
A Polynomial Translation from the

Two-Variable Guarded Fragment with Number

Restrictions to the Guarded Fragment

Yevgeny Kazakov

MPI für Informatik, D-66123 Saarbrücken, Germany
ykazakov@mpi-sb.mpg.de

Abstract. We consider a two-variable guarded fragment with number
restrictions for binary relations and give a satisfiability preserving trans-
formation of formulas in this fragment to the three-variable guarded
fragment. The translation can be computed in polynomial time and pro-
duces a formula that is linear in the size of the initial formula even for
the binary coding of number restrictions. This allows one to reduce rea-
soning problems for many description logics to the satisfiability problem
for the guarded fragment.

1 Introduction and Motivation

The guarded fragment GF has been introduced by Andréka, van Benthem &
Németi (1998) as a first-order counterpart of modal and description logics. Its
basic principle is to restrict the usage of quantifiers to the following bounded
forms: ∀x.(G→ F) or ∃x.(G ∧ F), where G is an atom-“guard” that contains
all free variables of F . The guarded fragment inherits many nice computational
properties from modal logics, the most important of them are the (generalized)
tree-model property and the decidability.

Although the guarded fragment covers a considerable part of logical for-
malisms, some decidable extensions of modal logics, in particular by function-
ality and transitivity, remain outside of the guarded fragment. Grädel (1999b)
has shown that already the three-variable guarded fragment GF 3 with one func-
tional relation becomes undecidable. In this paper we study an extension of the
two-variable guarded fragment GF2 by number restrictions, which we denote by
GF2N . Number restrictions generalize functionality restrictions. They are often
used for representing configuration constraints, like, for example:

Client(x) ≡ Computer(x) ∧ ∃≥1 y.Connection(x, y),
Server(y) ≡ Computer(y) ∧ ∃<100x.Connection(x, y).

GF2N relates to many known description logics, the most expressive of which
is ALCQIb. Cardinality and qualifying number restrictions are hard to handle,
especially for big numbers, because not many efficient optimization techniques
are known for them (the notable exceptions are algebraic methods developed
by Haarslev, Timmann & Möller 2001, Haarslev & Möller 2001). This contrasts

to the fact that ALCQI and even ALCQIb has the same complexity as ALC,
namely EXPTIME (Tobies 2001). In this paper we propose a translation which
allows one to reason about number restrictions through the guarded fragment.

The contribution of this paper can be summarized as follows. First, we show
that reasoning in ALCQIb knowledge bases can be polynomially reduced to sat-
isfiability of GF2N -formulas. Second, we give a satisfiability preserving transla-
tion from GF2N to GF3. The translation is computable in polynomial time and
produces a guarded formula of linear size, even if number restrictions are coded
in binary. This result has both theoretical and practical implications. From the
theoretical side, we obtain a neat complexity result for satisfiability of GF 2N -
formulas. Complexity results for GF3, imply that satisfiability of F ∈ GF2N
can be decided in time 2O(|F |). On the practical side, our translation provides a
bridge between the fragment GF2N and the formalism for which optimization
techniques are relatively well-studied. This makes it possible to use any decision
procedure for the guarded fragment (Ganzinger & de Nivelle 1999, Hladik 2002),
for deciding GF2N and reasoning in description logics.

2 The Guarded Fragment and Number Restrictions

Throughout this paper we assume a standard logical notation for first-order logic
with equality and description logics, and the correspondence between the syntax
of description logics and the first-order syntax (that is, role names correspond to
binary predicates, u to conjunction, etc.). For an interpretation I = (D, ·I), we
denote by I|S the interpretation induced by a subset S ⊆ D of domain elements.
We say that a formula F ′ is conservative over F if (i) every model of F can be
expanded (by interpreting new predicate symbols) to a model of F ′ and (ii) F
is a logical consequence of F ′. A transformation F =⇒ F ′ is called conservative
if F ′ is conservative over F . The size |F | (|C|, |T |) of a formula F (a concept C
or a TBox T) is its length when an appropriate coding of numbers (binary or
unary) is assumed. The width wd(F) of a formula F is the maximal number of
free variables in subformulas of F .

The guarded fragment (with equality) can be defined by the grammar:

GF ::= A | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | ∀x.(G→F1) | ∃x.(G ∧ F1). (1)

where A is an atom, Fi, i = 1, 2 are guarded formulas, and G is an atom called
the guard containing all free variables of F1. We assume that for F(x) ∈ GF , the
formula ∀x.F(x) is also guarded, since it can be equivalently written in the form
∀x.[(x ' x)→F(x)] ∈ GF . As usual we assume that implication and equivalence
are expressible by means of the other boolean connectives. The bounded-variable
variant GFk of the guarded fragment is the set the guarded formulas that use
at most k variable names. Note that for every F ∈ GFk, wd(F) ≤ k.

