable. Let us check now the application of the
rules using Decomposition-lex in Table 3.2 as an example. In the following,
P denotes the conjunctive subproblem to which the rule is applied:
(Decomposition-lex):

P ≡ P ′ ∧ f(~t) ' f(~u)→ P” ≡ P ′ ∧
∧

1≤i≤m

ti ' ui

Φ1(P ) = {a1, . . . , ak, {1 + b1 + · · ·+ bm, 1 + c1 + · · ·+ cm}}

with ai size of the rest problem terms, bi = |ti| and ci = |ui|.

Φ1(P”) = {a1, . . . , ak, {b1, c1}, . . . , {bm, cm}}

⇒ Φ1(P”) < Φ1(P ). (By definition of >mul on N ).

The proof is similar for all the other Decomposition rules in Tables 3.2 and
3.3: in all these cases the original equation or inequation is removed and



3.2 The Algorithm 23

(possibly many) new equations and/or inequations are added with subterms
of the original equation or inequation on one or both sides. Thus Φ1 de-
creases. The Tautology rules in both tables and the last three rules in Simpli-
fication in Table 3.3 remove one equation or inequation and thus reduce Φ1.
The two Cycle rules, Clash and the first rule in Simplification in Table 3.3
reduce the whole problem to ⊥, and so Φ1 decreases as Φ1(⊥) = {{0}}.
This leaves us with the Substitution rules and the Merge rules. Let us first
look at Merge:
(Merge):

P ≡ P ′ ∧ x ' t ∧ x ' s→ P ′′ ≡ P ′ ∧ x ' t ∧ t ' s if size(t) ≤ size(s)

This rule increases Φ1:

Φ1(P ) = {a1, . . . , ak, {1, |t|}, {1, |s|}},
Φ1(P ′′) = {a1, . . . , ak, {1, |t|}, {|t|, |s|}}

But apart from rules that reduce Φ1 drastically, the only rules that can be
applied to the new equation t ' s are the equational Decomposition rules.
So the worst case for applying Merge and then another rule to t ' s is that
{|s|, |t|} is replaced by (possibly many) {|si|, |tj|}. Due to the condition
size(t) ≤ size(s) all those {|si|, |tj|} multisets are smaller than {1, |s|} in
Φ1(P ), and thus Φ1 decreases.

Finally the Substitution rules: Substitution in Table 3.2 removes all oc-
currences (but one) of x in the problem and thereby decreases Φ2. The two
Substitution rules in Table 3.3 are similar to Merge, with the difference that
the RPO Decomposition rules have to be applied repeatedly.

This proves the strict decreasingness of Φ by application of any rule
(or by application of a rule and then any possible sequence of following
applications of rules). Since the inequational problems are interpreted by Φ
in a well-founded domain, this proves termination.

Finally we’ll prove the completeness of the rules. The normalization
rules in 3.2 keep the constraint in the following form:

C ≡
∨

1≤i≤l

Pi =
∨

1≤i≤l




 ∧

1≤j≤m

sij ' tij


 ∧


 ∧

1≤k≤n

uik#vik






Now assume that the repeated application of the rules terminates, pro-
ducing C ≡

∨
1≤i≤l Pi. If any of the Pi is not a solved problem as in Def. 3.2.3,

one of the following cases applies:

1. uik = f(~u)#g(~v) = vik for some k
⇒ One of the Decomposition rules in Table 3.4 or Tautology , Cycle or
Simplification in Table 3.3 can be applied.

2. Pi' not solved



24 Chapter 3. RPO Constraints

(a) some yl not a variable
⇒ Tautology, Clash or some Decomposition rule in Table 3.3 ap-
plies.

(b) some yl = yl′ for l 6= l′

⇒ Merge in Table 3.2 can be applied.

(c) some yl ∈ Vars(sl′) for l 6= l′:
⇒ yl ' sl ∧ yl′ ' sl′ ∧ Pi with yl ∈ Vars(sl′)
If the equations in Pi' cannot be rearranged s.t. this condition
is not violated, then Cycle in Table 3.3 can be applied.

3. Some t′j is a variable
⇒ No violation, the inequation then is part of the xi#ti.

4. Some t′j = 0
⇒ The first or second rule in Simplification in Table 3.4 can be applied.

5. Some xi ∈ Vars(ti)
⇒ Rule (s � s → ⊥) (Table 3.2), Tautology (Table 3.4) or Cycle
(Table 3.4) applies.

6. Some x′
j ∈ Vars(t′j)

⇒ Tautology in Table 3.4 applies.

7. Some yl = ti: xi#yl ∧ yl ' sl ∧ Pi

⇒ Substitution in Table 3.4 applies.

8. Some yl = x′
j : t′j#yl ∧ yl ' sl ∧ Pi

⇒ Substitution in Table 3.4 applies.

As the system terminates, this proves completeness. 2

Now after applying the normalization, unification and RPO rules the
constraint is a disjunction of solved problems, hence an RPO constraint is
satisfiable if and only if one of its solved problems is satisfiable. Unfortu-
nately, it is not easy to check satisfiability of solved problems.

Lemma 3.2.2
Let P = t′1#x′

1 ∧ · · · ∧ t′m#x′
m be a solved problem, no t′j is a variable, then

P is solved by a substitution σ with xσ = 0 for all x ∈ Vars(P ).
Proof: Obvious. 2

Due to the definition of solved problems (see Def. 3.2.3) and Lemma 3.2.2
it’s easy to see that only right atoms play a role for the satisfiability of a
solved problem. The idea now is to eliminate all right atoms and then (if
the solved problem is satisfiable) compute a solution by setting all x′

j ’s to 0
and compute the substitution for the yl’s from right to left.
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The method in [RN91] (for LPO constraints) to eliminate right atoms
works as follows: replace xi � ti for the maximal right term ti with xi '
succ(ti). As we don’t know the maximal right term, all right terms have to
be tried. This approach works only if the successor function is total, which
is not the case for RPO.

Definition 3.2.4 (succ)
Let t = g(t1, . . . , tn) ∈ T (F ,X ) and s = g(s1, . . . , sn) ∈ T (F). Recall: 0 is
the smallest constant in F , f is the smallest non-constant function symbol
in F , C = {ci ∈ F0 | ci < f, ci 6= 0} and |C| = m. Now the successor
function succ is defined as follows:

succ(0) =




c1 if C 6= ?

f(~0) if C = ?, arity(f) fixed
f(0) if C = ?, arity(f) arbitrary

succ(ci) =




ci+1 if i < m

f(~0) if i = m, arity(f) fixed
f(0) if i = m, arity(f) arbitrary

succ(s) =




f(~0, succ(sn)) if Stat(f) = lex, g = f ,
s1 = . . . = sn−1 = 0

f(~0, s) if Stat(f) = lex, otherwise
f(~sk, succ(sk+1),~0) if Stat(f) = mul, g = f ,

arity(f) fixed
f(~sk, succ(sk+1)) if Stat(f) = mul, g = f ,

arity(f) arbitrary
f(s,~0) if Stat(f) = mul, g 6= f ,

arity(f) fixed
f(s) if Stat(f) = mul, g 6= f ,

arity(f) arbitrary

succ(t) =




f(~0, t) if Stat(f) = lex, > simple
f(t,~0) if Stat(f) = mul, g 6= f ,

arity(f) fixed
f(t) if Stat(f) = mul, g 6= f ,

arity(f) arbitrary
undefined otherwise
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where we assume for the third and fourth case of succ(s) that the si are
sorted in descending order wrt. �rpo and sk+1 is the leftmost subterm of
g(s1, . . . , sn) with si ' si+1 for all k < i < n.