2.1 The two-variable guarded fragment with number restrictions

In this paper we consider an extension of the two-variable guarded fragment GF 2

with expressions of the form ∃≥ny.e(x, y) and ∃<ny.e(x, y), where n is a natural

number and e is a binary atom. These expressions are called “at-most” and “at-
least” number restrictions respectively. The semantics of number restrictions can
be first-order defined as follows: ∃<ny.e(x, y) ≡ ¬[∃≥ny.e(x, y)] where

∃≥ny.e(x, y) ≡ ∃y1y2 . . . yn.[
∧

1 ≤ i ≤ n

e(x, yi) ∧
∧

1 ≤ i < j ≤ n

yi 6' yj].

The meaning of “at-most” and “at-least” number restrictions is that they require
or respectively restrict the number of different elements in a model that can be
connected by a binary relation with a given element.

The two-variable guarded fragment with number restrictions is defined by:

GF2N ::= A | ∃./ny.e(x, y) | ¬F1 | F1∨∧F2 | ∀x.(G→F1) | ∃x.(G ∧ F1), (2)

where ∃./ny.e(x, y) are number restrictions, ∨∧ stands for conjunction or disjunc-
tion and only variables from {x, y} can be used in formulas. In the sequel we
will work with conjunctions of number restrictions of the form:

N (x) ≡
∧

l∈L

∃≥nly.el(x, y) ∧
∧

m∈M

∃<nmy.em(x, y). (3)

where L and M are disjoint finite sets of indexes, nl, nm are natural numbers
and el, em are binary predicate symbols for l ∈ L, m ∈M .

2.2 A relationship between GF2N and ALCQIb

The fragment GF2N is closely related to the description logic ALCQIb intro-
duced by Tobies (2001). ALCQIb extends the description logic ALCQI with the
“safe” boolean combinations of roles. The unrestricted boolean combinations of
roles are defined from the atomic roles and their inverses by the grammar:1

RB ::= Ra | R−1
a | ¬Ra | ¬R−1

a | R1
B uR

2
B | R

1
B tR

2
B ,

whereas the “safe” boolean combinations of roles are restricted to:2

Rb ::= Ra | R
−1
a | R1

b uR
1
B | R

1
b tR

2
b where R1

b , R
2
b ∈ Rb, R

1
B , R

2
B ∈ RB .

The set of ALCQIb-concepts is defined in the same way as in ALCQI, except
that now any “safe” role expressions R can be used as a role filler:

C ::= A | ¬C1 | C1 u C2 | ∃
≥nR.C1, (4)

where A is an atomic concept, C1, C2 ∈ C, R ∈ Rb and n is a natural number.
Tobies (2001) has demonstrated that concept satisfiability w.r.t. general

ALCQIb TBoxes is EXPTIME-complete, even if the numbers in qualifying num-
ber restrictions are coded in binary. The result has been obtained by a reduction
to the emptiness problem for looping tree automata. Given a TBox T and a con-
cept C, an automaton L can be constructed such that L accepts a tree iff C has a
T -model. The emptiness of L can be verified in polynomial time in the size of |L|,
which gives an algorithm for checking T -satisfiability of C (see Fig. 1). However

1 For convenience, we define boolean combinations that are in negation normal form.
2 In the original definition (Tobies 2001), a boolean combination of roles is “safe” if
its disjunction normal form contains a positive conjunct in every disjunct.

ALCQIb GF2N

Automata GF3

{⊥,>}

PTIMEEXPTIME

PTIME

PTIME

EXPTIME

Fig. 1. The outline of decision procedures for ALCQIb and GF2N : the dashed arrows
represent an automata-based approach; the solid arrows represent a decision procedure
through the guarded fragment. We give the translations shown by the double arrows

L can be exponentially large in |C|+|T | in worst case and this blow-up cannot be
avoided, since the problem is EXPTIME-hard. Moreover, the translation can be
exponential in many trivial cases, say, when T contains lots of definitions that are
not relevant to C, which is often the case in real knowledge bases. Therefore, a
straightforward implementation of the automata-based decision procedure seems
to be not very useful in practice. In this paper we propose an alternative decision
procedure through the guarded fragment (see Fig. 1). This approach might be
more efficient yet having the optimal complexity. As a first step of our procedure
we establish a correspondence between ALCQIb-knowledge bases and GF 2N .

Lemma 1. For every ALCQIb TBox T one can construct in polynomial time
a formula F ∈ GF2N that is conservative over T such that |F | = O(|T |).

Proof. Without loss of generality, we may assume that T contains only simple
definitions, that is, definitions corresponding to one case in (4). Moreover, we in-
troduce auxiliary role names Rb for every compound subrole Rb ∈ Rb that occurs
in T . We extend T with definitions for Rb and use them in complex expressions
instead of Rb. We also introduce additional binary predicate symbol RC for every
definition of qualifying number restrictions C

·
=∃≥nR.C1. The definitions from T

and their first-order translations are given on Fig. 2. It is easy to see that the
translation maps TBox T to a conjunction of formulas from GF 2N . ut

Corollary 1. The problem of concept satisfiability w.r.t. ALCQIb TBox-es is
polynomially reducible to satisfiability of GF2N -formulas.

C
·
= A ⇒ ∀x.[C(x)↔ A(x)]

C
·
=¬C1 ⇒ ∀x.[C(x)↔ ¬C1(x)]

C
·
= C1u C2 ⇒ ∀x.(C(x)↔ [C1(x) ∧ C2(x)])

Rb
·
= Ra ⇒ ∀xy.[Rb(x, y)↔ Ra(x, y)]

Rb
·
= Ra

−1 ⇒ ∀xy.[Rb(x, y)↔ Ra(y, x)]

C
·
=∃≥nR.C1 ⇒ ∀x.(C(x)→∃≥ny.RC(x, y)) ∧ ∀xy.(RC(x, y)→ [RC(x, y) ∧ C1(y)])∧

∧∀x.(∃≥ny.RC(x, y)→C(x)) ∧ ∀xy.(R(x, y)→ [C1(y)→RC(x, y)])

Rb
·
= R1

b
uR1

B ⇒ ∀xy.(Rb(x, y)→ [R1
b
(x, y) ∧R1

B(x, y)])∧
∧∀xy.(R1

b
(x, y)→ [Rb(x, y) ∨ ¬R

1
B(x, y)])

Rb
·
= R1

b
t R2

b
⇒ ∀xy.(Rb(x, y)→ [R1

b
(x, y) ∨ R2

b
(x, y)])∧

∧∀xy.[R1
b
(x, y)→Rb(x, y)] ∧ ∀xy.[R

2

b
(x, y)→Rb(x, y)]

Fig. 2. A translation of ALCQIb TBox-es to GF2N

It is not clear whether the expressive power of ALCQIb reaches GF 2N , since
ALCQIb does not have a built-in equality. However, we conjecture, that GF 2N
without equality has the same expressive power as ALCQIb.

Remark 1. In some papers on the guarded fragment, e.g. in (Grädel 1999b),
atoms are allowed to contain individual constants. In this paper, however, we do
not assume this. Reasoning with individual constants in the presence of number
restrictions becomes much harder, since so-called cardinality restrictions can
be expressed using them: The formula ∀x.[a(x)→ e(c, x)] ∧ ∀x.∃<n+1y.e(x, y)
has only models where a is satisfied in at most n elements. The extension of
ALCQI with cardinality restrictions becomes NEXPTIME-complete already for
the unary coding of numbers and the exact complexity for binary coding is still
an open problem (for details see Tobies 2001). ♦

2.3 A normal form for formulas in GF2N

To prove properties for guarded formulas it is convenient to have them in a
simple normal form. We show that GF2N -formulas have a Scott-like normal
form that is similar to the one found by Grädel (1999b) for GF .

Lemma 2. For every formula F ∈ GF2N there is a formula F ′ of the form:
∧

i∈I

∀xy.[gi(x, y)→ϕi(x, y)] ∧ ∀x.N (x) (5)

where gi(x, y) are atoms, i ∈ I, ϕi(x, y) are quantifier-free formulas and N (x)
are number restrictions of the form (3), such that: (i) F ′ is conservative over
F , (ii) |F ′| = O(|F |) and F ′ is computable in polynomial time from F .

Proof. Given a guarded formula F ∈ GF2N , first, we put F into negation nor-
mal form (NNF) by pushing all negations inside to atoms using the usual de
Morgan’s laws. The resulting formula [F]nnf belongs to the following fragment:

[GF2N]nnf ::= (¬)A | ∃./ny.e(x, y) | F1∨∧F2 | ∀x.(G→F1) | ∃x.(G ∧ F1).

we extend this fragment by dropping the restrictions for the existential part:

[GF2N]nnfw ::= (¬)A | ∃./ny.e(x, y) | F1∨∧F2 | ∀x.(G→F1) | ∃y.F1.

thus, the existential closure F n := ∃x.[F]nnf∈ [GF2N]nnfw . Note that Fn is con-
servative over F . After that, we apply a so-called structural transformation for
the sentence Fn by introducing definitions for its subformulas. We assume that
to every subformula F of F n corresponding to a case in the recursive definition,
a unique predicate PF = pF(x) is assigned, where x = free[F] ⊆ {x, y}. If F is
a number restriction ∃./ny.e(x, y), then we also introduce an auxiliary binary
predicate eF(x, y). The result of the structural transformation for F n is the for-
mula PFn ∧ [Fn]st, where [F]st is defined recursively for F ∈ [GF]nnfw as follows:

[F]st := [(¬)A]st : ∀x.(PF→(¬)A) |

[∃≥ny.e(x, y)]st : ∀x.∃≥ny.eF(x, y) ∧ ∀xy.[eF(x, y)→(pF(x)→e(x, y))] |

[∃<ny.e(x, y)]st : ∀xy.[e(x, y)→(pF(x)→eF(x, y))] ∧ ∀x.∃<ny.eF(x, y) |

[F1∨∧F2]
st : ∀x.(PF→ [PF1

∨∧PF2
])∧[F1]

st∧[F2]
st |

[∀y.(G→F1)]
st : ∀xy.(G→ [PF→PF1

]) ∧ [F1]
st |

[∃y.F1]
st : ∀x.(PF→∃y.PF1

) ∧ [F1]
st.