Lemma 3.2.3
Let t be a term with t ∈ dom(succ). There is no term t′ with succ(t) �rpo

t′ �rpo t.
Proof: We proceed by induction on the size of t wrt. �F

rpo. The first
three cases for succ(0) and the next three cases for succ(ci) are obvious
(due to >F ) . Now let’s look at the first case of succ(s): assume succ(s) =
f(~0, succ(sn)) �F

rpo t′ �F
rpo f(~0, sn) = s for some t′. Then f(~0, succ(sn)) �F

rpo

f(~0, t′′) �F
rpo f(~0, sn) for some t′′, and that implies succ(sn) �F

rpo t′′ �F
rpo sn,

which is impossible by induction hypothesis. The proof for the other cases
of succ(s) is analogous to this one. Finally let’s look at the first case of
succ(t): assume there is a t′ with succ(t) = f(~0, t) �F

rpo t′ �F
rpo t. From

f(~0, g(t1, . . . , tn)) �F
rpo t′ follows either g(t1, . . . , tn) �F

rpo t′ (because f is the
smallest function symbol), which is impossible as g(t1, . . . , tn) �F

rpo t′ �F
rpo

g(t1, . . . , tn) can be derived, or t′ = f(~0, t′′) �F
rpo g(t1, . . . , tn) for some t′′.

Then t′′ �F
rpo g(t1, . . . , tn) which is impossible as f(~0, g(t1, . . . , tn)) �F

rpo

f(~0, t′′). The proofs for the other cases of succ(t) are similar again. 2

For the following three lemmata we assume P = x1#t1 ∧ · · · ∧ xn#tn ∧
t′1#x′

1∧· · ·∧t′m#x′
m is a solved problem. The equality part y1 ' s1∧· · ·∧yk '

sk is not mentioned, because it plays no role for the satisfiability of the solved
problem since yl 6= xi, yl 6= ti and yl 6= x′

j and variables xi are replaced only
by terms which keep P' solved.

Lemma 3.2.4 ([Wei94])
Let P be a solved problem with maximal right term ti occuring in right
atom xi#ti and ti ∈ dom(succ). Now

P satisfiable ⇔
R = P \ {t′j [xi]p#x′

j | p 6= λ, for all j}
∪ {ti � tj | for all j}
∪ {xi ' succ(ti)}

satisfiable.
Proof:
”⇒” Let τ be a solution for P . We construct a ground substitution τ ′

by xiτ
′ = succ(ti)τ and yτ ′ = yτ otherwise. Now τ ′ is a solution for R:

obviously xiτ
′ 'rpo succ(ti)τ ′. Since ti is maximal and occurs in right atom

xi � ti, xi /∈ Vars(tj), for all j and thus tjτ = tjτ
′ for all j. This proves that

τ ′ satisfies all atoms ti � tj and all right atoms. Since xiτ �rpo xiτ
′ and

there are no left terms including xi in R, τ ′ satisfies all left term literals.
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”⇐” Assume some substitution τ satisfies R. Now we construct a substitu-
tion τ ′ satisfying both R and P : yτ ′ = yτ if xiτ �rpo yτ and yτ ′ = xiτ other-
wise. First, we show that τ ′ satisfies R: by construction xiτ

′ 'rpo succ(ti)τ ′.
Since ti is maximal wrt. τ , tjτ

′ = tjτ and xiτ �rpo tiτ �rpo tjτ . This guar-
antees that τ ′ satisfies all right atoms and all atoms ti � tj . For the left
atoms, if t′jτ �rpo xiτ for some j, then t′jτ

′ �rpo xiτ
′, hence τ ′ satisfies

t′j#x′
j. If xiτ �rpo t′jτ , then t′jτ = t′jτ

′, x′
jτ = x′

jτ
′, hence τ ′ satisfies t′j#x′

j.
This completes the proof that τ ′ is a solution for R. In order to show that
τ ′ satisfies P , it has to be shown that τ ′ satisfies the left atoms t′j [xi]p#x′

j

with p 6= λ. This is obvious since t′j[xi]pτ ′ �rpo xiτ
′ �rpo x′

jτ
′. 2

Lemma 3.2.5 ([Wei94])
Let P be a solved problem with maximal right term ti occurring in right
atom xi � ti and ti /∈ dom(succ). Then

P satisfiable ⇔
R = P \ {t′j [xi]p#x′

j | p 6= λ, for all j}
\ {xi#tj | for all j}
∪ {ti � tj | for all j}
∪ {xi ' ti}

is satisfiable with ground substitution σ, and

Q = P \ {t′j[xi]p#x′
j | p 6= λ, for all j}

∪ {ti � tj | for all j}
∪ {xi ' succ(tiσ)}

is satisfiable.
Proof:
”⇒” Let τ satisfy P . We construct a ground substitution σ by xiσ = tiτ
and yσ = yτ for all y 6= xi. Now σ satisfies R: obviously xiσ 'rpo tiσ. Since
ti is maximal and occurs in right atom xi � ti, xi /∈ Vars(tj), for all j and
thus tjσ = tjτ for all j. This proves that σ satisfies all atoms ti � tj and
all right atoms, because there is no right atom xi#tj. Since xiτ �rpo xiσ
and there are no left terms including xi in R, σ satisfies all left term literals.
Now the substitution τ ′ with xiτ

′ = succ(tiσ) and yτ ′ = yτ satisfies Q:
since xiτ

′ = succ(tiτ) and yτ ′ = yτ this is already shown by the first part
of Lemma 3.2.4.

”⇐” Assume that σ satisfies R and τ satisfies Q. We construct a sub-
stitution τ ′ by: yτ ′ = yτ if xiτ �rpo yτ and yτ ′ = xiτ otherwise. Now we
show that τ ′ satisfies both Q and P just as we did for the second part of
Lemma 3.2.4. 2
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Lemma 3.2.6 ([Wei94])
Let P be a solved problem with maximal right term ti occurring in right
atom xi � ti and there is no maximal right term tj in P occurring in right
atom xj � tj . Then

P satisfiable ⇔
R = P \ {t′j [xi]p#x′

j | p 6= λ, for all j}
∪ {ti � tj | for all xj � tj ∈ P}
∪ {ti � tj | for all xj � tj ∈ P}
∪ {xi ' ti}

is satisfiable.
Proof:
”⇒” Let τ satisfy P . We construct a ground substitution τ ′ by xiτ