The function [F]st is defined recursively over the definition of [GF2N]nnfw . On
each step, subformulas of F are replaced by fresh atoms. These atoms are defined
in separate conjuncts by means of subformulas that they replace. It is easy to see
that the result of the transformation can be captured by a formula F ′ of the form
(5) that is conservative over F n. The formula F ′ has the size O(|Fn|) = O(|F |)
and the translation can be computed in polynomial time. ut

2.4 The tree-model property for GF2N

As Vardi (1996) has argued, the tree-model property is the main reason why
modal logics are decidable. The existence of tree-models for satisfiable formulas
is a basis of all tableau and automata-based decision procedures for modal and
description logics. In many cases the tree-model property allows to establish a
finite model property and even to extract bounds on the sizes of models for
satisfiable formulas, which gives rise to model-enumeration techniques.

Definition 1. An interpretation M = (D, ·T) has a tree width k if k is the
minimal natural number such that there exists a tree T = (V,E) (a connected
acyclic graph) and a function π : V → 2D with |π(v)| ≤ k + 1 for every v ∈ V ,
such that the following conditions hold:
(i) M ² a(d1,..., dn) implies {d1,..., dn} ⊆ π(v) for some v ∈ V ; and
(ii) The set O(d) := {v ∈ V | d ∈ π(v)} induces a connected subtree in T . ♦

Grädel (1999a) has shown that every satisfiable guarded formula with width
k has a model of the tree width k − 1. In particular, every satisfiable formula
from GF2 has a tree-model (a model with the tree width = 1). We are going
to extend this results to GF2N by taking into account number restrictions. For
convenience, we use the following (equivalent) definition of a tree model:

Definition 2. An interpretation T = (V, ·T) is called a tree if there is a tree
T = (V,E), such that T ² a(v1,..., vn) implies {v1, . . . , vn} ⊆ {v′1, v

′
2} for some

edge e = (v′1, v
′
2) ∈ E. ♦

A correspondence between these two definitions can be established by as-
signing π(v) to be the set {v, v−1} ⊆ V , where v−1 is a parent of v in T (we
assume that the root of T is a parent of itself). For proving the tree-model prop-
erty for GF2N we show how a tree-model can be extracted from any model of
a GF2N -formula. Surprisingly, a tree-model satisfying number restrictions can
be extracted from interpretations that satisfy weaker conditions than number
restrictions themselves.

Definition 3. A counting pattern for a model M = (D, ·M) and number re-
strictions N (x) is a pair P = (R,w), where R ⊆ D×D is a reachability relation
and w : R→ 2R is a witnessing function such that: (i) (dr, dr) ∈ R for some dr ∈
D and (ii) for any (d−1, d0) ∈ R, w[(d−1, d0)] = {(d0, d1), (d0, d2), . . . , (d0, db)}
for some d1, . . . , db ∈ D \ {d−1, d0} such that M|{d−1,d0,...,db} ² N (d0). ♦

Example 1. The fragment GF2N does not have the finite model property. To
demonstrate this, consider the formula BinaryTree ≡ ∀x.Nbt(x), where Nbt(x) ≡
[∃≥2y.s(x, y) ∧ ∃<2y.s(y, x)]. It is easy to see that the formula BinaryTree is
satisfiable in a tree-model T (see Fig 3), but has no finite models. However,
there is a finite interpretation M = (D = {a, b, c, d, e}, ·M) given on Fig. 3 that
has a counting pattern for Nbt(x). The counting pattern Pbt = (R,w) for Nbt(x)
in M can be defined by taking R = D ×D and setting the witnessing function
w[(d−1, d0)] to return the remaining edges incident to the node d0. For instance,
w[(e, a)] := {(a, b), (a, c)}, w[(d, b)] := {(b, c)}. ♦

It will be shown below, that every model of number restrictions has a counting
pattern. However, the converse does not hold: the interpretation M from Fig. 3
does not satisfy ∀x.Nbt(x), but has a counting pattern for Nbt(x). Yet, we show
that a tree-model satisfying number restrictions N (x) can be extracted from any
model having a counting pattern for N (x).

Lemma 3. Let N (x) be number restrictions of the form (3), andM = (D, ·M)
be a model of ∀x.N (x). Then M has a counting pattern for N (x).

Proof. The intended counting pattern P = (R,w) can be defined as follows. Let
R = D×D. This guarantees that condition (i) in Definition 3 holds since D is a
non-empty set. Note that for every vector (d−1, d0) ∈ R one can find a finite set
of elements d1, d2, . . . , db such thatM|{d−1,d0,d1,...,db} ² N (d0), sinceM ² N (d0)
and number restrictions require only finitely many witnesses. This suggests us
to define a witnessing function by w[(d−1, d0)] := {(d0, d1), (d0, d2), . . . , (d0, db)}.
This definition guarantees the remaining property (ii) of Definition 3. ut

Lemma 4. Let F ≡ Fg ∧ ∀x.N (x) be a GF2N -formula in a normal form (5).
Let M be a model of Fg that has a counting pattern for the number restrictions
N (x). Then F has a tree-model.

M

a

b

c

d

e

s

T

a

c

e

d

a

c

b

ebs

Fig. 3. Tree decomposition of an interpretation having a counting pattern

Proof. Given a modelM for Fg and a counting pattern P = (R,w) for N (x) in
M, we construct a tree-model T = (V, ·T) for F based on a tree T = (V,E). The
model T is constructed inductively together with a function π : V → D that
represents a bisimulation relation between M and T , such that for every node
v0 ∈ V and its parent v−1, the substructuresM|{v−1,v0} and T |{π(v−1),π(v0)} are
isomorphic and (π(v−1), π(v0)) ∈ R.

First, we create a root vr ∈ V of a tree T and set π(vr) := dr, where dr ∈ D

is given in Definition 3, so (π(vr), π(vr)) ∈ R. For every leaf v0 of a tree T

constructed so far and its parent v−1, consider (d−1, d0) = (π(v−1), π(v0)) ∈ R

(by induction hypothesis), and let d1, . . . , db ∈ D be such that R(d−1, d0) =
{(d0, d1), (d0, d2), . . . , (d0, db)}. For every di with 1 ≤ i ≤ b we create a child vi
of v0 in T , set π(vi) := di, and extend the interpretation T in such a way that the
substructure T |{v0,vi} is isomorphic to the substructureM|{d0,di} for 1 ≤ i ≤ b.
This can be always done in a consistent way. Note that T ² N (v0) because
M|{d−1,d0,d1,...,db} ² N (d0) and π is a bijection between the sets {v−1, v0, . . . , vb}
and {d−1, d0, . . . , db}. The constructed interpretation T is a tree. It is a model
of Fg since every edge of a tree is isomorphic to a substructure of the model M
and since Fg is a guarded formula. Therefore T ² F . ut

The process described in the proof of Lemma 4 is known as a tree decom-
position of a structure (Grädel 1999a). Figure 3 demonstrates the construction
given in the proof of Lemma 4 for the interpretation M from Example 1. Now
the tree-model property for GF2N is an easy consequence of Lemma 4:

Theorem 1. Every satisfiable formula F ∈ GF2N has a tree-model.

Proof. By Lemma 2, we may assume that F is of the form (5). Let M be a
model for F = Fg ∧∀x.N (x). By Lemma 3,M has a counting pattern for N (x).
Therefore, by Lemma 4, F has a tree-model. ut

3 The Translation

In this section we give a polynomial-time translation mapping any formula F ∈
GF2N of the form (5) to a formula F ′ ∈ GF3 such that (i) every tree-model of
F can be expanded to a model of F ′, (ii) for every model of F ′ one can construct
a tree-model of F and (iii) |F ′| = O(|F |). Note that it is not possible to give a
conservative translation from GF2N to GF3, since GF2N does not have a finite
model property in contrast to GF3 (see Example 1).

We describe the translation in the following way. Given a formula F = Fg ∧
∀x.N (x) ∈ GF2N in the normal form (5) and a tree-model T for F , we expand
the model T to by defining additional predicates to encode a counting pattern
for N (x). Then we construct a formula F ′ = Fg ∧ F

′′ ∈ GF3 that describes the
expanded model. Finally we show that every model of F ′ has a counting pattern
for N (x). This will prove that F is satisfiable whenever F ′ is.

Let T = (V, ·T) be a tree-model for a formula F ≡ Fg ∧∀x.N (x) ∈ GF2N of
the form (5). We introduce a new binary predicate R to encode the reachability

relation of a counting pattern P = (R,w). R is interpreted in T by setting
T ² R(v1, v2) iff either v1 = v2 or v2 is a child of the node v1.

To encode the number restrictions, for every node v ∈ V consider an ordered
set O(v) = [(v−1,) v0, v1,..., vbv

] of neighbors of v in T : The first element in O(v)
should be the parent v−1 of v, which is followed by the node v itself: v0 := v

(we assume that v−1 = v0 for the root node). After that, all children of v are
listed in some order v1,..., vbv

: see Fig. 4. The order on the set of neighbors

v−1

R

v0 = v

v1

Ne
xt

v2

vbv

Fig. 4. The counting order of
the neighbors of a node

is used to count the number of edges satis-
fying the counting relations. We encode this
order using a special ternary predicate sym-
bol Next (this will be the only ternary rela-
tion that is used in our construction). The
intended interpretation of Next is given by
T ² Next(v, v′, v′′) iff v′ = vi and v′′ = vi+1

for some vi, vi+1 ∈ O(v) with 0 ≤ i ≤ bv. In
other words, Next(x, y, z) holds if and only if
z is the child of x that comes directly after y.