′ = tiτ
and yτ ′ = yτ otherwise. Now τ ′ satisfies R: obviously xiτ

′ 'rpo tiτ
′. Since

ti is maximal and occurs in right atom xi � ti, either xi /∈ Vars(tj) or tj = xi

and xj � tj ∈ P for all j. Since xiτ � xiτ
′, τ ′ satisfies all atoms ti#tj and

all right atoms. For all left atoms t′j#x′
j ∈ R we have xi /∈ Vars(t′j), hence

τ ′ satisfies all left atoms in R.
”⇐” Assume that τ satisfies R. We construct a substitution τ ′ by: yτ ′ = yτ
if xiτ �rpo yτ and yτ ′ = xiτ otherwise. Now we show that τ ′ satisfies both
R and P . First, we show that τ ′ satisfies R: obviously xiτ

′ 'rpo tiτ
′ and

τ ′ satisfies all atoms ti#tj because tjτ
′ = tjτ for all j. For all right atoms

xk#tk ∈ R, either tiτ 'rpo tkτ , whence by assumption xk � tk ∈ R and
xkτ

′ 'rpo xiτ
′ �rpo tkτ

′ or tiτ �rpo tkτ and xkτ
′ �rpo tkτ

′. The rest of the
proof follows the argumentation of the corresponding part in Lemma 3.2.4.
2

Theorem 3.2.7
The satisfiability of RPO constraints is decidable.
Proof:
Use the rewrite system in Tables 3.1, 3.2, 3.3 and 3.3 to rewrite the RPO
constraint into a disjunction of solved problems. Check the satisfiability
of each solved problem by recursively applying Lemma 3.2.4, Lemma 3.2.5
or Lemma 3.2.6 until one solved problem is found satisfiable or all solved
problems have been found unsatisfiable. The recursive check for solved prob-
lems terminates, because the number of variables in the recursively called
problems decreases strictly.

3.3 Related Work

As already stated, the decidability of the satisfiability of LPO constraints
was first proved by H. Comon in [Com90a]. J.P. Jouannaud and M. Okada
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extended this result to RPO constraints in [JO91]. A. Rubio and R. Nieuwen-
huis introduced a more practicable and efficient algorithm for LPO con-
straints in [RN91]. Ch. Weidenbach extended their result to RPO con-
straints and unrestricted precedences in [Wei94]. His result is extended to
arbitrary arity for multiset function symbols and has been implemented in
this work.

Now we will give a (very concise) overview over the methods used in the
above mentioned works:

All four algorithms start out with a set of rewrite rules to transform
the input constraint into a disjunction of solved problems. From this point
[Com90a] and [JO91] reduce the satisfiability of the ordering constraint to
the satisfiability of simple systems and then to the satisfiability of natural
simple systems (which is easy to decide). However, this process is very
complicated and adds another degree of complexity. Also, their descriptions
of the algorithms are quite vague.

The algorithm in [RN91] introduces a nice trick: suppose the input con-
straint has been transformed into a disjunction of solved problems. As we
saw above, left atoms and equations can be disregarded, as they play no role
for the satisfiability. Hence, the object is to transform a solved problem P
into another solved problem R with

P satisfiable ⇔ R satisfiable and R has less right atoms than P

The variable xi in the right atom xi � ti can be replaced by succ(ti) if ti
is the maximal right term. As it is not known which term ti is maximal,
we have to guess and include ti � tj | ∀j in R. Also, succ is not total on
ground terms for arbitrary precedences. This problem is solved in [RN91]
by restricting the precedence to simple precedence, where succ is total:

succF (tσ) = f(~0, tσ) if F simple

Now this step is recursively applied to R, the number of right atoms de-
creases in each step and hence the satisfiability can be decided.

For RPO constraints succ is not total, even for simple precedences. So
[Wei94] introduces another step to the above procedure: if succ(ti) is defined,
proceed as above. If succ(ti) is not defined, replace the maximal right atom
in P with xi ' ti, check the satisfiability of the new problem. If it is
satisfiable with ground substitution σ, replace the maximal right atom in
P with xi ' succ(tiσ) (as RPO is total on ground terms, succ is total on
ground terms, too). Then go on as in [RN91].

This does not only enable us to apply the methods in [RN91] to RPO
constraints, but also allows arbitrary precedences, as the need for a total
successor function is circumvented.
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4
Implementation

In the previous chapter we proved that the satisfiability of RPO constraints
is decidable and also gave the ideas for an actual implementation. In this
chapter we will give an overview over the implementation, look at problems
and how they are solved, discuss performance issues and look at some details
where the implementation is not straightforward.

4.1 Notation

For the presentation of algorithms we use a standardized notation: types
like integer or constraint and keywords like algorithm, begin, end, if,
or then are written in boldface. The scope of conditional and loop con-
structs ends with an fi or od (for if and do respectively) and is marked by
indentation.

The keywords for conditional constructs (if, then, else, elseif and fi)
and loop constructs (while, forall, do and od) have the usual meaning
(as in C, C++ or other imperative programming languages). Two keywords
may require further explanation: break causes termination of the smallest
enclosing loop statement, and continue transfers control to the end of the
smallest enclosing loop construct.

Comments follow C++ syntax: // denotes the beginning of a comment,
which ends at the end of the line.
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4.2 Technical Details

The implementation was done in C++, and a library with standard imple-
mentations of data structures and methods for symbols, signatures, terms
and formulas was used. In this library called EARL, terms and formulas are
implemented in the usual way: they are stored as trees where the nodes
contain a symbol and a (possibly empty) list of pointers to subterms or
subformulas respectively. (See [WMCK95]).

4.3 Overview

R. Nieuwenhuis proved in [Nie93b] that deciding the satisfiability of LPO–
constraints is NP–hard and the same proof applies for RPO–constraints (as
LPO is contained in RPO). This implies that a careful implementation and
additional simplifications of the problem are crucial for the performance and
hence the usefulness in real applications.

A very performance critical part of the algorithm is the rewrite system.
We saw that it rewrites the input constraint into a disjunction of solved
problems. Hence for satisfiable constraints it suffices to find one satisfiable
solved problem. So a major improvement compared to the approach to apply
all rules exhaustively is to compute the solved problems incrementally. This
saves a lot of computations, as some rules produce many new disjunction
elements: for instance, the Decomposition-mul rule rewrites an inequation
f(s1, . . . , sn)#f(t1, . . . , tm) into (n! ·m! ·min(n, m)) new problems.

Figure 4.1 shows the main loop of the algorithm. All solved problems
P of a constraint T are computed in function GIVE SOLVED PROBLEM and
then checked by the recursive algorithm suggested by the Lemmata 3.2.4,
3.2.5 and 3.2.6. If no solved problem was found satisfiable, ⊥ is returned,
otherwise > or one solution for T . The procedure GIVE SOLVED PROBLEM
is by far the largest and most complicated part of the implementation: it
includes the application of the rewrite rules with additional methods to
compute the solved problems incrementally and also a simplifier for RPO
inequations.

4.4 Computing the Successor of a Term

In lines 20 and 35 of Figure 4.1 we need to compute the successor of a term.
Recall Definition 3.2.4: for the definition of the successor of a ground term
s = g(s1, . . . , sn) ∈ T (F) and f = g, Stat(f) = mul, we assume that the
si are sorted in descending order wrt. �rpo. Therefore, we actually have to
sort the subterms in the implementation of the successor function.