For every index c ∈ L ∪ M , v ∈ V and
vi ∈ O(v), 1 ≤ i ≤ bv, we define the number
nc,i := #{vj ∈ O(v) | j ≤ i & T ² ec(v, vj)},
that is the number of times the relation ec has
been realized up to vi. Note that for every l ∈
L there exists i with 0 ≤ i ≤ bv such that
nl,i ≥ nl, and for every m ∈ M and every j

with 0 ≤ j ≤ bv, nm,j < nm since T ² N (v).
Moreover, the following property can be assumed for the set O(v). We say that
a child vi with 1 ≤ i ≤ bv of the node v is essential, if whenever nl,i ≤ nl for
some l ∈ L, then there exists an l′ ∈ L such that T ² el′(v0, vi) and nl′,i ≤ nl′ .
In other words, if some “at-least” number restrictions are not yet realized up to
vi, then the node vi should contribute in one of them. By reordering the children
of v in O(v), if needed, one can always fulfill this condition.

For encoding the numbers nc,i for an index c ∈ L ∪M , we introduce addi-
tional binary predicate symbols e0

c , e
1
c , . . . , e

kc
c , where kc := [log nc]. In fact, we

will encode not the numbers nc,i themselves, but n′c,i := min(2kc −1, nc,i), since
we do not need to count beyond nc to check number restrictions. Every number
n′c,i in binary coding is a bit vector of the size kc. We represent this bit vector

using the values of the predicates e0
c , e

1
c , . . . , e

kc
c on the edge (v, vi), in such a way

that T ² “ ec(v, vi) = n′c,i ”. Formally, for every c ∈ L ∪M and v1, v2 ∈ V let

eIc (v1, v2) :=

kc
∑

i=1

eic
I
(v1, v2) · 2

i, where eI(v1, v2) :=

{

1 if T ² e(v1, v2),
0 if T ² ¬e(v1, v2).

Arithmetical expressions involving ec(x, y) and ec(x, y) are evaluated in inter-
pretations as usual. For instance, given an interpretation I = (D, ·I) and a
valuation of variables δ, the proposition “ ec(x, y) ≥ ec(x, y)+1 ” is evaluated to
true iff “ eIc (δ(x), δ(y)) ≥ eIc (δ(x), δ(y)) + 1 ”.

Lemma 5. For every index c ∈ L ∪M there exist quantifier-free formulas of
size linear in kc that express the following relations:

Initc(x, y) ≡ “ ec(x, y) = ec(x, y) ”,
Fullc(x, y) ≡ “ ec(x, y) = 2kc − 1 ”,
Copyc(x, y, z) ≡ “ ec(x, z) = ec(x, y) ”,
Incr c(x, y, z) ≡ “ ec(x, z) = ec(x, y) + 1 mod 2kc ”,
Lessc(x, y) ≡ “ ec(x, y) < nc ”.

n :
kc

∗ ∗ · · · ∗
i

0 1 1 · · ·
0
1

n+1 :
‖
∗
‖
∗ · · ·

‖
∗ 1 0 0 · · · 0

n :
kc

∗ ∗ · · · ∗
j

0 ∗ ∗ · · ·
0
∗

∧
m :

‖
∗
‖
∗ · · ·

‖
∗ 1 ∗ ∗ · · · ∗

Fig. 5. The arithmetical
properties of bit vectors

Proof. The first three formulas can be defined in
the straightforward way:

Initc(x, y) ≡ [e0c(x, y)↔ ec(x, y)] ∧
∧

1 ≤ i ≤ kc

¬eic(x, y),

Fullc(x, y) ≡
∧

i ≤ kc

eic(x, y),

Copyc(x, y, z) ≡
∧

i ≤ kc

[eic(x, y)↔ eic(x, z)]

The relation “m = n+ 1 mod 2k ” holds iff (i) the lowest bits of n and m are
different and (ii) the correspondent bits of any other position of n and m are
different iff the preceding bits of n and m are 1 and 0 respectively (see Fig. 5):

Incr c(x, y, z) ≡ [e0c(x, y)↔ ¬e0c(x, z)] ∧
∧

0 < i ≤ kc

([eic(x, y)↔ ¬eic(x, z)]↔ [ei−1
c (x, y) ∧ ¬ei−1

c (x, z)]).

The relation “mk ...m1m0 > nk ...n1n0 ” between binary numbers holds if either
“mk>nk”, or, “mk=nk” and “mk−1...m1m0 > nk−1...n1n0 ”:

Lessc(x, y) ≡ Lessc,kc
(x, y), where

Lessc,i(x, y) ≡ [“nic = 1” ∧ ¬eic(x, y)] ∨

([“nic = 1”↔ eic(x, y)] ∧ Lessc,i−1(x, y)), 0 < i < kc,

Lessc,0(x, y) ≡ [“n0
c = 1” ∧ ¬e0c(x, y)].

where the expressions “nic = 1” stand for the respective boolean constants. It is
easy to see that the length of every formula above is linear in kc. More precisely,
every predicate eic, 1 ≤ i ≤ kc is used in every definition at most 4 times. ut

Using the formulas defined in Lemma 5, we introduce additional quantifier-
free formulas, that are linear in the size of the input formula F :