To compare the elements, the sort algorithm (InsertionSort) uses the
simplifier (see Section 4.8 for a description of the simplifier and Inser-
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1 algorithm SATISFIABLE(constraint T )
2 begin
3 while true do
4 P :=GIVE SOLVED PROBLEM(T )
5 if P = ⊥ or P = ? then return ⊥ fi
6 if P = > then return > fi
7 if there is no right term ti ∈ P then return P fi
8 forall right atoms xi#ti in P do
9 if # =� then // see Lemma 3.2.6

10 R := P \ {t′j [xi]p#x′
j | p 6= λ, ∀j} ∪ {ti � tj | ∀(xj � tj) ∈ P}

∪ {ti � tj | ∀(xj � tj) ∈ P} ∪ {xi ' ti}
11 SOLUTION:=SATISFIABLE(R)
12 if SOLUTION 6= ⊥ then
13 return SOLUTION
14 else
15 continue
16 fi
17 else // # =�
18 if ti ∈ Dom(succ) then // see Lemma 3.2.4
19 R := P \ {t′j [xi]p#x′

j | p 6= λ, ∀j}
20 ∪{ti � tj | ∀j} ∪ {xi ' succ(ti)}
21 SOLUTION:=SATISFIABLE(R)
22 if SOLUTION 6= ⊥ then
23 return SOLUTION
24 else
25 continue
26 fi
27 else // ti /∈ Dom(succ), see Lemma 3.2.5
28 R := P \ {t′j [xi]p#x′

j | p 6= λ, ∀j} \ {xi#tj | ∀j}
29 ∪{ti � tj | ∀j} ∪ {xi ' ti}
30 σ :=SATISFIABLE(R)
31 if σ = ⊥ then
32 continue
33 fi
34 Q := P \ {t′j [xi]p#x′

j | p 6= λ, ∀j}
35 ∪{ti � tj | ∀j} ∪ {xi ' succ(tiσ)}
36 SOLUTION:=SATISFIABLE(Q)
37 if SOLUTION 6= ⊥ then
38 return SOLUTION
39 fi
40 fi
41 fi
42 od
43 od
44 end

Figure 4.1: SATISFIABLE: Satisfiability Check for RPO Constraints
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tionSort). The simplifier can be used not only to find simplifications for
(in-)equations on terms in T (F ,X ), but also to compute the relation be-
tween two ground terms.

For the other cases in the definition of the successor function, the imple-
mentation is straightforward.

4.5 Incremental Computation of Solved Problems

In this section we will look at the details of GIVE SOLVED PROBLEM. The
input constraint T is considered to be of the following form:

T =
∨

1≤i≤n

Fi Fi formula, n ≥ 1

Now the constraint is stored as a list of pairs 〈Fi, ci〉, where ci is a counter for
the number of already computed new disjuncts. The counter is initially set
to 0. The constructor function for constraint also does some preprocess-
ing: nested ”∧”’s and ”∨”’s are flattened, a ”⊥” in disjunctions is silently
discarded and a ”>” in the top-level disjunction leads immediately to the
result ”satisfiable”. Table 4.1 shows the preprocessing rules.

∧(F1, . . . , Fi−1,∧(F ′
1, . . . , F

′
n), Fi+1, . . . , Fm)

→ ∧(F1, . . . , Fi−1, F
′
1, . . . , F

′
n, Fi+1, . . . , Fm)

∨(F1, . . . , Fi−1,∨(F ′
1, . . . , F

′
n), Fi+1, . . . , Fm)

→ ∨(F1, . . . , Fi−1, F
′
1, . . . , F

′
n, Fi+1, . . . , Fm)

∨(F1, . . . , Fi−1,⊥, Fi+1, . . . , Fm)

→ ∨(F1, . . . , Fi−1, Fi+1, . . . , Fm)

∨(F1, . . . , Fi−1,>, Fi+1, . . . , Fm)

→ >

Table 4.1: Preprocessing of Constraints

An outline of GIVE SOLVED PROBLEM is given in Figure 4.2. This figure
shows how rules of three different types wrt. the incremental computation of
solved problems are handled. It consists of one big loop, every rule is tried
for applicability on the first formula, if none applies it is a solved problem.
Then it is removed from the list and returned. In order to avoid recursion
in this procedure, all rules are only checked top-level in the elements of
the list. This requires another rule to keep the rewrite system complete:
(¬¬a → a). Also, all rules that don’t have a top-level ”∧” on the left side
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1 algorithm GIVE SOLVED PROBLEM(constraint T )
2 // T list of pairs 〈Fi, ci〉 with Fi formula and ci integer.
3 begin
4 while true do
5 F := F1

6 // ...
7 if rule of type 1 applies to F then
8 // rule: F → F ′, F ′ no disjunction
9 replace 〈F1, 0〉 with 〈F ′

1, 0〉 in list T

10 continue
11 fi
12 // ...
13 if rule of type 2 applies to F then
14 // rule: F → F ′

1 ∨ F ′
2

15 remove 〈F1, 0〉 from list T

16 T := cons(〈F ′
1, 0〉, cons(〈F ′

2, 0〉, T ))
17 continue
18 fi
19 // ...
20 if rule of type 3 applies to F then
21 // rule: F →

∨
1≤k≤p F ′

k for p ≥ 3
22 if c1 = p− 1 then
23 remove 〈F1, 0〉 from T

24 T := cons(〈F ′
p, 0〉, T )

25 continue
26 else
27 replace 〈F1, c1〉 by 〈F1, (c1 + 1)〉 in T

28 T := cons(〈F’(c1+1), 0〉, T )
29 continue
30 fi
31 fi
32 // ...
33 // All rule tested, none applied:
34 remove 〈F1, 0〉 from T

35 return F

36 od
37 end

Figure 4.2: GIVE SOLVED PROBLEM: Computation of a Solved Problem
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(like (¬(s � t) → t � s)) have to be checked for the top-level subformulas
of conjunctions. So the just mentioned example is implemented as:∧

1≤i≤n

Fi ∧ ¬(s � t), n ≥ 0 →
∧

1≤i≤n

Fi ∧ t � s

Now let us look at how the incremental computation of a solved problem is
done: the idea is to compute just one new disjunction element at a time and
to then apply the rewrite system to the new formula. This will eventually
lead to a solved problem, which can be checked for satisfiability. If the check
is not successful, compute the next disjunction element with the rule where
we left off. The counter ci in 〈Fi, ci〉 is used to remember how many new
formulas have already been computed.

Three cases are distinguished: if a rule produces just one new disjunction
element, there is no need for the incremental approach, hence the old formula
is just replaced by the new one. This is shown as rule of type 1 in lines 7–11
of Figure 4.2. In the second case, shown in lines 13–18, two new disjunction
elements are generated. Here both new formulas replace the old one, as no
space would be saved by generating just one and keeping the old one. The
interesting case is shown in lines 20–30: a rule which generates three or more
new disjunction elements. One new formula is generated, put in front of the
old one and the counter of the old formula is incremented. Then we jump
to the beginning of the loop and the rewrite system is now working on the
new formula. Eventually, we will get back to the old formula and generate
the next new one.
Let us look at an example: suppose GIVE SOLVED PROBLEM is working on the
following constraint:

C = {〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 0〉}
The first rule that applies is a generalization of Rule 16 in Figure 3.1:

 ∨
1≤i≤n

Fi


 ∧ F →

∨
1≤i≤n

(Fi ∧ F )

This produces the following constraint:

C = {〈(¬(f(y) � b) ∧ a � x), 0〉, 〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 1〉}
Rule 11 in Figure 3.1 leads to

C = {〈(b � f(y) ∧ a � x), 0〉, 〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 1〉}
where the first element is a solved problem. It is removed and returned.
The next call of GIVE SOLVED PROBLEM looks like this:

C = {〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 1〉}
→ C = {〈(⊥ ∧ a � x), 0〉, 〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 2〉}
→ C = {〈⊥, 0〉, 〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 2〉}
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Here the first element ⊥ is immediately discarded as unsatisfiable and the
last step is done:

→ C = {〈(∧(∨(¬(f(y) � b),⊥, b � a), a � x)), 2〉}
→ C = {〈(b � a ∧ a � x), 0〉}

The last solved problem is returned and the remaining constraint is empty.
This example uses the most simple rule for the incremental approach:

it is straightforward to compute the i-th new formula. For other rules,
especially the rules dealing with multiset status function symbols, this is
quite complicated. We have to deal with problems like the computation of
the i-th permutation of (1, . . . , n) and case differentiations for variable arity
function symbols.

It should be noted that this method to compute the solved problems
incrementally relies on the way the rules are checked and applied. All rules
are checked and applied on the first element in the list in a fixed order. After
a rule has been applied, we start at the beginning. This ensures that for
a first element 〈Fi, i〉 with i > 0 exactly the rule that has previously been
applied incompletely will be applied.

Another important aspect for the order of the rewrite rules is perfor-
mance: it is easy to see that rules which make the constraint smaller and
can be checked fast should be tried first.

In the implementation, the normalization rules in Table 3.1 are tested
first: we start with Rules 1–12, as they reduce the size of the problem. Then
the simplifier described in Section 4.8 is called on equations and inequations.
And finally the rest of the rules in Table 3.1 is checked. As noted before,
we also have to check the rules inside conjunctions, hence now rules 1, 2
and 9–15 and the simplifier are checked for the top level subformulas of a
disjunction.
At this point, the head of the constraint list has the following form:

∧
1≤j≤n

Fi with Fi ∈ {⊥,>, si � ti, si � ti, si ' ti}

Note that Fi ∈ {⊥,>} only if n = 1. As mentioned before, a ⊥ would
be discarded and a > would be returned. Next all rules in Table 3.2 are
checked, then the rules in Tables 3.3 and 3.4. Again, the simplifying rules
are checked earlier and rules that increase the size of the problem are checked
later. One exception is the Simplification rule in Table 3.3: as the condition
“(x ' t ∧ P') is solved” is complicated to check, we just test this rule last.
Since all other rules have been checked before without being applicable, this
condition is fulfilled and doesn’t need to be checked.
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4.6 Fast Computation of Permutations

Let’s recall the first part of Rule Decomposition-mul in Table 3.2 as an
example:

f(t1, . . . , tn) ' f(s1, . . . , sn) ∧ P →
∨

π∈Sn




 ∧

1≤j≤n

tj ' sπ(j)


 ∧ P




if Stat(f) = mul

This rule rewrites one equation into a disjunction of n! new equations (for
n = arity(f)). For the incremental approach, the problem is not to com-
pute all permutations of (1, . . . , n), but to compute the i-th permutation of
(1, . . . , n) in some enumeration of all permutations. The naive way to do
this, is to just enumerate all permutations up to the i-th permutation, but
this means enumerating 1 + 2 + · · ·+ n! = n!(n! + 1)/2 permutations.

As this is very bad wrt. performance, we need an algorithm that com-
putes every permutation only once. I spent a lot of time thinking up an
algorithm that computes the i-th permutation of all permutations in increas-
ing lexicographical order. My algorithm uses O(n2) copies to compute one
permutation. Later I found out that D.E. Knuth introduced an algorithm
in [Knu73] which computes a distinct integer number for each permutation
of (1, . . . , n):
Given a permutation (U1, . . . , Un) of (1, . . . , n), the algorithm computes an
integer f(U1, . . . , Un) with 0 ≤ f(U1, . . . , Un) ≤ n! and f(U1, . . . , Un) =
f(V1, . . . , Vn)⇔ (U1, . . . , Un) = (V1, . . . , Vn).

Knuth also suggests that this algorithm can be run backwards, i.e. com-
pute a distinct permutation for an integer. The generated permutations are
not ordered in increasing lexicographic order, but that doesn’t matter for
our application.

(Note: There is a minor bug in Knuth’s description of his algorithm:
”set s ← f mod r” should read ”set s ← (f mod r) + 1”. I reported the
bug to Knuth and it made its way into the errata list, now I’m waiting for
my $2.56 cheque. . . ).

This algorithm takes only O(n) copies to compute a permutation. So
Knuth’s algorithm is used in the final version of the implementation, see
Algorithm 4.3.

4.7 Cycle Detection

The rules called Cycle in Table 3.2 and Table 3.3 have been implemented
by building a graph and using a standard cycle–detection algorithm (Topo-
logical Sort, see [Meh84]). We will see now how exactly this works with the
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1 algorithm PERM(int n,int i)
2 int A[n]
3 int r, s, f , i

4 begin
5 // initialize A with 0, 1, . . . , n− 1:
6 forall 0 ≤ i ≤ n do
7 A[i] = i

8 od
9 f = i

10 forall 2 ≤ r ≤ n do
11 s = f mod r

12 f = bf/rc
13 swap A[s] and A[r − 1]
14 od
15 return A

16 end

Figure 4.3: PERM: Compute the i-th Permutation of (0, . . . , n− 1)

first Cycle rule as an example:

x1 ' t1[x2]p1 ∧ . . . ∧ xn ' tn[x1]pn ∧ P → ⊥
if ∃ n, i with 1 ≤ i ≤ n, pi 6= λ

First, the equational part of the problem P' is stored in two lists. One list
contains all xi ' ti[xj]pi with pi 6= λ, the other list all the xi ' ti[xj]pi

with pi = λ, i.e. xi ' xj . Then we iterate over the second list, using each
equation as substitution [xj/xi] on the equations in both lists and deleting
the equation afterwards. This will eventually leave us with an empty second
list.

Now the first list is used to build a graph: the xi’s on the left side
establish the nodes. Each xi ' ti[xj]pi establishes an edge from node xi to
node xj (if there is a node xj). The graph is implemented by an array of
adjacency lists, which in turn are lists of integers.