Init(x, y) ≡
∧

l∈L

Init l(x, y) ∧
∧

m∈M

Initm(x, y),

Countc(x, y, z) ≡ [(¬Full(x, y) ∧ ec(x, z))→Incr c(x, y, z)] ∧

[(Full(x, y) ∨ ¬ec(x, y))→Copyc(x, y, z)],

Count(x, y, z) ≡
∧

l∈L

Count l(x, y, z) ∧
∧

m∈M

Countm(x, y, z),

AtMost(x, y) ≡
∧

m∈M

Lessm(x, y),

Require(x, y) ≡ [
∨

l∈L

Less l(x, y)],

Child(x, y) ≡ R(x, y) ∧ R(y, y) ∧ Init(y, x) ∧ Count(y, x, y),

Fair(x, y, z) ≡
∨

l∈L

[Less l(x, y) ∧ el(x, z)],

The formula Init(x, y) is used in our encoding of number restrictions for ini-
tializing the counters on the edge (x, y). The formula Count(x, y, z) increments
every counter between the edges (x, y) and (x, z), if the correspondent binary
relation shows up on the edge (x, z) and if the limit of the counter is not yet
reached. Otherwise, the current value of the counter on (x, y) is copied to (x, z).
The formula AtMost(x, y) ensures that the values of the counters corresponding
“at-most” restrictions do not go beyond the maximal allowed limits. Dually, the
formula Require(x, y) expresses that the “at-least” restrictions are not yet ful-
filled. This should require a Next child of x to be created. The child of a node
x is created using the formula Child(x, y). It expresses initialization operations
for the node y: the predicate R should be defined; the counters for the node y
should be initialized on the edge (y, x) and computed for the edge (y, y). The
formula Fair(x, y, z) is responsible for termination of the process of creating the
required children of a node. It says, essentially, that at least one of the relations
required on (x, y) should be realized on the next edge (x, z). This guaranties that
all “at-least” restrictions will be eventually fulfilled for a node if the process of
creating new children can be continued consistently.

The result of the translation is define by F ′ ≡ Fg ∧ Φ1 ∧ Φ2 ∧ Φ3 ∈ GF
3,

where

Φ1 ≡ ∃x.[R(x, x) ∧ Init(x, x)],

Φ2 ≡ ∀xy.[R(x, y)→(AtMost(x, y) ∧ [Require(x, y)→∃z.Next(x, y, z)])]3,

Φ3 ≡ ∀xyz.(Next(x, y, z)→ [Child(x, z) ∧ Fair(x, y, z) ∧ Count(x, y, z)]).

(6)

The following lemma is immediate from our construction:

Lemma 6. Every tree-model of F can be expanded to a model of F ′.

Proof. Given a tree-model T = (V, ·T) for F , we interpret the new predicates R,
Next and eic for c ∈ L ∪M as given in the construction above. It is a routine to
check that all formulas Φ1, Φ2 and Φ3 are true in T . For example, the implication
∀xyz.[Next(x, y, z)→ Fair(x, y, z)] holds in T since every child node of every
v ∈ V is essential in O(v). ut

Now we show that a witness for number restrictions N (x) can be extracted
from a model of F ′:

Lemma 7. Every model of F ′ has a counting pattern for N (x).

Proof. Given a model M′ = (D′, ·M
′

) of F ′, we construct a counting pat-
tern P = (R,w) in the following way. We define the reachability relation by
R := {(d1, d2) ∈ D′ ×D′ | M′ ² R(d1, d2)}. For every pair (d−1, d0) ∈ R, let
w[(d−1, d0)] := {(d0, d1), . . . , (d0, db)} be such that (i) M′ ² Next(d0, di, di+1)
for 0 ≤ i < b and (ii)M′ ² Next(d0, db, d) for no d ∈ D′. Such a (finite) set al-
ways can be found since for any d0, di, di+1 ∈ D′ withM′ ² Next(d0, di, di+1), we

have M′ ² “
∑

l∈L

el(d0, di) ≤
∑

l∈L

el(d0, di+1) ” because M′ ² Fair(d0, di, di+1) ∧

Count(d0, di, di+1). Therefore, there cannot be infinitely many di connected in
a Next-chain. So the witnessing function w is well-defined.

Now we show that P is a counting pattern for the number restrictions N (x).
The condition (i) from Definition 3 holds since M′ ² Φ1, so there exists d ∈ D′

such thatM′ ² R(d, d). To show that the condition (ii) also holds, consider the
elements d−1, d0, d1, . . . , db ∈ D′ such that w[(d−1, d0)] = {(d0, d1), . . . , (d0, db)}.
Let nc,i := #{dj | j ≤ i & M′ ² ec(d0, dj)} and n′c,i := min(2kc − 1, nc,i) for
c ∈ L ∪ M and −1 ≤ i ≤ b, be similar counters as were introduced for a
tree-model. By induction on i with −1 ≤ i ≤ b it is possible to show that
M′ ² “ ec(d0, di) = n′c,i ” for every c ∈ L∪M , becauseM′ ² Child(d−1, d0) and
M′ ² Count(d0, di, di+1) for i with 0 ≤ i < d. Moreover,M′ ² “ el(d0, db) ≥ nl ”
and M′ ² “ em(d0, db) < nm ” for every l ∈ L and m ∈ M , since M′ ²

AtMost(d0, db) ∧ ¬Require(d0, db) (there is no Next-successor of db). As a con-
clusion, we haveM′|{d−1,d0,...,db} ² N (b0), which implies the condition (ii) for a
counting pattern. So, P is indeed a counting pattern for the number restrictions
N (x). ut

Corollary 2. F ′ is satisfiable iff F is satisfiable.