To make things clearer, we will look at two examples: a problem with cy-
cles, shown in Problem 4.1, and a cycle–free problem, shown in Problem 4.2.

x1 ' f(g(x2, a), b) ∧ x2 ' h(x4) ∧ x3 ' g(x1, b) ∧ x4 ' f(0, x3) ∧ P (4.1)
x1 ' f(x2, x3) ∧ x2 ' g(h(a), x4) ∧ x3 ' f(x2, x4) ∧ x4 ' f(a, b) ∧ P (4.2)

Figure 4.4 shows the corresponding graphs and the adjacency list represen-
tation of the graphs. The adjacency list representation of a graph is used as
input for a standard cycle–detection algorithm: Topological Sort . Topolog-
ical Sort is used here just to decide if a graph contains a cycle and hence
the actual order of the nodes is not computed. The algorithm shown in Fig-
ure 4.5 uses an array to store the indegree of each node and a stack to store
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76540123x1 // 76540123x2 6676540123x3
vv 76540123x4oo

(a) Graph for Example 4.1

76540123x1 // 6676540123x2
((76540123x3oo // 76540123x4

(b) Graph for Example 4.2

x1 : G[0] = {1}
x2 : G[1] = {3}
x3 : G[2] = {1}
x4 : G[3] = {2}

(c) Adjacency List for
the Above Graph

x1 : G[0] = {1, 2}
x2 : G[1] = {3}
x3 : G[2] = {1, 3}
x4 : G[3] = { }

(d) Adjacency List for the
Above Graph

Figure 4.4: Graphs and the Corresponding Adjacency Lists

zero–indegree nodes. It works as follows: choose a node with zero indegree
(i.e., no incoming edges), remove the node and its outgoing edges from the
graph. Repeat until the graph is empty or no node with zero indegree is
left. In the first case the graph is cycle–free, in the latter it is not.

Our first example contains no zero–indegree node and hence is not cycle–
free. In the second example node x1 has zero indegree and is removed with
its outgoing edges, then node x3, node x2 and last node x4. Thus the second
example contains no cycle.
Cycle–Detection works very similar for the second Cycle rule:

t1#s1[t2]p1 ∧ · · · ∧ tn#sn[t1]pn ∧ P → ⊥
if some # =� or some pi 6= λ

For this rule, the ti’s are used as nodes, and edges point from tk to ti for
ti#si[tj ]pi and tk#sk[ti]pk

.

4.8 The Simplifier

The previous sections of this chapter described how the algorithm of Chap-
ter 3 has been implemented and how some details have been solved. In this
section we will look at the simplifier, which is not needed for the correctness
of our algorithm but does a lot to improve efficiency.

For ground terms, the relation between two terms t1, t2 can easily be
computed, e.g. by a simple top–down, recursive procedure, as the definition
of the ordering implies. This approach is quite inefficient, as relations be-
tween the same pairs of subterms may be computed many times. Wayne
Snyder shows in [Sny93] that this algorithm has a worst–case exponential
complexity (in n = |t1| + |t2|). The bottom–up approach turns out to be



4.8 The Simplifier 41

1 algorithm TopSort(graph G, int n)
2 // G is an array of n lists of integers
3 // If G contains cycles, TRUE is returned, FALSE otherwise.
4 begin
5 stack<int> zeroindeg

6 array<int> indeg[n]
7 int count, v

8 // first compute indegree of all nodes:
9 forall 0 ≤ i < n do

10 forall j ∈ G[i] do
11 indeg[j] := indeg[j] + 1
12 od
13 od
14 // now put zero indegree nodes on stack:
15 forall 0 ≤ i < n do
16 if indeg[i] = 0 then
17 zeroindeg.Push(i)
18 fi
19 od
20 // main loop:
21 while zeroindeg not empty do
22 remove node:
23 v = zeroindeg.Pop
24 count := count + 1
25 // "remove" edges:
26 forall i in G[v] do
27 indeg[i] := indeg[i]− 1
28 if indeg[i] = 0 then
29 // put new zero-indegree nodes on stack:
30 zeroindeg.Push(i)
31 fi
32 od
33 od
34 if count < n then
35 return TRUE
36 elsif
37 return FALSE
38 fi
39 end

Figure 4.5: TopSort: Cycle Check for Directed Graphs



42 Chapter 4. Implementation

much better: generate all subterms, sort them in increasing order wrt. their
size, compare all subterms in this order and store the results. This algo-
rithm has an O(n2), n = |t1| + |t2| complexity. For ground terms and total
precedence, Snyder introduced an even better algorithm with O(n log n)
complexity in [Sny93].

For our algorithm, it was desirable to apply as many simplifications to
the problem as possible, before the more complex rewrite rules have to be
applied. There are many cases where an inequation t1#t2 or an equation
t1 ' t2 can be reduced to ⊥ (not satisfiable) or > (tautology).
Let us look at some examples, where “0” denotes the smallest constant
wrt. the precedence:

h(a, b, g(z, f(g(a, 0), x))) � h(a, b, g(z, f(g(a, y), x))) → ⊥
h(a, b, g(z, f(g(a, c), x))) � h(a, b, g(z, f(g(a, 0), x))) → >

For both examples, the RPO Decomposition rules would produce lots of new
equations and inequations, but comparing the terms wrt. the ordering can
decide the satisfiability of the inequations fast.

I therefore implemented a simplifier which compares terms (with vari-
ables) using the bottom–up approach with O(n2) complexity. Furthermore,
all computed results are stored between calls to the simplifier.

The implementation of the simplifier consists of three components:

• SimplifierStorage, data structure to store the already computed
relations between terms

• SimplifierInsert, a procedure which inserts all subterms of a term
into the data structure and computes the relation to all other terms
in the structure

• SimplifierLookup, a procedure which looks up two terms, inserts
them if necessary, finds out the relation between them (if known) and
returns the result.

Let us examine SimplifierLookup first (Figure 4.6), as it is the user inter-
face for the simplifier. It is rather simple: lines 3–5 check if t1 and t2 are
equal. This is done by calling a procedure which checks if the terms are iden-
tical up to permutations of subterms for multiset status function symbols.
Then (in lines 6–11) both terms are looked up in the storage data structure
described below, if they are already stored. If not, they are inserted with
the SimplifierInsert procedure. In lines 12–20, the computed relation for
both terms is retrieved and returned.

Now let us look at the more interesting procedure SimplifierInsert
and the storage data structure: The data structure SimplifierStorage is
a linked list of records. Each record holds a term and a pointer to the
head of the list of pointers to terms greater than itself. An example for
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1 algorithm SimplifierLookup(term t1, t2)
2 begin
3 if t1 'rpo t2 then
4 return 0
5 fi
6 if t1 not in simplifier storage then
7 SimplifierInsert(t1)
8 fi
9 if t2 not in simplifier storage then

10 SimplifierInsert(t2)
11 fi
12 if t1 �rpo t2 then
13 return 1
14 fi
15 if t2 �rpo t1 then
16 return −1
17 fi
18 if t1 and t2 not comparable then
19 return −2
20 fi
21 end

Figure 4.6: SimplifierLookup: Look Up Relation Between Two Terms

0 a g(0,a)

SimplifierStorage

Figure 4.7: SimplifierStorage: The Simplifier Data Structure
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SimplifierStorage holding the terms 0, a and g(0, a) is shown in Fig-
ure 4.7.

Initially, the smallest constant symbol 0 is inserted, further terms are
inserted by SimplifierInsert, which is called only by SimplifierLookup.
All the work is done in the procedure SimplifierInsert: first all subterms
of the term to be inserted are generated. E.g. in the example above for
h(a, b, g(z, f(g(a, 0), x))) the subterms

{a, b, g(z, f(g(a, 0), x)), z, f(g(a, 0), x), g(a, 0), x, a, 0}

are generated. This list of terms is now sorted in increasing order wrt. their
size, and multiple occurrences of a term are removed. In the example, this
would result in the list

{a, b, z, x, 0, g(a, 0), f(g(a, 0), x), g(z, f(g(a, 0), x))}

Now the subterms are inserted in SimplifierStorage in this order, which
guarantees that every subterm of the term to be inserted is already present
in the data structure. Thus the relation to all terms already present in
SimplifierStorage can be computed without recursion. For the following
example we will represent the storage data structure as list of pairs where
each pair contains a term and the list of smaller terms wrt. �rpo. Assume a
fresh copy of the data structure, containing just the term 0, and a precedence
h � g � f � b � a � 0:

SimplifierStorage = {〈0, {}〉}

In the example, the term a is the first term to be added to the list. a is
compared to 0 and as a �rpo 0 (first case in Definition 2.3.12) a pointer to
0 is added to the list of a:

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉}

Next, b, z and x are inserted, for the variables z and x no relation to the
other terms can be computed:

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉,
〈b, {0, a}〉,
〈z, {}〉,
〈x, {}〉, }

Now g(a, 0) is inserted: it is greater than 0, a and b (again, first case in
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Definition 2.3.12):

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉,
〈b, {0, a}〉,
〈z, {}〉,
〈x, {}〉,
〈g(a, 0), {0, a, b}〉}

Next, f(g(a, 0), x) is inserted. It is easy to see, that it is greater than 0,
a, b and x but not comparable with z. Now the algorithm has to check if
f(g(a, 0), x) �rpo g(a, 0). As g � f , the subterms of f(g(a, 0), x) must be
checked against g(a, 0) (according to Definition 2.3.12, Case 2). All these
relations have been computed at this point, hence no recursion is needed.
So f(g(a, 0), x) �rpo g(a, 0) is derived and stored:

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉,
〈b, {0, a}〉,
〈z, {}〉,
〈x, {}〉,
〈g(a, 0), {0, a, b}〉,
〈f(g(a, 0), x), {0, a, b, x, g(a, 0)}〉}

Here is the data structure after inserting g(z, f(g(a, 0), x)):

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉,
〈b, {0, a}〉,
〈z, {}〉,
〈x, {}〉,
〈g(a, 0), {0, a, b}〉,
〈f(g(a, 0), x), {0, a, b, x, g(a, 0)}〉,
〈g(z, f(g(a, 0), x)),
{0, a, b, z, x, g(a, 0), f(g(a, 0), x)}〉}
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Finally, after inserting h(a, b, g(z, f(g(a, 0), x))):

SimplifierStorage = {〈0, {}〉,
〈a, {0}〉,
〈b, {0, a}〉,
〈z, {}〉,
〈x, {}〉,
〈g(a, 0), {0, a, b}〉,
〈f(g(a, 0), x), {0, a, b, x, g(a, 0)}〉,
〈g(z, f(g(a, 0), x)),
{0, a, b, z, x, g(a, 0), f(g(a, 0), x)}〉,

〈h(a, b, g(z, f(g(a, 0), x))),
{0, a, b, z, x, g(a, 0), f(g(a, 0), x),
g(z, f(g(a, 0), x))}〉}

Now we will describe the SimplifierInsert procedure in a more formal
way, as the example doesn’t cover all details of it. The algorithm is shown
in Figure 4.8.

The input for SimplifierInsert is a term t, and the data structure
SimplifierStorage is assumed to be a global variable (the real imple-
mentation was done in C++ and there insert is a method of the class
SimplifierStorage). First, all subterms of t are generated (as in the
example above) and stored in a list L (line 3). In line 4 list L is sorted
wrt. the size of its elements. This is done by another procedure, which uses
Insertion Sort, for a description see for instance [Seg92]. The complexity of
Insertion Sort is O(n2/4) for the general case, but only O(n) for “almost
sorted” inputs. In line 5 multiple occurrences of elements are reduced to
single occurrences.

Now starts the main loop over all elements in L in ascending order: if an
element s is not already present in SimplifierStorage, it is added (lines 7
and 8), otherwise the next s is processed (line 9). Lines 10 and 11: if s is a
variable, then it is incomparable to all terms already in the data structure:
if some t[s]p were in the data structure, then (due to the order in which
terms are inserted) s would be already in the data structure, too.

In Line 12 starts the inner loop over all terms u stored in Simplifier-
Storage: if u is a variable it is comparable with s only if it is a subterm of
s, see lines 13–18. Remark: if a relation is found, it is inserted into the data
structure by adding a pointer to the list of the smaller term, this is noted
in line 15 but omitted for the rest of the description of the algorithm.

In line 20 starts the check according to the definition of RPO: cases 1
and 2 in lines 20–34, case 3 in lines 35–37 and Figure 4.9 and case 4 in lines
38–40 and Figure 4.10.
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1 algorithm SimplifierInsert(term t)
2 begin
3 generate all subterms of t, put them in list L

4 sort by size(L)
5 remove redundant elements(L)
6 forall s ∈ L do // in ascending order
7 if s /∈ SimplifierStorage then
8 add s to SimplifierStorage
9 else continue fi

10 if s ∈ X then
11 continue ; fi
12 forall u ∈ SimplifierStorage do
13 if u ∈ X then
14 if u subterm of s then
15 s �rpo u: add pointer to u to s’s “greater–as” list
16 fi
17 continue
18 fi
19 // s /∈ X ∧ u /∈ X ⇒ s = f(s1, . . . , sm), u = g(u1, . . . , un)
20 if f � g then // RPO Case 1
21 if ∀uj : SimplifierLookup(s, uj) = 1 then
22 s �rpo u ; continue ; fi
23 if ∃uj : SimplifierLookup(uj , s) ≥ 0 then
24 u �rpo s ; continue ; fi
25 continue
26 fi
27 if g � f then // RPO Case 2
28 if ∃si : SimplifierLookup(si, u) ≥ 0 then
29 s �rpo u ; continue ; fi
30 if ∀si : SimplifierLookup(si, u) = −1 then
31 u �rpo s ; continue ; fi
32 // Relation not known:
33 continue
34 fi
35 if f ' g ∧ Stat(f) = lex then // RPO Case 3
36 // see Figure 4.9
37 fi
38 if f ' g ∧ Stat(f) = mul then // RPO Case 4
39 // see Figure 4.10
40 fi
41 od
42 od
43 end

Figure 4.8: SimplifierInsert: Insert a Term in SimplifierStorage
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1 // This fragment handles RPO Case 3 in SimplifierInsert,
2 // Figure 4.8, line 36
3 greater := smaller := unknown := false
4 forall 1 ≤ l ≤ m do
5 if SimplifierLookup(sl, ul) = 0 then
6 continue
7 fi
8 if SimplifierLookup(sl, ul) = 1 then
9 greater := true