Proof. The “ if ” part follows directly from Theorem 1 and Lemma 6. To prove
the converse, assume that M′ is a model of F ′. In particular, M′ is a model of
Fg. By Lemma 7, M′ has a counting pattern for N (x). Therefore, by Lemma 4
there is a tree-model T for F ≡ Fg ∧ ∀x.N (x). ut

The results obtained in this section can be summarized in our main theorem:

Theorem 2. For any formula F ∈ GF2N there exists a formula F ′ ∈ GF3 such
that (i) F is satisfiable iff F ′ is satisfiable, (ii) |F ′| = O(|F |) and F ′ can be
computed in polynomial time from F .

Proof. Let F ∈ GF2N . By Lemma 2, one can find F n ≡ Fg ∧ ∀x.N (x) in the
normal form (5) that is equisatisfiable with F . Taking F ′ ≡ Fg ∧ Φ1 ∧ Φ2 ∧ Φ3

as defined in (6), by Corollary 2, F ′ is equisatisfiable with F n, and thus with F .
F ′ has a linear size and can be computed in polynomial time in |F |. ut

Corollary 3. There is a decision procedure for GF 2N that can be implemented
in time 2O|F |, where |F | is the size of a formula F ∈ GF2N .

Proof. A decision procedure for F ∈ GF3 can be implemented in time 2O|F |.
(see Grädel 1999b, Hladik 2002, Ganzinger & de Nivelle 1999)4. ut

4 Most decision procedures are given here for the full guarded fragment, but is easy
to see that their specializations for the bounded-variable case run in EXPTIME.

4 Conclusions and the Future Work

We have described a procedure, that allows one to translate every formula from
GF2N to an equisatisfiable formula from GF3. The procedure is quite intriguing,
since it runs in polynomial time and has only linear overhead in the size of the
produced formula. However, only experimental evaluation can judge the practical
usefulness of the procedure. For the future work we try to find a translation
from GF2N to smaller fragments, in particular to GF2, or to the description
logic ALCI, so that existing systems for description logics can be employed.
This idea is related to the work of Hladik & Sattler (2003). We believe that
a translation to simpler formalisms can be found by exploiting the automata
translation proposed by Tobies (2001).

References

Andréka, H., van Benthem, J. & Németi, I. (1998), ‘Modal languages and bounded
fragments of predicate logic’, Journal of Philosophical Logic 27, 217–274.

Ganzinger, H. & de Nivelle, H. (1999), A superposition decision procedure for the
guarded fragment with equality, in ‘Proc. 14th IEEE Symposium on Logic in
Computer Science’, IEEE Computer Society Press, pp. 295–305.

Grädel, E. (1999a), Decision procedures for guarded logics, in ‘Automated Deduction -
CADE16. Proceedings of 16th International Conference on Automated Deduction,
Trento, 1999’, Vol. 1632 of LNCS, Springer-Verlag.

Grädel, E. (1999b), ‘On the restraining power of guards’, Journal of Symbolic Logic

64(4), 1719–1742.
Haarslev, V. & Möller, R. (2001), Optimizing reasoning in description logics with qual-

ified number restrictions, in ‘Proceedings of the International Workshop on De-
scription Logics (DL-2001)’, Stanford, USA, pp. 142–151.

Haarslev, V., Timmann, M. & Möller, R. (2001), Combining tableau and algebraic
methods for reasoning with qualified number restrictions in description logics, in
‘Proceedings of the International Workshop on Methods for Modalities 2 (M4M-
2)’, Amsterdam, Netherlands.

Hladik, J. (2002), Implementation and optimisation of a tableau algorithm for the
guarded fragment, in U. Egly & C. G. Fermüller, eds, ‘Proceedings of the Interna-
tional Conference on Automated Reasoning with Tableaux and Related Methods
(Tableaux 2002)’, Vol. 2381 of Lecture Notes in Artificial Intelligence, Springer-
Verlag.

Hladik, J. & Sattler, U. (2003), A translation of looping alternating automata to
description logics, in ‘Proc. of the 19th Conference on Automated Deduction
(CADE-19)’, Vol. 2741 of Lecture Notes in Artificial Intelligence, Springer Ver-
lag.

Tobies, S. (2001), Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation, PhD thesis, RWTH Aachen, Germany.

Vardi, M. (1996), Why is modal logic so robustly decidable?, in N. Immerman & P. G.
Kolaitis, eds, ‘Descriptive Complexity and Finite Models’, Vol. 31 of DIMACS Se-

ries in Discrete Mathematics and Theoretical Computer Science, American Math-
ematical Society, Princeton University, pp. 149–184.