10 break
11 fi
12 if SimplifierLookup(sl, ul) = −1 then
13 smaller := true
14 break
15 fi
16 if SimplifierLookup(sl, ul) = −2 then
17 unknown := true
18 break
19 fi
20 od
21 if greater = true then
22 if ∀uj : SimplifierLookup(s, uj) = 1 then
23 s �rpo u ; continue
24 elsif ∃uj : SimplifierLookup(uj , s) ≥ 0 then
25 u �rpo s ; continue
26 fi
27 fi
28 if smaller = true then
29 if ∀si : SimplifierLookup(si, u) = −1 then
30 u �rpo s ; continue
31 elsif ∃si : SimplifierLookup(si, u) ≥ 0 then
32 s �rpo u ; continue
33 fi
34 fi
35 if unknown = true then
36 if ∃si : SimplifierLookup(si, u) ≥ 0 then
37 u �rpo s ; continue
38 fi
39 if ∃uj : SimplifierLookup(uj , s) ≥ 0 then
40 s �rpo u ; continue
41 fi
42 fi

Figure 4.9: SimplifierInsert: Code Fragment for RPO Case 3
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1 // This fragment handles RPO Case 4 in SimplifierInsert,
2 // Figure 4.8, line 39
3 list S := {s1, . . . , sm} ; list U := {u1, . . . , un}
4 forall si 'rpo uj , si ∈ S, uj ∈ U do
5 S := S \ {si} ; U := U \ {uj} ; od
6 // first check if s �rpo u:
7 forall si ∈ S do
8 removed one := false
9 forall uj ∈ U do

10 if SimplifierLookup(si, uj) = 1 then
11 U := U \ {uj}
12 removed one := true
13 fi
14 od
15 if removed one then
16 S := S \ {si}
17 fi
18 od
19 if U = ? then
20 s �rpo u

21 continue
22 fi
23 // generate fresh copies of S and U :
24 list S := {s1, . . . , sm} ; list U := {u1, . . . , un}
25 forall si 'rpo uj , si ∈ S, uj ∈ U do
26 S := S \ {si} ; U := U \ {uj} ; od
27 // now check if u �rpo s:
28 forall uj ∈ U do
29 removed one := false
30 forall si ∈ S do
31 if SimplifierLookup(uj , si) = 1 then
32 S := S \ {si}
33 removed one := true
34 fi
35 od
36 if removed one then
37 U := U \ {uj}
38 fi
39 od
40 if S = ? then
41 u �rpo s

42 continue
43 fi

Figure 4.10: SimplifierInsert: Code Fragment for RPO Case 4
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The implementation of RPO Case 3 in Figure 4.9 is self–explaining: the
first loop compares the subterms on both sides in lexicographic order , then
in lines 21–42 the subterm property is checked for each case. The tricky
part is to cover all cases where subterms are incomparable.

And finally, Figure 4.10 shows the implementation of RPO Case 4: the
toplevel subterms of s and u are stored in two lists S and U (line 3). Then
pairs si ' uj , si ∈ S, uj ∈ U are removed from the lists (lines 4 and 5).
In line 7–18, terms are removed from both lists (see Definition 2.3.8 for the
definition of �mul): all terms uj : si �rpo uj for some si are removed from
list U and then si is removed from list S. If list U is empty after the loop,
then s �rpo u. Lines 23–43 do the same for the other direction to check if
u �rpo s.

4.8.1 Experiments

In order to test the performance of the simplifier, I carried out some sim-
ple tests: Let F = {0, a, b, c, f, g, h}, where a, b and c are constants, f
has arbitrary arity and multiset status, h and g have lexicographic status,
arity(h) = 3 and arity(g) = 2, the precedence h > g > f > c > b > a > 0.
The constraint

f(x, g(y, 0), y, b, h(c, a, z)) �f(y, a, h(b, z, a), x, g(y, 0), b)
∧ x � h(y, 0, a)

is satisfiable. The constraint solver with the simplifier finds the solution
{x = f(h(0, 0, a), y = 0} in 0.27 CPU seconds. On the same machine
(Sun IPX) the constraint solver without the simplifier finds the solution
{x = h(b, a, a), y = b, z = a} in 45.77 CPU seconds. Both solutions are
correct, in the first case z can be chosen arbitrarily. Another variation of
the example above with the same signature and precedence is

f(x, g(y, 0), y, b, h(c, a, z)) � f(y, a, h(b, z, a), x, g(y, 0), b)

The constraint solver with the simplifier reduces the constraint to > in 0.19
CPU seconds, without the simplifier it takes 33.38 CPU seconds to find the
solution {x = g(h(b, 0, a), 0), y = h(b, 0, a), z = 0}.

The simplifier does not always improve the performance that much, but
at least the overhead of the simplifier doesn’t slow down the constraint solver
significantly in cases where it doesn’t help (about 4%).

4.9 Ideas for Performance Improvements

The current implementation probably leaves plenty of room for experiments
to improve the performance. Profiling the program revealed that the major
part of the computing time is used for term copies and term comparisons.
Thus, two approaches to improve performance are feasible:
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1. make the term copy and term comparison operations faster

2. reduce the number of those operations

The first approach goes deep down to the implementation details and in-
volves substituting pointer operations for term copy operations where pos-
sible, fine tuning the data structures etc. This is not of much interest here,
as it can improve performance only by a constant factor and is not a special
problem for this algorithm.

The second approach is more interesting: one candidate to reduce the
numbers of term comparisons is the SimplifierStorage data structure.
The current implementation uses just a linked list to store terms and hence
needs O(n) term comparison operations to find a term. Replacing the list
by some well known search data structure as binary trees would reduce the
number of compare operations to O(log n), but this would require defining
a total ordering on the representation of the terms. This can be done, it is
not straightforward, though: terms with multiset status function symbols
require a normal form wrt. this ordering — otherwise terms equal wrt. RPO
would be inserted more than once. So only an actual implementation can
show if a better search algorithm will outweight the added overhead.

Another field for possible improvements is the order in which the rewrite
rules are applied. In Section 4.5 we have seen the motivations for the ap-
plication order used in the implementation: rules reducing the size of the
problem first, rules increasing the size of the problem later. For rules equiv-
alent in this sense, those with simpler (or no) precondition are checked first.
This leaves not much room for variations: for a given formula for instance
at most one of the Decomposition rules can be applied and hence it does
not matter which one is tried first. Opposed to that, for simplifying rules
like the Cycle rules and Merge the performance critical part is the precon-
dition check. For these rules experiments with the application order may be
worthwhile. The same holds for the simplifier: in the implementation it is
called very early, a later execution might improve the performance. These
considerations depend on the nature of the input constraints and hence the
application for the algorithm.

Another possible experiment is to replace the algorithm used to sort
terms wrt. their size (Insertion Sort) with Quick Sort, Heap Sort or an-
other O(n log n) algorithm. Insertion Sort was chosen, because it is easy to
implement and it benefits from almost sorted data.

The algorithms chosen for cycle detection in graphs and permutation
generation are the best known algorithms for their purposes.
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